JPH03126269A - Manufacture of inp avalanche photodiode - Google Patents

Manufacture of inp avalanche photodiode

Info

Publication number
JPH03126269A
JPH03126269A JP1267011A JP26701189A JPH03126269A JP H03126269 A JPH03126269 A JP H03126269A JP 1267011 A JP1267011 A JP 1267011A JP 26701189 A JP26701189 A JP 26701189A JP H03126269 A JPH03126269 A JP H03126269A
Authority
JP
Japan
Prior art keywords
annealing
time
junction
inp
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1267011A
Other languages
Japanese (ja)
Inventor
Eitaro Ishimura
栄太郎 石村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1267011A priority Critical patent/JPH03126269A/en
Publication of JPH03126269A publication Critical patent/JPH03126269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve characteristics and reproducibility and also a yield by conducting annealing at a specified temperature and for a specified time after implantation of Be ions in an InP layer. CONSTITUTION:An n<-> InP layer 2 is formed on an n<+> InP substrate 1, and in an n<-> InP layer 3 formed thereon, Be ions are implanted in the shape of a ring surrounding a light-sensing region of APD, with a resist pattern 4 used as a mask, so as to form a girdling 5. Thereafter a water is annealed to acti vate Be, the time for annealing being set to be five hours or longer at a tempera ture of 700 deg.C approximately. A much higher breakdown voltage can be attained for the girdling when the annealing is executed for a longer time. As for the ion-implanted Be, a p-n junction is formed only of a later component in the long-time annealing. Thereby a depth is made easy to control and a high reproducibility is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、InP系アバランシェホトダイオード(A
PD)の製造方法に係り、特にそのガードリングの形成
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an InP-based avalanche photodiode (A
The present invention relates to a method for manufacturing PD), and particularly to a method for forming a guard ring thereof.

〔従来の技術〕[Conventional technology]

従来のInP系APDのガードリングの形成方法の一例
について第4図を参照して説明する。まず、n” −I
nP基板1上にn −In P層2が形成され、その上
に形成されたn−−InP層3にレジストパターン4を
マスクにしてAPDの受光領域を取り囲むようなリング
状にBeをイオン注入し、ガードリング5を形成する。
An example of a method for forming a guard ring of a conventional InP-based APD will be described with reference to FIG. First, n” −I
An n-InP layer 2 is formed on an nP substrate 1, and Be is ion-implanted into the n--InP layer 3 formed thereon in a ring shape surrounding the light receiving area of the APD using a resist pattern 4 as a mask. Then, a guard ring 5 is formed.

この時の注入条件は一般に加速エネルギー〜150 K
 e V 、ドーズ量〜7X10”c+n−’である。
The implantation conditions at this time are generally an acceleration energy of ~150 K.
e V , the dose is ˜7×10″c+n−′.

この後、ウェハを一般に〜700℃の温度でアニール(
熱処理)し、Beを活性化させる。このアニールの時間
ば20〜30分間である。
After this, the wafer is typically annealed (
heat treatment) to activate Be. The duration of this annealing is 20 to 30 minutes.

このような条件で形成したガードリング5の深さ方向に
対するBeの濃度分布は、第5図のようになる。
The concentration distribution of Be in the depth direction of the guard ring 5 formed under such conditions is as shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

APDのガードリング5の降伏電圧は受光のそれより高
いことが必要である。しかし、上記のような条件でガー
ドリング5を形成した場合、十分に高い降伏電圧を再現
性よく得ることができない。
The breakdown voltage of the guard ring 5 of the APD needs to be higher than that of the light receiving device. However, when the guard ring 5 is formed under the above conditions, a sufficiently high breakdown voltage cannot be obtained with good reproducibility.

この発明は、上記のような問題点を解消するためになさ
れたもので、特性の良好なAPDを歩留りよく得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and aims to obtain APDs with good characteristics at a high yield.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るInP系アバランシエフォI・ダイオー
ドの製造方法は、InPiJにBeイオン注入後に、お
およそ700℃で5時間以上のアニールを行うものであ
る。
The method for manufacturing an InP-based avalanche I diode according to the present invention involves implanting Be ions into InPiJ, followed by annealing at approximately 700° C. for 5 hours or more.

〔作用〕[Effect]

この発明においては、長時間アニールを行うことにより
、降伏電圧の高いガードリングが再現性よく得られる。
In this invention, a guard ring with a high breakdown voltage can be obtained with good reproducibility by performing annealing for a long time.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はガードリングの降伏電圧とこの発明のアニール
時間との関係を示す図であり、第2図はBeの深さ方向
に対する濃度分布を示す図で、アニール時間は5時間で
あり、その時の温度は、おおよそ700℃である。
Fig. 1 is a diagram showing the relationship between the breakdown voltage of the guard ring and the annealing time of the present invention, and Fig. 2 is a diagram showing the concentration distribution of Be in the depth direction, and the annealing time is 5 hours. The temperature is approximately 700°C.

まず、この発明のように長時間アニールを行うことによ
り、従来のアニール時間では得られない2つの質的な差
を以下に説明する。
First, by performing long-time annealing as in the present invention, two qualitative differences that cannot be obtained with conventional annealing time will be explained below.

■ ガードリングのpn接合を片側階段型接合と仮定し
た場合、降伏電圧はn −I n Pの不純物濃度NI
Iによって決まる(この降伏電圧をvNilとする)。
■ When the pn junction of the guard ring is assumed to be a one-sided stepped junction, the breakdown voltage is n - I n P impurity concentration NI
(this breakdown voltage is defined as vNil).

また、傾斜型接合と仮定した場合、降伏電圧はBeの濃
度勾配aにより決まる(この降伏電圧をV、とする) ガードリングのpn接合において、p側の不純物濃度分
布は傾斜しており、n側の不純物濃度はおおよそ一定で
ある。ところで、不純物濃度分布がpとnの両方で傾斜
している場合(傾斜型接合)の降伏電圧はVlである。
Furthermore, assuming a sloped junction, the breakdown voltage is determined by the concentration gradient a of Be (this breakdown voltage is V). In the pn junction of the guard ring, the impurity concentration distribution on the p side is sloped, and n The impurity concentration on the side is approximately constant. Incidentally, when the impurity concentration distribution is sloped in both p and n (slope type junction), the breakdown voltage is Vl.

また、n側で不純物濃度が一定で、かつp側の不純物濃
度がn側より十分大きい場合(階段型接合)の降伏電圧
はV Nl!である。ガードリングのpn接合の降伏電
圧v■は、上記V工とVNIIの高い方よりもさらに少
し高くなる。
Further, when the impurity concentration on the n side is constant and the impurity concentration on the p side is sufficiently higher than that on the n side (stepped junction), the breakdown voltage is V Nl! It is. The breakdown voltage v■ of the pn junction of the guard ring is a little higher than the higher of the above-mentioned V and VNII.

ここで、V NaとV、の交点の濃度勾配a J’、り
 a 6とすると、aが小さくなるにつれてVaは大き
くなるが、a)a6のときはあまり変化がない。しかし
、aoを境界として、a(a、、の領域ではaが小さく
なると急にV−は大きくなる。
Here, if the concentration gradient a J' at the intersection of V Na and V is a 6, Va increases as a becomes smaller, but there is not much change when a) a6. However, in the region a(a, , with ao as the boundary), as a becomes smaller, V- suddenly becomes larger.

ところで、従来のアニール時間で形成したガードリング
のBeの濃度勾配a、はa□>aoであり、また、この
発明のアニール時間で形成したガードリングのBeの濃
度勾配a2はao)a、である。つまり、この長時間ア
ニールのほうが格段に高いガードリングの降伏電圧が得
られる。
By the way, the Be concentration gradient a of the guard ring formed with the conventional annealing time is a□>ao, and the Be concentration gradient a2 of the guard ring formed with the annealing time of the present invention is ao)a, be. In other words, this long-time annealing provides a much higher breakdown voltage of the guard ring.

■ イオン注入されたBeは、アニールにより拡散され
る。このBeには、数10分のオーダで1μff1程度
拡散する速い成分と、数時間のオーダで1μm程度拡散
する遅い成分の2つが存在する。従来のアニール時間で
は、第6図のようにpn接合は速い成分と遅い成分の両
方により形成される。しかし、この長時間アニールにお
いては、第7図のように遅い成分のみにより、pn接合
は形成される。
(2) The implanted Be is diffused by annealing. This Be has two components: a fast component that diffuses about 1 μff1 in the order of several tens of minutes, and a slow component that diffuses about 1 μm in the order of several hours. With conventional annealing times, a pn junction is formed by both fast and slow components, as shown in FIG. However, in this long-time annealing, a pn junction is formed only by the slow component as shown in FIG.

速い成分と遅い成分の両方により形成されるpn接合の
深さはコントロールしにくく、バラツキが生じる。また
、この時Beの濃度分布の曲線はpn接合付近で下に凸
(曲率が負)になることが多い。
The depth of the pn junction formed by both the fast and slow components is difficult to control, and variations occur. Further, at this time, the curve of the concentration distribution of Be often becomes convex downward (having a negative curvature) near the pn junction.

しかし、遅い成分のみにより形成されるpn接合は深さ
をコントロールしやすく、再現性が高い。また、この時
Beの濃度分布の曲線はpn接合付近で上に凸(曲率が
正)になることが多い。
However, the depth of a pn junction formed only by slow components is easy to control and has high reproducibility. Further, at this time, the curve of the concentration distribution of Be often becomes upwardly convex (having a positive curvature) near the pn junction.

上記のような2つの理由から、この発明のアニール時間
を用いると高い降伏電圧のガードリング部が再現性よく
得られる。
For the above two reasons, when the annealing time of the present invention is used, a guard ring portion with a high breakdown voltage can be obtained with good reproducibility.

第5図より従来のアニール時間でのBeの濃度勾配a□
は6X10’°crn−’で、第3図よりこの発明のア
ニール時間でのBeの濃度勾配a2は3X1020cr
n−’である。境界点a0は4.3X1020C,、−
4であるので、前述のようなax>ao>a2の関係が
成り立っている。その結果、従来条件では得られない高
い降伏電圧がこの発明の条件によれば得られる。
From Figure 5, Be concentration gradient a□ with conventional annealing time
is 6X10'°crn-', and from FIG. 3, the Be concentration gradient a2 at the annealing time of this invention is 3X1020cr.
It is n-'. Boundary point a0 is 4.3X1020C,,-
4, the above-mentioned relationship ax>ao>a2 holds true. As a result, a high breakdown voltage that cannot be obtained under conventional conditions can be obtained under the conditions of the present invention.

ところで、アニール時間を長くするにつれ、濃度勾配a
はそれに伴い小さくなるが、第1図に示すようにアニー
ル時間が4時間より長くなると、急に■−が上昇してい
る。これはアニール時間が4時間のときa〜aoとなる
ためで、アニール時間が4時間より小さい時、a)a、
、となり、Vaのアニールに対する依存性は小さく、逆
にアニール時間が4時間より大きい時、a (a 6と
なり、VBのアニール時間に対する依存性は大きい。つ
まり、従来のアニール時間(20〜30分)を少しぐら
い長くしてもVaはあまり高くならないが、この発明の
ように従来の10倍程度の杓5時間以上のアニールを行
ってはじめて高いvlIのガードリング部が得られる。
By the way, as the annealing time increases, the concentration gradient a
However, as shown in FIG. 1, when the annealing time becomes longer than 4 hours, ■- suddenly increases. This is because when the annealing time is 4 hours, a to ao, and when the annealing time is less than 4 hours, a) a,
, and the dependence of Va on the annealing time is small. Conversely, when the annealing time is longer than 4 hours, a (a 6), and the dependence of VB on the annealing time is large. In other words, when the annealing time is longer than 4 hours, the dependence of VB on the annealing time is large. Although Va does not become very high even if ) is made a little longer, a high vlI guard ring part can only be obtained by annealing for 5 hours or more, which is about 10 times the conventional method, as in the present invention.

また、第5図(従来のアニール時間)のpn接合付近の
Beの濃度分布の曲線は下に凸(曲率が負)の形状であ
る。これは前述のように、拡散の速い成分と遅い成分の
両方がpn接合を形成しているためである。
Further, the curve of the concentration distribution of Be near the pn junction in FIG. 5 (conventional annealing time) has a downwardly convex shape (negative curvature). This is because, as described above, both the fast-diffusing component and the slow-diffusing component form a pn junction.

ところが、第2図(この発明のアニール時間)のpn接
合付近のBeの濃度分布の曲線は、上に凸(曲率が正)
の形状である。つまり、遅い成分のみでpnJ&合が形
成され、再現性のよい特性が得られる。
However, the Be concentration distribution curve near the pn junction in Figure 2 (annealing time of this invention) is upwardly convex (curvature is positive).
It has the shape of In other words, the pnJ & combination is formed only by the slow component, and characteristics with good reproducibility can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、イオン注入後におお
よそ700℃で5時間以上のアニールを行うので、特性
のよいInP系APDが再現性よく得られる効果がある
As explained above, in the present invention, annealing is performed at approximately 700° C. for 5 hours or more after ion implantation, so that an InP-based APD with good characteristics can be obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を説明するためのガードリ
ングの降伏電圧と1ニ一ル時間との関係を示す図、第2
図は、第1図と同じ条件で注入し、同じ温度でアニール
し、アニール時間が5時間の場合の深さ方向に対するB
eの濃度分布を示す図、第3図は不純物の濃度勾配と降
伏電圧との関係を示す図、第4図はAPDのガードリン
グの形成方法を説明するための断面図、第5図はガード
リングの深さ方向に対する不純物の濃度分布を示す図、
第6図、第7図は従来とこの発明のアニール時間に対す
るpn接合の形成過程を示すpn接合の深さによる不純
物の濃度分布を示す図である。 図において、1はn”−InP基板、2はn−InP層
、3はn”’−InP層、4はレジストパターン、5は
ガードリングである。 第1図
FIG. 1 is a diagram showing the relationship between the breakdown voltage of the guard ring and the one-nil time for explaining one embodiment of the present invention, and FIG.
The figure shows B in the depth direction when implanted under the same conditions as in Figure 1, annealed at the same temperature, and annealed for 5 hours.
Figure 3 is a diagram showing the relationship between impurity concentration gradient and breakdown voltage, Figure 4 is a cross-sectional diagram to explain the method for forming the guard ring of APD, and Figure 5 is a diagram showing the concentration distribution of the impurity. A diagram showing the impurity concentration distribution in the depth direction of the ring,
6 and 7 are diagrams showing the impurity concentration distribution depending on the depth of the pn junction, showing the formation process of the pn junction with respect to the annealing time of the conventional method and the present invention. In the figure, 1 is an n''-InP substrate, 2 is an n-InP layer, 3 is an n''-InP layer, 4 is a resist pattern, and 5 is a guard ring. Figure 1

Claims (1)

【特許請求の範囲】[Claims] InP層に、Beイオンを注入し、その後、アニールを
行いアバランシェホトダイオードのガードリングを形成
する方法において、前記イオン注入後のアニール時間を
おおよそ700℃で5時間以上とすることを特徴とする
InP系アバランシェホトダイオードの製造方法。
An InP-based method of implanting Be ions into an InP layer and then annealing to form a guard ring for an avalanche photodiode, characterized in that the annealing time after the ion implantation is approximately 5 hours or more at 700° C. Method of manufacturing an avalanche photodiode.
JP1267011A 1989-10-12 1989-10-12 Manufacture of inp avalanche photodiode Pending JPH03126269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1267011A JPH03126269A (en) 1989-10-12 1989-10-12 Manufacture of inp avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1267011A JPH03126269A (en) 1989-10-12 1989-10-12 Manufacture of inp avalanche photodiode

Publications (1)

Publication Number Publication Date
JPH03126269A true JPH03126269A (en) 1991-05-29

Family

ID=17438819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1267011A Pending JPH03126269A (en) 1989-10-12 1989-10-12 Manufacture of inp avalanche photodiode

Country Status (1)

Country Link
JP (1) JPH03126269A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106165A (en) * 1982-12-10 1984-06-19 Fujitsu Ltd Manufacture of semiconductor light receiving device
JPS61144077A (en) * 1984-12-18 1986-07-01 Fujitsu Ltd Manufacture of semiconductor light-receiving element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106165A (en) * 1982-12-10 1984-06-19 Fujitsu Ltd Manufacture of semiconductor light receiving device
JPS61144077A (en) * 1984-12-18 1986-07-01 Fujitsu Ltd Manufacture of semiconductor light-receiving element

Similar Documents

Publication Publication Date Title
JPH03126269A (en) Manufacture of inp avalanche photodiode
JPS60178673A (en) Avalanche photo diode
US3704178A (en) Process for forming a p-n junction in a semiconductor material
JPS60211886A (en) Manufacture of avalanche photodiode
JPS6259903B2 (en)
US4003759A (en) Ion implantation of gold in mercury cadmium telluride
JPS6259898B2 (en)
JPS63273317A (en) Manufacture of semiconductor device
JPS60178674A (en) Manufacture of avalanche photo diode
JPS61129882A (en) Manufacture of semiconductor photodetector
JPH0382085A (en) Semiconductor photodetector and manufacture thereof
JPH03289131A (en) Manufacture of semiconductor device
JPS5984422A (en) Manufacture of semiconductor device
JPH0380575A (en) Manufacture of semiconductor device
JPS60211885A (en) Manufacture of avalanche photodiode
JPS5891686A (en) Germanium semiconductor device and its manufacture
JPS61154184A (en) Light receiving element
JPH04246867A (en) Semiconductor photodetector
JPS60149125A (en) Method for impurity doping into semiconductor substrate
JPS6372155A (en) Formation of guard ring
JPH022690A (en) Manufacture of infrared ray sensor
JPH02139975A (en) Manufacture of semiconductor photodetector
JPH03112173A (en) Semiconductor photodetecting device and its manufacture
JPS63224372A (en) Manufacture of semiconductor photodetector
JPS58102573A (en) Manufacture of semiconductor device