JPH0312601A - Optical component which uniforms luminous flux - Google Patents

Optical component which uniforms luminous flux

Info

Publication number
JPH0312601A
JPH0312601A JP1152087A JP15208789A JPH0312601A JP H0312601 A JPH0312601 A JP H0312601A JP 1152087 A JP1152087 A JP 1152087A JP 15208789 A JP15208789 A JP 15208789A JP H0312601 A JPH0312601 A JP H0312601A
Authority
JP
Japan
Prior art keywords
light
transparent plate
axis
refractive index
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1152087A
Other languages
Japanese (ja)
Inventor
Noriji Ooishi
則司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1152087A priority Critical patent/JPH0312601A/en
Publication of JPH0312601A publication Critical patent/JPH0312601A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniform luminous flux with high efficiency by laminating specific two kinds of transparent plates alternately while forming a layer which has a lower refractive index than those transparent plates between them. CONSTITUTION:A Y axis is set in parallel to a side where plural prism units are formed, an X axis is set in parallel to a side perpendicular to said side, and a Z axis is set in a plate thickness direction. Then, a transparent plate 1 of a both-side saw-tooth shape where prism units satisfies the condition that angles theta - -theta are formed by the X axis and expressions I and II, and, on a couple of opposite sides, plural prism units are formed, and a rectangular transparent plate 7 whose sides are as long as those of the transparent plate 1, are laminated alternately while the layer 8 having the lower refractive index than the transparent plates 1 and 7 is formed between them. In the expressions, deltais an angle which is smaller between the divergence angle of incident luminous flux and the divergence angle (+ or -delta) that the device which uses projection luminous flux can uses and less than theta, and (n) is the refractive index of the transparent plate 1. Consequently, the uniform luminous flux with high efficiency can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光フアイバーライトガイドの光線入射部分や
スライド投影機の照明光源などに必要とされる、均一で
かつ単一指向性を有する光束を得る光学部品に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a uniform and unidirectional light flux required for the light incident portion of an optical fiber light guide, the illumination light source of a slide projector, etc. Regarding optical components that obtain.

[従来の技術] シート状物の欠陥検査装置に使われるライン状光源や、
液晶プリンターにおける液晶のバックライト等に、冷光
源として光フアイバーライトガイドが使われるが、照度
圧のない良質の照明を得るために、これらの光線入射部
分には入射光の均一化をはかるために拡散板を用いたり
、特願昭63−106779号にあるように光ファイバ
ーと導光体を使った装置が考案されている。
[Prior art] Line light sources used in defect inspection equipment for sheet materials,
Optical fiber light guides are used as cold light sources for LCD backlights in LCD printers, but in order to obtain high-quality illumination without illuminance pressure, these light beam incident areas are equipped with a light guide to make the incident light uniform. Devices using a diffuser plate or an optical fiber and a light guide as described in Japanese Patent Application No. 63-106779 have been devised.

またスライド投影機の光源部には投影像の全体に明るさ
の斑がないようにリレーコンデンサーを使った光学系が
一般的に使用されている。
Additionally, an optical system using a relay condenser is generally used in the light source section of a slide projector to prevent uneven brightness throughout the projected image.

[発明が解決しようとする課題] これらの光源部ないし光源均一化手段に必要とされる条
件は次のような事である。
[Problems to be Solved by the Invention] The following conditions are required for these light source units or light source uniformity means.

(1)光量が全体で均一である。(1) The amount of light is uniform throughout.

(2)効率が高い。(2) High efficiency.

さらにコストや実用性を考えると (3)設計、制作が容易である。Furthermore, considering cost and practicality, (3) Easy to design and produce.

(4)小型で場所をとらない。(4) It is small and does not take up much space.

事も重要である。Things are also important.

前述した拡散板を用いる方法や、特願昭63−1067
79号にある光ファイバーと導光体を使う方法は、反射
曲面やレンズを使って指向性を持った光束を作り、これ
を均一化部品を通して明るさ斑を除去するものであるが
、前者は拡散板によって光線が散乱する角度が太き(、
光のビーム性が損なわれ光ファイバーの開口角内におさ
まらない光が損失となるため効率が極めて悪い。一方接
者は均一化性能も良好で光のビーム性を損なわず効率も
よいが、小型化が困難であり、又ランダムミキシングの
方法は品質を保持しつつ量産することが容易でない。
The method using the above-mentioned diffusion plate and the patent application No. 1067-1983
The method using optical fibers and light guides in No. 79 uses reflective curved surfaces and lenses to create a directional light beam, which is passed through a homogenizing component to remove brightness irregularities, but the former uses a diffuser. The angle at which the light rays are scattered by the plate is wide (,
The efficiency is extremely low because the beam properties of the light are impaired and the light that does not fit within the aperture angle of the optical fiber becomes a loss. On the other hand, the contactor has good uniformity performance and is efficient without impairing the beam properties of the light, but it is difficult to miniaturize, and the random mixing method is not easy to mass produce while maintaining quality.

更に前述したリレーコンデンサーを使った光学系は、均
一化性能が良(効率もさほど悪(ないが、使用電球、反
射板、コンデンサーレンズ等の設計、調整が十分注意深
く行なわれなければならず、高度な技術必要とされる。
Furthermore, the optical system using the relay condenser mentioned above has good uniformity performance (although the efficiency is not very bad), but the design and adjustment of the light bulb, reflector, condenser lens, etc. used must be carefully done, and the technology is required.

従って従来技術の範囲では上記(1)〜(4)の条件を
同時に満たす光学系を実現することは困難である。
Therefore, within the scope of the prior art, it is difficult to realize an optical system that simultaneously satisfies the conditions (1) to (4) above.

[課題を解決するための手段] 本発明の目的は、上記課題に鑑み、小型化が可能且つ高
効率で光束を均一化することができる光学部品を提供す
ることにある。
[Means for Solving the Problems] In view of the above-mentioned problems, an object of the present invention is to provide an optical component that can be miniaturized and can uniformize the luminous flux with high efficiency.

以上のような目的を達成するため、第1図〜第4図及び
第10図に示すように、以下のような特徴を有する本発
明の光束を均一化する光学部品を提供する。
In order to achieve the above objects, as shown in FIGS. 1 to 4 and 10, an optical component for uniformizing the luminous flux of the present invention having the following features is provided.

即ち、本発明の第1項による光束を均一化する光学部品
は、下記条件Aを満たし、相対する一対の辺にプリズム
単位が複数個形成された両鋸歯状の透明板lと、前記透
明板1と辺の長さが等しい矩形の透明板7とを、これら
の透明板1.7より屈折率の低い層8を間に形成しつつ
交互に積層したことを特徴とする。
That is, the optical component for uniformizing the luminous flux according to the first aspect of the present invention satisfies the following condition A and includes a biserrated transparent plate l in which a plurality of prism units are formed on a pair of opposing sides, and the transparent plate 1 and rectangular transparent plates 7 having the same side length are alternately laminated with layers 8 having a lower refractive index than those of the transparent plates 1.7 being formed between them.

(条件A) プリズム単位が複数個形成された辺に平行にY軸、これ
に垂直な辺に平行にX軸、板厚方向にZ軸をとるとき、
前記プリズム単位がX軸と{1}{2}式で示される角
度θないし一〇をなすこと。
(Condition A) When the Y-axis is parallel to the side on which multiple prism units are formed, the X-axis is parallel to the side perpendicular to this, and the Z-axis is in the plate thickness direction,
The prism unit forms an angle θ to 10 with the X axis as expressed by the formula {1}{2}.

但し、δ:入射光束の広がり角、ないしは出射光束を利
用する装置が利用できる広 がり角(±δ)のいずれか小さい方 −θ n:透明板lの屈折率 また本発明第2項は、第1項の両鋸歯状の透明板1と透
明板7の互いに接する面の少なくともいずれか一方に金
属鍍金を施すか、或は金属鍍金を施したフィルムないし
は金属箔を間に挟む等の方法で、眉間に金属反射面を含
むように積層した光学部品である。
However, δ: the spread angle of the incident light flux or the spread angle (±δ) that can be used by the device that uses the output light flux, whichever is smaller - θ n: the refractive index of the transparent plate l. By a method such as applying metal plating to at least one of the mutually contacting surfaces of the transparent plate 1 and the transparent plate 7 of item 1, or sandwiching a metal plated film or metal foil between them, This is an optical component that is laminated to include a metal reflective surface between the eyebrows.

さらに本発明第3項は、第1項の両鋸歯状の透明板lを
間隔をあけて平行に積層した光学部品である。
Furthermore, the third aspect of the present invention is an optical component in which the two sawtooth transparent plates l of the first aspect are laminated in parallel at intervals.

本発明は例えば、特願昭63−106779号にある方
法と同様に反射曲面やレンズを使って指向性を持った光
束を作り、これを均一化部品を通して明るさ斑を除去す
る方法に使われる光束均一化部品であって、該手法と同
様に光束のビーム性を損なわず光量の均一化を行なう特
徴を持つものである。
The present invention can be used, for example, in a method similar to the method described in Japanese Patent Application No. 63-106779, in which a directional light beam is created using a reflective curved surface or a lens, and this is passed through a uniformizing component to remove brightness irregularities. This is a luminous flux equalizing component, which has the feature of uniformizing the amount of light without impairing the beam properties of the luminous flux, similar to the method described above.

この特徴は高い効率を得るために重要であって、光フア
イバーライトガイドにしろスライド投影機にしろ後に設
置された光学系の開口角を越えた角度に広がる光線は利
用されず損失となるため、光源は平行光である必要はな
いものの、単一指向性を持った光束であることが望まれ
る。
This feature is important for obtaining high efficiency, because whether it is a fiber optic light guide or a slide projector, the light beam that spreads at an angle beyond the aperture angle of the optical system installed later is not utilized and is lost. Although the light source does not need to be parallel light, it is desirable that the light beam be unidirectional.

[作用] 以下、図面を参照しつつ本発明に使われる光学部品の作
用について説明する。
[Function] Hereinafter, the function of the optical component used in the present invention will be explained with reference to the drawings.

まず、第1図を使って本発明の両鋸歯状の透明板1の作
用を説明する。
First, the function of the double sawtooth transparent plate 1 of the present invention will be explained using FIG.

第1図(a)は両鋸歯状の透明板1をZ軸方向からみた
図であり、第1図(b)はその斜視図である。透明板1
は矩形の等厚透明板の対向する2辺にプリズム単位30
を多数形成し、それらプリズム単位30が板厚方向に作
る一対の面の一方が光の入射面20、他方が出射面22
となるように構成される。第1図においては、その矩形
が横の長さW、縦の長さLの長方形であり、それら長辺
にプリズム単位30を形成した場合を示している。プリ
ズム単位30を形成した辺と直交する辺6は後述するよ
うに反射面とされる。
FIG. 1(a) is a view of the double-serrated transparent plate 1 viewed from the Z-axis direction, and FIG. 1(b) is a perspective view thereof. transparent plate 1
30 prism units are placed on two opposing sides of a rectangular transparent plate of equal thickness.
A large number of prism units 30 form a pair of surfaces in the plate thickness direction, one of which is the light entrance surface 20 and the other is the light exit surface 22.
It is configured so that In FIG. 1, the rectangle has a horizontal length W and a vertical length L, and a prism unit 30 is formed on the long sides. A side 6 perpendicular to the side forming the prism unit 30 is a reflective surface, as will be described later.

ここで、プリズム単位30が複数個形成された辺に平行
にY軸、これに垂直な辺に平行にX軸、板の厚さ方向に
2軸をとるとき、X軸に平行に入射する光1i14につ
いて考える。
Here, when the Y-axis is parallel to the side on which a plurality of prism units 30 are formed, the X-axis is parallel to the side perpendicular to this, and the two axes are in the thickness direction of the plate, light incident parallel to the X-axis Think about 1i14.

入射面20における、各プリズム単位30において、X
軸と角度子〇をなす面を+0面(図において、3で表わ
す)、−〇をなす面を一θ面(図において、2で表わす
)と呼び、出射面に於いては入射面の+0面と平行な面
を+0面、−0面と平行な面を−0面と呼ぶことにする
。+0面に入射した光線は屈折により0式を満足する角
度αだけ方向を変え、Y軸方向にL tanαだけ離れ
た出射面22に到達する。
In each prism unit 30 on the entrance surface 20,
The plane that forms an angle with the axis is called the +0 plane (represented by 3 in the figure), and the plane that forms -0 is called the 1θ plane (represented by 2 in the figure). The plane parallel to the plane will be called the +0 plane, and the plane parallel to the -0 plane will be called the -0 plane. The light beam incident on the +0 plane changes its direction by an angle α that satisfies Equation 0 due to refraction, and reaches the exit plane 22 separated by L tan α in the Y-axis direction.

sln  (−一θ) =nsin  (L−θ+α)
・・■、     π 2 この光線が+0面に当たれば光線は元通りX軸に平行な
光線となって出射する。このように+0面に入射し+0
面から出射する光線、あるいは同様に−0面に入射し一
θ面から出射する光線5は、それぞれL tanα、−
Ltanαだけ平行にずれて出射する。ここでθを0式
で求められるθ。に等しくとればα=−〇となり、X軸
に平行なすべての光は上記した2つの光路のいずれかを
通ることになる。
sln (-1 θ) = n sin (L-θ+α)
...■, π 2 If this ray hits the +0 plane, the ray will return to the original state and exit as a ray parallel to the X-axis. In this way, it is incident on the +0 plane and +0
The light rays emitted from the plane, or similarly, the light rays 5 that enter the −0 plane and exit from the 1θ plane are L tanα, −
The light is emitted with a deviation in parallel by Ltanα. Here, θ is calculated using the formula 0. If it is taken to be equal to , then α=−〇, and all light parallel to the X axis will pass through either of the two optical paths mentioned above.

また出射面22に達する以前に側面6に達した光は入射
角がπ/2−θ。となり、0式から、     π n5xn  (−−θ、)=ncosθ0(,’n>1
) が成り立つため、側面6が他の物質と光学的に接触して
おらず、空気層に面しておれば全反射して出射面に達す
る。また側面6に金属蒸着等によって反射面にしておけ
ば、この面が他の物質と接していても同様な結果となる
Furthermore, the light that reaches the side surface 6 before reaching the output surface 22 has an incident angle of π/2-θ. From equation 0, π n5xn (--θ,)=ncosθ0(,'n>1
) holds true, so if the side surface 6 is not in optical contact with any other substance and faces an air layer, it will be totally reflected and reach the output surface. Furthermore, if the side surface 6 is made into a reflective surface by metal vapor deposition or the like, the same result will be obtained even if this surface is in contact with another substance.

両鋸歯状の透明板1は入射面20に垂直に入射する光束
を、入射面20にて光軸を角度α、−αだけまげた光束
に分け、一定の距離を置いた出射面22でもとの軸と平
行な光束に戻すことにより、あたかも元の光源の1/2
の光量の光源が2つ並んだのと同様な効果を得るもので
ある。
The double-serrated transparent plate 1 divides a light beam incident perpendicularly onto an incident surface 20 into light beams whose optical axis is bent by angles α and −α at the incident surface 20, and then divides the beam into beams whose optical axis is bent by angles α and −α at the incident surface 20, and then divides the beam into beams whose optical axis is bent by angles α and −α at the incident surface 20, and then divides the beam into two beams whose optical axis is bent by angles α and −α at the incident surface 20, and then divides the beam into beams whose optical axis is bent by angles α and −α at the incident surface 20, and then divides the beam into two beams whose optical axis is bent by angles α and −α at the incident surface 20, and then divides the beam into beams whose optical axis is bent by angles α and −α at the incident surface 20, and then divides the beam into beams whose optical axis is bent by angles α and −α at the incident surface 20. By returning the light flux to parallel to the axis of
This provides the same effect as when two light sources with a light intensity of .

この効果は、第1図において、光束の入射面20及び出
射面22に形成された各プリズム単位30の周期T(プ
リズムのピッチとも言える)には影響されず、プリズム
単位30がX軸となす角度θが正確に形成されてさえお
れば、達成されるものである。例えば、第11図に示す
ように入射面20側のプリズム単位30の周期T1が出
射面22側の周期T2に比べて、2倍の長さになってい
るような構成でも採用できる。
In FIG. 1, this effect is not affected by the period T (also called the prism pitch) of each prism unit 30 formed on the incident surface 20 and exit surface 22 of the light beam, and the prism units 30 are aligned with the X axis. This can be achieved as long as the angle θ is formed accurately. For example, as shown in FIG. 11, a structure in which the period T1 of the prism units 30 on the side of the entrance surface 20 is twice as long as the period T2 on the side of the exit surface 22 can be adopted.

また、第12図に示すように、入射面2oと出射面22
の各プリズム単位30のY軸方向のずれdyは上記効果
上、問題とならず、製造上、入射面20と出射面22の
位置決め精度が要求されない。
In addition, as shown in FIG. 12, the entrance surface 2o and the exit surface 22
The deviation dy of each prism unit 30 in the Y-axis direction does not pose a problem due to the above-mentioned effects, and positioning accuracy between the entrance surface 20 and the exit surface 22 is not required for manufacturing purposes.

次に第2図(a)、(b)はそれぞれ本発明に使われる
透明板7の平面図、斜視図であり、透明板1に対応して
、横の長さW、入射面20と出射面22の間の距離りの
長方形状の透明板となっている。
Next, FIGS. 2(a) and 2(b) are a plan view and a perspective view, respectively, of a transparent plate 7 used in the present invention. It is a rectangular transparent plate with a distance between surfaces 22.

第3図は画調積状の透明板lと透明板7を交互に高さH
まで、積層した本発明による光学部品17である。透明
板1の厚さはd l %透明板7の厚さはd、になって
いる。
Figure 3 shows a transparent plate l and a transparent plate 7 arranged alternately at a height H.
This is an optical component 17 according to the present invention, which is laminated up to . The thickness of the transparent plate 1 is d l %, and the thickness of the transparent plate 7 is d.

第4図は本発明第1項の積層状態を示すものであり、両
鍔歯状の透明板lと透明板7の間に低屈折率層8が入っ
て積層されている。
FIG. 4 shows a laminated state according to the first aspect of the present invention, in which a low refractive index layer 8 is interposed between the transparent plate 1 and the transparent plate 7 which have a brim tooth shape.

低屈折率層8は低屈折率の接着剤でもよいし、低屈折率
のフィルムを用いてもよい。また空間をあけるだけでも
よく、この場合は両鍔歯状の透明板1と透明板7の間に
光学的な接着がないように積層するだけでよい。低屈折
率層8があるために両鍔歯状の透明板1.透明板7の各
々は、入射面の法線に対して小さい角度で入った光線に
対しては独立な導光体として機能する。本発明はビーム
性を有する光線を入射光とすることが前提であるため、
低屈折率層8と両鍔歯状の透明板l、透明板7との屈折
率差を十分大きくとることにより、このことは容易に成
り立たせることができる。
The low refractive index layer 8 may be a low refractive index adhesive or a low refractive index film. Moreover, it is sufficient to simply leave a space between them, and in this case, it is sufficient to simply laminate the transparent plates 1 and 7 in the form of both flanges so that there is no optical adhesion between them. Due to the presence of the low refractive index layer 8, the transparent plate 1. Each of the transparent plates 7 functions as an independent light guide for light rays that enter at a small angle with respect to the normal to the incident surface. Since the present invention is based on the assumption that the incident light is a beam-like light beam,
This can be easily achieved by setting a sufficiently large difference in the refractive index between the low refractive index layer 8 and the transparent plates 1 and 7 having a double brim tooth shape.

さらに第2項では両鍔歯状の透明板lと透明板7の間に
金属反射面なお(ことによって、各々の透明板の導光体
としての独立性を与えている。
Furthermore, in the second term, a metal reflective surface is provided between the transparent plate 1 and the transparent plate 7 (thereby, each transparent plate is given independence as a light guide).

ここで入射面に入射する入射光が第5図の光量分布を持
っていたとすれば、出射光は第6図の光量分布9(透明
板7を単に透過した光)、光量分布10(透明板1の+
0面に入射し+0面から出射する光線)、光量分布11
(−θ面に入射し一θ面から出射する光線)、光量分布
10° (+0面に入射し面6で反射した後−θ面から
出射する光線)、光量分布11゛ (−θ面に入射し面
6で反射した後手θ面から出射する光線)の合成となる
。前記した両鍔歯状の透明板1.透明板7の独立性のた
めに、両鍔歯状の透明板lに入射し透明板7から出射す
る光線や、透明板に入射し両鍔歯状の透明板1から出射
する光線は存在しない。ここで両鍔歯状の透明板1の厚
さd、が、透明体7の厚さd2の2倍であれば、光量分
布9,10゜11の光強度はほぼ等しくなって出射光は
光量分布12の様に均一化される。また入射光の平行性
が損なわれていないことは明らかである。
Here, if the incident light that enters the incident surface has the light amount distribution shown in FIG. 1+
Light rays incident on the 0 surface and emitted from the +0 surface), light intensity distribution 11
(Light ray that enters the -θ plane and exits from the 1θ plane), light intensity distribution 10° (ray that enters the +0 plane, reflects at surface 6, and then exits from the -θ plane), light intensity distribution 11゛ (ray that enters the -θ plane This is a combination of light rays that are incident, reflected by the surface 6, and then emitted from the rear θ plane. The above-mentioned double-flange-shaped transparent plate 1. Due to the independence of the transparent plate 7, there are no light rays that enter the double-flange-shaped transparent plate l and exit from the transparent plate 7, or light rays that enter the transparent plate and exit from the double-flange-shaped transparent plate 1. . Here, if the thickness d of the double-flange-shaped transparent plate 1 is twice the thickness d2 of the transparent body 7, the light intensities of the light intensity distributions 9, 10° 11 will be approximately equal, and the output light will have the same amount of light. The distribution is made uniform as shown in 12. It is also clear that the parallelism of the incident light is not impaired.

本発明第3項は第1O図に示す通り、透明板7を省き、
代わりに隙間40をあけたもので、上記と同様の効果が
ある。この際、両鍔歯状の透明板lの該隙間40に接す
る面を反射面とすれば該隙間40は完全な導光路となっ
て、その効果は第2項に於ける透明板7とほぼ変わりな
い。反射面を形成しない場合も、面に平行に近い角度で
入射する光に対する反射率は比較的大きいため、近似的
な導光路とみなすことができ、やや損失が増えるものの
第2項と同様な効果が得られる。
In the third aspect of the present invention, as shown in FIG. 1O, the transparent plate 7 is omitted,
Instead, a gap 40 is provided, which has the same effect as above. At this time, if the surface of the transparent plate 1 in the shape of both flanges that is in contact with the gap 40 is used as a reflective surface, the gap 40 becomes a complete light guiding path, and its effect is almost the same as that of the transparent plate 7 in the second term. no change. Even when a reflective surface is not formed, the reflectance for light incident at an angle close to parallel to the surface is relatively large, so it can be regarded as an approximate light guide, and the effect is similar to the second term, although the loss increases slightly. is obtained.

第6図かられかるように、出射面の幅いっばいの光束を
得るためにはdl =d* X2としてL tanα=
W/3になるようにLを選べばよい。
As can be seen from Fig. 6, in order to obtain a luminous flux with the width of the exit surface, dl = d* X2 and L tan α =
Just choose L so that it becomes W/3.

すなわち とすればよ(、θ=θ。であれば となる。i.e. If (, θ=θ, then becomes.

入射光が完全な平行光ならば光量分布はY方向にプリズ
ムの周期Tの光量斑を持ち、2方向にdl +da +
dsの周期の光量斑をもつ。本発明は若干の広がり角を
持つ光束の均一化を実現するものであるから、実際には
出射面から所定の距離をおいて光を利用することにより
周期Tの光量斑を除くことができる。その距離をDと置
けば、である、但しここでδは入射光束の広がり角、な
いしは出射光束を利用する装置が利用できる広がり角の
いずれか小さい方を表わすt 従ってTが小さいはどDが小さく取れ、装置の小型化に
は好ましいが、あまり小さくすると鋸状になった面の角
が加工精度の限界によって持つ丸みの影響が大きくなる
ため、むやみに小さくすることは好ましくない。
If the incident light is perfectly parallel light, the light intensity distribution will have light intensity irregularities with the period T of the prism in the Y direction, and dl + da + in two directions.
It has light intensity irregularities with a period of ds. Since the present invention realizes uniformity of a light beam having a slight spread angle, it is actually possible to eliminate unevenness in the amount of light with period T by using light at a predetermined distance from the exit surface. If the distance is set as D, then δ represents the smaller of the spread angle of the incident light flux or the spread angle available to the device that uses the output light flux. Therefore, if T is small, D is It can be made small, which is preferable for downsizing the device, but if it is made too small, the roundness of the corners of the serrated surface will be affected by the limit of processing accuracy, so it is not preferable to make it too small.

また広がり角δがOでないことは屈折角αの値が対応す
る広がりを持つことを意味し、このためθ=θ。と置い
ても第7図13〜15に示すような光線成分があり、厳
密には第6図に示す通りにはならないが、θ→θ。であ
れば広がり角δがあまり大きくなければ第6図の効果が
得られる。本発明の均一化部品が有効に働(ためにはδ
がθより小さいことが必要であり、入射面、出射面の任
意のプリズム面の一部が、隣の面が作るプリズムの頂角
にさえぎられるような大きな角度の光線はその大部分が
第7図における13〜15の様な光路を取るため、はと
んど有効な光線とはならない。
Also, the fact that the spread angle δ is not O means that the value of the refraction angle α has a corresponding spread, so θ=θ. Even so, there are light ray components as shown in FIGS. 7, 13 to 15, and strictly speaking, it is not as shown in FIG. 6, but θ→θ. In this case, the effect shown in FIG. 6 can be obtained if the spread angle δ is not too large. The equalization component of the present invention works effectively (in order for δ
It is necessary that Since the light beams take optical paths such as 13 to 15 in the figure, they are hardly effective light rays.

次に、θの値の有効な範囲の求め方について説明する。Next, a method for determining the valid range of the value of θ will be explained.

第13図で入射面において広がり角がδの光束は屈折率
nの媒体に入るときその広がり角がδ°になるとすれば
、δ°は第一近似で以下のように表わされる。
In FIG. 13, if it is assumed that a light beam with a spread angle δ at the incident plane has a spread angle δ° when it enters a medium with a refractive index n, then δ° can be expressed in the first approximation as follows.

5in(x/2−ψ) = n 5in(π/ 2−φ
)、、COSψ= n cosφ 、’、sinψdψ=nsinφdφ 、’、dφ= (sinψ/n5inφ)dψδ’ =
 (sinψ/n5inφ)δこのとき角ψはθ。に等
しいとすれば、φ=2ψ=20゜であるから dφ=dψ/2ncosψ −○ δ1= δ/2ncosψ ・・・ 6次に第14図の
ように角ψをΔψだけ増加させたときを考える。平行光
の曲がる角度φ°は0式%式% ) Δψが小さければ媒体内の広がり角は0式のδ゛にほぼ
等しい、もしδ°が0式の右辺第2項より大きければ、
広がり角内に φ゛=2(ψ+Δψ) ・・・ 0 を満たす光線成分を持つことになる。この成分は本発明
の効果を最も効率よく発揮する成分であるから、この成
分を有することが本発明を適用するための条件となる。
5in(x/2-ψ) = n 5in(π/2-φ
),, COSψ= n cosφ ,', sinψdψ=n sinφdφ ,', dφ= (sinψ/n5inφ)dψδ' =
(sinψ/n5inφ)δ At this time, the angle ψ is θ. If it is equal to , then φ = 2ψ = 20°, so dφ = dψ / 2ncosψ -○ δ1 = δ / 2ncosψ ... 6 Next, consider when the angle ψ is increased by Δψ as shown in Figure 14. . The angle of bending of parallel light φ° is given by 0 equation % equation %) If Δψ is small, the spread angle within the medium is approximately equal to δ゛ of 0 equation. If δ° is larger than the second term on the right side of 0 equation,
There is a ray component that satisfies φ゛=2(ψ+Δψ)...0 within the spread angle. Since this component is the component that exhibits the effects of the present invention most efficiently, having this component is a condition for applying the present invention.

よって δ’ > (2−1/2ncosψ)Δψ、、Δψくδ
/(4ncosψ−1) 、°、Δθくδ/(4ncosθ。−1)3.Δθ〈δ
/ (1+ 8 n”) ””    −Oこれからの
式が導かれる。
Therefore, δ'> (2-1/2 n cos ψ) Δψ,, Δψ × δ
/(4n cos ψ-1) , °, Δθ × δ/(4 n cos θ.-1) 3. Δθ〈δ
/ (1+8 n”) ”” -O From this, the formula is derived.

この推論は入射光の広がり角について行なったが、δが
出射光の有効な広がり角の場合は、出射面において視線
を追跡することによって全く同様な結果を得ることにな
る。
This inference was made regarding the spread angle of the incident light, but if δ is the effective spread angle of the output light, exactly the same result will be obtained by tracking the line of sight at the exit surface.

本発明の光学部品の特徴は第6図からも分かるように、
入射面に垂直に入射する光束のうち、部を透明板7(第
3項では隣合う両鋸歯状の透明板1の間の隙間)を通過
させ、残りを両鋸歯状の透明板lの入射面にて光軸を角
度α、−αだけ曲げた光束に分け、一定の距離をおいた
出射面で元の軸と平行な光束に戻すことにより、あたか
も光源が3つ並んだのと同様な効果を得るものである。
As can be seen from FIG. 6, the features of the optical component of the present invention are as follows:
Of the light beam incident perpendicularly to the incident surface, a portion passes through the transparent plate 7 (in the third term, the gap between the two adjacent sawtooth transparent plates 1), and the rest is incident on the both sawtooth transparent plates l. By dividing the optical axis into light beams bent by angles α and −α at the surface and returning the light beam parallel to the original axis at the exit surface at a certain distance, it is similar to three light sources lined up. It is effective.

これによって光束の均一化がなされるが、これはまた光
束を拡大する効果も持っている。
This homogenizes the luminous flux, but it also has the effect of expanding the luminous flux.

ここでdlとd2の比は中央の光源と左右に分かれた光
源の強度比を決めるもので、第6図のように等しい強度
よければa l/ a z = 2にすればよ(、また
り、αは左右に分かれる光源の位置を決めるものであり
、第6図のように部品幅いっばいに均一な光束が必要で
あれば0式から決定すればよい。また必要な光束の幅が
部品幅Wより小さい場合は、L tanαをより小さく
したり、それに併せてa l/ a mを調節してもよ
い。
Here, the ratio of dl and d2 determines the intensity ratio of the central light source and the left and right light sources, and if you want equal intensities as shown in Figure 6, set a l/ az = 2 (and , α determine the position of the light source divided into left and right sides, and if a uniform luminous flux is required across the width of the component as shown in Figure 6, it can be determined from equation 0.Also, the required width of the luminous flux is determined by the width of the component. If it is smaller than the width W, L tanα may be made smaller or a l/am may be adjusted accordingly.

本発明による光学部品は、Y軸方向にのみ光量均一化の
効果を持つが、第8図に示すように光量の不均一が一方
向に限られる光源16aを使用する場合は、本発明にか
かる光学部品17を一つ使った装置でよいが、光量の不
均一が2次元の光源16bの場合は、第9図の様に光学
部品17をY軸を直交させて2段にして均一化をはかる
必要がある。
The optical component according to the present invention has the effect of uniformizing the amount of light only in the Y-axis direction, but when using a light source 16a in which the unevenness of the amount of light is limited to one direction as shown in FIG. A device using one optical component 17 may be sufficient, but if the light source 16b has a two-dimensional non-uniform light amount, the optical component 17 can be arranged in two stages with the Y-axis perpendicular to each other as shown in FIG. 9 to make the amount of light uniform. It is necessary to measure it.

なお、本発明に係る光学部品において、光線が入射する
際、及び光線が出射する際に光線の一部が反射し、透過
光が減少する。この反射率はn=1.5前後で、lO%
程度になる。この損失を減少し、効率を高めるには、反
射防止膜をコーティングすれば良い。また、低屈折率の
材料を薄くコーティングすることによって1反射率を下
げることも効果がある。
Note that in the optical component according to the present invention, a portion of the light ray is reflected when the light ray enters and when the light ray exits, and the amount of transmitted light is reduced. This reflectance is around n=1.5, lO%
It will be about. To reduce this loss and increase efficiency, an anti-reflection coating can be applied. It is also effective to lower the 1 reflectance by thinly coating the material with a low refractive index material.

[発明の効果〕 以上説明したように、本発明による光学部品は、光源に
反射曲面やレンズを使って作られた不均一な光束を、そ
のビーム性を損なわずに光強度の均一化を行うことを可
能とし、高効率で均一な光束が得られる光源が容易に制
作でき、実用上大きな効果を有するものである。
[Effects of the Invention] As explained above, the optical component according to the present invention uniformizes the light intensity of a non-uniform light beam created by using a reflective curved surface or a lens as a light source without impairing its beam properties. This makes it possible to easily produce a light source that provides a highly efficient and uniform luminous flux, and has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)はそれぞれ両鍔歯状の透明板
1の平面図、斜視図である。第2図(a) 、 (b)
はそれぞれ本発明に使用する透明板7の平面図、斜視図
である。第3図は本発明第1項の光学部品(第2項も同
様の形状)を示す図、第4図は両鍔歯状の透明板1、透
明板7の積層状態を示した図である。 第5図は入射光の光量分布を示す図、第6図は光量の均
一化が行なわれる原理を説明するための図である。 第7図は入射光束が広がり角をもつために、第1図に示
した光線と異なる行路を通る光線が存在することを示す
図である。 第8図は一方向にのみ光量の不均一を持つ入射光に本発
明を適応する場合の構成図、第9図は2次元的に不均一
を持つ入射光に適応する場合の使用方法を示す図である
。 第10図は本発明第3項による光学部品を示しす図であ
る。 第11図及び第12図はそれぞれ両鍔歯状の透明板lの
変形を示す図、第13図及び第14図はそれぞれ■が導
かれる根拠を説明するための図である。 l・・・両鍔歯状の透明板 2・・・−0面 3・・・+0面 6・・・側面 7・・・透明板 8・・・低屈折率層 16a、16b−光源 17・・・本発明の光学部品
FIGS. 1(a) and 1(b) are a plan view and a perspective view, respectively, of a double-flange-shaped transparent plate 1. FIG. Figure 2 (a), (b)
These are a plan view and a perspective view, respectively, of a transparent plate 7 used in the present invention. FIG. 3 is a diagram showing the optical component of the first aspect of the present invention (the second aspect also has a similar shape), and FIG. 4 is a diagram showing a laminated state of the transparent plate 1 and the transparent plate 7, which have a double brim tooth shape. . FIG. 5 is a diagram showing the distribution of the amount of incident light, and FIG. 6 is a diagram for explaining the principle by which the amount of light is made uniform. FIG. 7 is a diagram showing that because the incident light beam has a divergence angle, there are light rays that take different paths from the light rays shown in FIG. 1. Fig. 8 is a configuration diagram when the present invention is applied to incident light having non-uniformity in light amount in only one direction, and Fig. 9 shows how to use the present invention when applied to incident light having non-uniformity in two dimensions. It is a diagram. FIG. 10 is a diagram showing an optical component according to the third aspect of the present invention. FIG. 11 and FIG. 12 are diagrams showing the deformation of the double-flange-shaped transparent plate l, respectively, and FIGS. 13 and 14 are diagrams, respectively, for explaining the basis for deriving ■. l...Transparent plate 2 with double brim tooth shape...-0 surface 3...+0 surface 6...Side surface 7...Transparent plate 8...Low refractive index layer 16a, 16b-Light source 17. ...Optical component of the present invention

Claims (3)

【特許請求の範囲】[Claims] (1)下記条件Aを満たし、相対する一対の辺にプリズ
ム単位が複数個形成された両鋸歯状の透明板1と、 前記透明板1と辺の長さが等しい矩形の透明板7とを、
これらの透明板1、7より屈折率の低い層8を間に形成
しつつ交互に積層したことを特徴とする光束を均一化す
る光学部品。 (条件A) プリズム単位が複数個形成された辺に平行にY軸、これ
に垂直な辺に平行にX軸、板厚方向にZ軸をとるとき、
前記プリズム単位がX軸と{1}{2}式で示される角
度θないし−θをなすこと。 θ_0−δ/(1+8n^2)^1^/^2<θ<θ_
0+δ/(1+8n^2)^1^/^2・・・{1}θ
_0=COS^−^1{[1+(1+8n^2)^1^
/^2]/4n}・・{2}但し、δ:入射光束の広が
り角、ないしは出射光束を利用する装置が利用できる広 がり角(±δ)のいずれか小さい方で、δ<θ n:透明板1の屈折率
(1) A biserrated transparent plate 1 that satisfies the following condition A and has a plurality of prism units formed on a pair of opposite sides, and a rectangular transparent plate 7 whose sides are the same length as the transparent plate 1. ,
An optical component for uniformizing light flux, characterized in that layers 8 having a lower refractive index than those of the transparent plates 1 and 7 are alternately laminated with layers 8 formed therebetween. (Condition A) When the Y-axis is parallel to the side on which multiple prism units are formed, the X-axis is parallel to the side perpendicular to this, and the Z-axis is in the plate thickness direction,
The prism unit forms an angle θ to −θ with the X axis as expressed by the formula {1}{2}. θ_0-δ/(1+8n^2)^1^/^2<θ<θ_
0+δ/(1+8n^2)^1^/^2...{1}θ
_0=COS^−^1;[1+(1+8n^2)^1^
/^2]/4n}...{2} However, δ is the smaller of the spread angle of the incident light flux or the spread angle (±δ) that can be used by the device that uses the output light flux, and δ<θ n: Refractive index of transparent plate 1
(2)請求項1記載の両鋸歯状の透明板1と、前記透明
板1と辺の長さが等しい矩形の透明板7とを金属反射面
を間に挟んで交互に積層したことを特徴とする光束を均
一化する光学部品。
(2) A feature in that the double-serrated transparent plates 1 according to claim 1 and rectangular transparent plates 7 whose sides are equal in length to the transparent plates 1 are alternately laminated with metal reflective surfaces in between. An optical component that equalizes the luminous flux.
(3)請求項1記載の両鋸歯状の透明板1を、矩形の透
明板7を除去した状態であって、低屈折率層の間隔をお
いて平行に積層した光束を均一化する光学部品。
(3) An optical component that homogenizes a light beam, which is obtained by removing the rectangular transparent plate 7 from the double sawtooth transparent plate 1 according to claim 1, and stacking the low refractive index layers in parallel with an interval. .
JP1152087A 1989-06-09 1989-06-09 Optical component which uniforms luminous flux Pending JPH0312601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152087A JPH0312601A (en) 1989-06-09 1989-06-09 Optical component which uniforms luminous flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152087A JPH0312601A (en) 1989-06-09 1989-06-09 Optical component which uniforms luminous flux

Publications (1)

Publication Number Publication Date
JPH0312601A true JPH0312601A (en) 1991-01-21

Family

ID=15532764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152087A Pending JPH0312601A (en) 1989-06-09 1989-06-09 Optical component which uniforms luminous flux

Country Status (1)

Country Link
JP (1) JPH0312601A (en)

Similar Documents

Publication Publication Date Title
US7369186B2 (en) Polarizing beam splitter featuring stacked grating layers and display including the same
JP4642873B2 (en) Lighting device
JP2007140505A (en) Brightness enhancement film and backlight module
EP0600728A1 (en) Polarization plane rotator applicable to polarization converter and projection display system
JP2013061611A (en) Optical film, and backlight module and liquid crystal display having the optical film
US9664988B2 (en) Light source system with light coupling module and display apparatus comprising the same
JP2014126604A (en) Light source device, illumination optical system, and image display device
US20030031029A1 (en) Rod integrator and illumination optical system using the same
US20100321596A1 (en) Projection optical system and projection display unit using the same
US7639427B2 (en) Light collecting device for use in a projection apparatus
US7175332B2 (en) Light guide device having improved light efficiency and uniformity
KR20040068926A (en) Fresnel lens sheet and rear projection screen comprising the same
JPS6219837A (en) Transmission type screen
JP2006323284A (en) Projection display screen using deflection element, and projection display system
JPH0312601A (en) Optical component which uniforms luminous flux
CN113960867B (en) Lighting device and projector
TW586020B (en) Optical system for projection display apparatus
JPH02277002A (en) Optical component for uniforming luminous flux
CN113759649B (en) Lighting device and projector
JP2007500859A (en) Illumination device with polarization recycling in a double prism
JPH02294614A (en) Optical parts for uniforming luminous flux
JPH0363618A (en) Optical component
JPS62299943A (en) Transmission type liquid crystal display device
JPH0391714A (en) Optical parts
JPH0323401A (en) Optical parts for uniformizing luminous flux