JPH02294614A - Optical parts for uniforming luminous flux - Google Patents

Optical parts for uniforming luminous flux

Info

Publication number
JPH02294614A
JPH02294614A JP11512989A JP11512989A JPH02294614A JP H02294614 A JPH02294614 A JP H02294614A JP 11512989 A JP11512989 A JP 11512989A JP 11512989 A JP11512989 A JP 11512989A JP H02294614 A JPH02294614 A JP H02294614A
Authority
JP
Japan
Prior art keywords
light
axis
parallel
light beam
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11512989A
Other languages
Japanese (ja)
Inventor
Noriji Ooishi
則司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP11512989A priority Critical patent/JPH02294614A/en
Publication of JPH02294614A publication Critical patent/JPH02294614A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniform luminous flux by bending the optical axis of luminous flux which is made incident on an incidence surface perpendicularly by a transparent plate by a specific angle and restoring the luminous flux to luminous flux parallel to the original axis by a transparent plate which is arranged at a constant distance. CONSTITUTION:The light beam which is made incident on the +theta surface is changed in direction by refraction by the angle alpha satisfying an equation I and becomes a light beam having an angle beta, satisfying an equation II, to the X axis by refraction when exiting from the transparent plate 1. Further, when the light beam enters the transparent plate 2, the angle to the X axis becomes alphaagain and the light beam reaches a projection surface 23. The distance Q that the light beam travels in a Y-axial direction until it reaches the projection surface 23 is shown by an equation III eventually. This light beam is projected from the +theta surface, so the light beam which is made incident on the +theta surface and exits from the +theta surface and the light beam which is made incident on a -theta surface and exits from the -theta surface similarly exits shifting in parallel by Q and -Q respectively. Consequently, the high-efficient uniform luminous flux is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ファイバーライトガイドの光線入射部分や
スライド投影機の照明光源などに必要とされる、均一で
かつ単一指向性を有する光束を得るための光学部品に関
する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a uniform and unidirectional light beam required for the light incident portion of an optical fiber light guide, the illumination light source of a slide projector, etc. Regarding optical components for obtaining.

[従来の技術] シート状物の欠陥検査装置に使われるライン状光源や、
液晶プリンターにおける液晶のバックライト等に、冷光
源として光ファイバーライトガイドが使われるが、照度
斑のない良質の照明を得るために、これらの光線入射部
分には入射光の均一化をはかるために拡散板を用いたり
、特願昭63− 106779号にあるように光ファイ
バーと導光体を使った装置が考案されている。
[Prior art] Line light sources used in defect inspection equipment for sheet materials,
Optical fiber light guides are used as cold light sources for LCD backlights in LCD printers, but in order to obtain high-quality illumination without uneven illuminance, these light incident areas must be diffused to uniformize the incident light. Devices using plates or optical fibers and light guides as described in Japanese Patent Application No. 63-106779 have been devised.

またスライド投影機の光源部には投影像の全体に明るさ
の斑がないようにリレーコンデンサーを使った光学系が
一般的に使用されている。
Additionally, an optical system using a relay condenser is generally used in the light source section of a slide projector to prevent uneven brightness throughout the projected image.

[発明が解決しようとする課題] これらの光源部ないし光源均一化手段に必要とされる特
徴は次のようなことである。
[Problems to be Solved by the Invention] The characteristics required of these light source sections or light source uniformizing means are as follows.

(1)光量が全体で均一である。(1) The amount of light is uniform throughout.

(2)効率が高い。(2) High efficiency.

さらにコストや実用性を考^ると、 (3)設計、制作が容易である。Furthermore, considering cost and practicality, (3) Easy to design and produce.

(4)小型で場所をとらない。(4) Small size and does not take up much space.

こども重要である。Children are important.

前述した拡散板を用いる方法や、特願昭63−1067
79号にある光ファイバーと導光体を使う方法は、反射
曲面やレンズを使って指向性を持った光束を作り、これ
を均一化部品を通して明るさ斑を除去するものであるが
、前者は拡散板によって光線が散乱する角度が大きく、
光のビーム性が損なわれ光ファイバーの開口角内におさ
まらない光が損失となるため効率が極めて悪い。一方、
後者は均一化性能も良好で、光のビーム性を損なわず効
率もよいが、小型化が困難であり、又ランダムミキシン
グの方法は品質を保持しつつ量産することが容易でない
The method using the above-mentioned diffusion plate and the patent application No. 1067-1983
The method using optical fibers and light guides in No. 79 uses reflective curved surfaces and lenses to create a directional light beam, which is passed through a homogenizing component to remove brightness irregularities, but the former uses a diffuser. The angle at which the light rays are scattered by the plate is large;
The efficiency is extremely low because the beam properties of the light are impaired and the light that does not fit within the aperture angle of the optical fiber becomes a loss. on the other hand,
The latter has good uniformity performance and is efficient without impairing the beam properties of light, but it is difficult to miniaturize, and the random mixing method is not easy to mass-produce while maintaining quality.

更に前述したリレーコンデンサーを使った光学系は、均
一化性能が良く効率もさほど悪くないが、使用電球,反
射板,コンデンサーレンズ等の設計、調整が十分注意深
く行なわれなければならず、高度な技術が必要とされる
。従って従来技術の範囲では(1)〜(4)を同時に満
たす光学系を実現することは困難である。
Furthermore, the optical system using the relay condenser described above has good uniformity performance and is not so bad in efficiency, but it requires careful design and adjustment of the bulb, reflector, condenser lens, etc., and requires advanced technology. is required. Therefore, within the scope of the prior art, it is difficult to realize an optical system that simultaneously satisfies (1) to (4).

[課題を解決するための手段] 本発明の目的は、上記従来技術の問題点に鑑み、小型化
が可能且つ高効率で光束を均一化することができる光学
部品を提供することにある。
[Means for Solving the Problems] In view of the problems of the prior art described above, an object of the present invention is to provide an optical component that can be miniaturized and can uniformize the luminous flux with high efficiency.

以上のような目的を達成するため、本発明の光束を均一
化する光学部品は、片面が平面で、他方の面が条件Aを
満たすようにプリズム単位が筋状に複数個形成された長
方形の透明板2枚を、それぞれのプリズム単位の稜線を
互いに平行に、かつ互いの平面の側が向かい合うように
平行に設置されたものを構造単位とし、少なくとも一つ
の構造単位を平行に重ね合わせることによって構成され
ることを特徴としている。
In order to achieve the above object, the optical component for uniformizing the light flux of the present invention is a rectangular piece in which one side is flat and the other side has a plurality of prism units formed in a stripe shape so that condition A is satisfied. A structural unit consisting of two transparent plates installed parallel to each other with the ridgelines of each prism unit parallel to each other and their flat sides facing each other, and constructed by overlapping at least one structural unit in parallel. It is characterized by being

(条件A) 前記透明板の面の直行する2辺にそれぞれ平行にY軸、
Z軸をとり、面に垂直方向にX軸をとれば、前記プリズ
ム単位の稜線はY軸、Z軸のいずれか一方に平行で、か
つ前記各プリズム単位を構成する両面がそれぞれX軸と
下記[1]、[2]式で示される角度θないし−θをな
すように形成されている。
(Condition A) The Y axis is parallel to each of the two perpendicular sides of the surface of the transparent plate,
If we take the Z-axis and the X-axis in the direction perpendicular to the surface, then the ridgeline of the prism unit is parallel to either the Y-axis or the Z-axis, and both sides of each prism unit are parallel to the X-axis, as shown below. [1] and [2] are formed so as to form an angle θ to −θ shown in equations.

但し、δ:入射光束の広がり角、ないしは出射光束を利
用する装置が利用できる広 がり角(±δ)のいずれか小さい方 で、δ〈θ。
However, δ is the smaller of the spread angle of the incident light beam or the spread angle (±δ) that can be used by a device that uses the output light beam, and δ<θ.

n:透明体の屈折率 なお、光強度分布が正規分布のような光束を広範囲にお
いて効率よく均一化させるためには、条件Aの座標系の
XZ面に平行な反射面及び/またはXY面に平行な反射
面を設置すると良い。
n: refractive index of the transparent body In order to efficiently uniformize the light beam with a normal light intensity distribution over a wide range, it is necessary to It is best to install a parallel reflective surface.

本発明は特願昭63− 10[3779号にある方法と
同様に反射曲面やレンズを使って指向性を持った光束を
作り,これを均一化部品を通して明るさ斑を除去する方
法に使われる光束均一化部品であって、該手法と同様に
光束のビーム性を損なわず光量の均一化を行なう特徴を
持つものである。
The present invention is similar to the method described in Japanese Patent Application No. 3779, 1983-10, and is used in a method of creating a directional light beam using a reflective curved surface or a lens, and removing brightness unevenness through a uniformizing component. This is a luminous flux equalizing component, which has the feature of uniformizing the amount of light without impairing the beam properties of the luminous flux, similar to the method described above.

この特徴は高い効率を得るために重要であって、光ファ
イバーライトガイドまたはスライド投影機においても、
後に設置された光学系の開口角を越えた角度に広がる光
線は利用されず損失となるため、光源は平行光である必
要はないものの、単一指向性を持った光束であることが
望まれる。
This feature is important for obtaining high efficiency, even in fiber optic light guides or slide projectors.
Light rays that spread beyond the aperture angle of the optical system installed later are not used and are lost, so although the light source does not need to be parallel light, it is desirable that the light beam has unidirectionality. .

[作用] 第1図を参照して本発明の作用を説明する。[Effect] The operation of the present invention will be explained with reference to FIG.

第1図において、■,2は本発明に係る構造単位l5を
構成する長方形の透明板である。第1図は、構造単位1
5をプリズム単位30が形成された面に平行な軸方向か
ら見たもので、この軸をY軸とする。入射光はプリズム
単位30が形成された面に垂直なX軸に沿って図面の上
から入射するものとする。なお、Z軸をX軸及びY軸に
直交する方向に取る。
In FIG. 1, 2, 2 is a rectangular transparent plate constituting the structural unit 15 according to the present invention. Figure 1 shows structural unit 1
5 viewed from the axial direction parallel to the plane on which the prism unit 30 is formed, and this axis is defined as the Y-axis. It is assumed that the incident light enters from above the drawing along the X axis perpendicular to the plane on which the prism unit 30 is formed. Note that the Z-axis is taken in a direction perpendicular to the X-axis and the Y-axis.

まずX軸に平行に入射する光線について考える。透明板
lの入射面においてX軸と角度十〇をなす面を+θ面(
図において4で示す)、一〇をなす面を一〇面(図にお
いて3で示す)と呼び、透明板2の出射面23に於いて
は入射面20の+θ面と平行な面を+θ面、一θ面と平
行な面を−θ面と呼ぶことにする。スネルの法則により
、+θ面に入射した光線は屈折により■式を満足する角
度αだけ方向を変え、透明板lを出る際、屈折によりX
軸と■式を満足する角度βをなす光線となる。この角度
αと角度βとの詳細図を第2図に示す。更に透明板2に
入る際、X軸となす角度は再びαとなって出射面23に
到達する。結局出射面23に達するまでに光線がY軸方
向に動いた距離Qは■式となる。
First, consider a ray of light that is incident parallel to the X-axis. The plane that makes an angle of 10 with the X axis on the incident plane of the transparent plate l is the +θ plane (
In the output surface 23 of the transparent plate 2, the surface parallel to the +θ plane of the incident surface 20 is called the +θ plane. , the plane parallel to the -θ plane will be called the -θ plane. According to Snell's law, a ray incident on the +θ plane changes its direction by an angle α that satisfies the equation
It becomes a ray that forms an angle β with the axis that satisfies the equation (■). A detailed diagram of this angle α and angle β is shown in FIG. Further, when the light enters the transparent plate 2, the angle with the X axis becomes α again, and the light reaches the exit surface 23. In the end, the distance Q that the light ray moves in the Y-axis direction until it reaches the exit surface 23 is expressed by equation (2).

sxn(−一〇)=nsin(五一〇+α) ・・・■
.   π sinβ=nsina               
 ...■Q”  (d+  +dz)  tana+
Ltan  β   ・・・■この光線が+θ面に当た
れば光線は元通りX軸に平行な光線となって出射する。
sxn(-10)=nsin(510+α)...■
.. π sinβ=nsina
.. .. .. ■Q” (d+ +dz) tana+
Ltan β... ■If this ray hits the +θ plane, the ray will return to the original state and be emitted as a ray parallel to the X-axis.

このように+θ面に入射し+θ面から出射する光線、あ
るいは同様に−θ面に入射し−θ面から出射する光線は
、それぞれQ  −Qだけ平行にずれて出射する。ここ
でθを■式で求められるθ。に等しくとればα=一〇と
なり、X軸に平行なすべての光は上記した2つの光路の
いずれかを通ることになる。
In this way, a light ray that enters the +θ plane and exits from the +θ plane, or similarly a light ray that enters the −θ plane and exits from the −θ plane, respectively, are deviated from parallel by Q−Q and exit. Here, θ is θ determined by the formula ■. If α is taken to be equal to , then α=10, and all light parallel to the X axis will pass through either of the two optical paths mentioned above.

また、透明体1.2だけであると、Y軸方向にQあるい
はーQだけずれたために透明板2からはずれてしまう光
は損失となるが、第1図に示すように構造単位15の両
側に表面が反射面である反射板を設け、全体の形状が筒
状の導光路となっている場合には、その導光路の反射面
7で反射して透明板2に達する. ここで入射面20に入射する入射光が第3図の光量分布
を持っていたとすれば、出射光は第4図の光量分布8(
+θ面に入射し、+θ面から出射する光線によるもの)
、光量分布9(−θ面に入射し、一〇面から出射する光
線によるもの)、光量分布8゜ (+θ面に入射し、面
7で反射した後一θ面から出射する光線によるもの)、
光量分布9゜ (一〇面に入射し、面7で反射した後十
θ面から出射する光線によるもの)の合成によって光量
分布1oの様に均一化される。また入射光の平行性が損
なわれていないことは明らかである。導光路の反射面7
がない構成の発明(請求項1記載の発明)については光
量分布8゜と光量分布9が存在しないため光量分布10
’の様になる。
In addition, if there is only the transparent body 1.2, the light that deviates from the transparent plate 2 due to a shift of Q or -Q in the Y-axis direction will be lost, but as shown in FIG. 1, both sides of the structural unit 15 In the case where a reflecting plate having a reflective surface is provided and the overall shape is a cylindrical light guiding path, the light is reflected by the reflecting surface 7 of the light guiding path and reaches the transparent plate 2. If the incident light entering the entrance surface 20 has the light amount distribution shown in FIG. 3, the output light will have the light amount distribution 8 (
(Due to light rays entering the +θ plane and exiting from the +θ plane)
, light intensity distribution 9 (due to rays incident on the -θ plane and emitted from the 10th plane), light intensity distribution 8° (due to rays incident on the +θ plane, reflected at surface 7, and then emitted from the 1θ plane) ,
By combining the light intensity distribution 9° (due to light rays incident on the 10 plane, reflected by the surface 7, and then emitted from the 10 theta plane), the light intensity distribution is made uniform as 1o. It is also clear that the parallelism of the incident light is not impaired. Reflective surface 7 of the light guide path
For the invention having a structure in which there is no light intensity distribution (the invention claimed in claim 1), the light intensity distribution 8° and the light intensity distribution 9 do not exist, so the light intensity distribution 10
'It will look like this.

内面が反射面である筒状の導光路が形成する構成(請求
項2記載の発明)においては第4図からわかるように、
出射面の幅いっぱいの光束を得るためにはQ=W/4に
なるように透明板1の厚さdl,透明板2の厚さd2,
それらの距離Lを選べばよい。d+,d2が十分小さい
場合はとすればよい。
As can be seen from FIG. 4, in the configuration in which a cylindrical light guide path whose inner surface is a reflective surface (invention according to claim 2) is formed,
In order to obtain a luminous flux that fills the entire width of the exit surface, the thickness of transparent plate 1 is dl, the thickness of transparent plate 2 is d2, and so that Q=W/4.
All you have to do is choose the distance L between them. If d+ and d2 are sufficiently small, it is sufficient.

入射光が完全な平行光ならば光量分布はプリズム単位の
周期Tの光量斑を持つが、本発明は若干の広がり角を持
つ光束の均一化を実現するものであるから、実際には出
射面から所定の距離をおいて光を利用することにより周
期Tの光量斑を除くことができる.その距離をDと置け
ば DOT/tan  δ            ・・・
■である、但しここでδは入射光束の広がり角、ないし
は出射光束を利用する装置が利用できる広がり角のいず
れか小さい方を表わす。
If the incident light is perfectly parallel light, the light intensity distribution will have light intensity irregularities with a period T of each prism, but since the present invention realizes uniformity of the light flux with a slight spread angle, in reality By using light at a predetermined distance from the center, it is possible to eliminate unevenness in the amount of light with period T. If we set that distance as D, DOT/tan δ...
(2), where δ represents the smaller of the spread angle of the incident light beam or the spread angle that can be used by the device that utilizes the output light beam.

従って周期Tが小さいほど距離Dが小さく取れ、装置の
小型化には好ましいが、あまり小さくすると鋸状になっ
た面の角が加工精度の限界によって持つ丸みの影響が太
き《なるため、むやみに小さくすることは好ましくない
Therefore, the smaller the period T, the smaller the distance D can be, which is preferable for downsizing the device, but if it is too small, the roundness of the corners of the serrated surface will become thicker due to the limit of machining accuracy, so It is not preferable to make it smaller.

また広がり角δがOでないことは屈折角αの値が対応す
る広がりを持つことを意味し、このためθ:00と置い
ても第5図における光線11〜13に示すような光線成
分があり、厳密には第4図に示す通りにはならないが、
θ絢θ。であれば、広がり角δがあまり大きくなければ
第4図の効果が得られる。本発明の均一化部品が有効に
働くためにはδがθより小さいことが必要であり、入射
面20、出射面23の任意のプリズム単位30の一部が
、隣の面が作るプリズムの頂角に遮られるような大きな
角度の光線はその大部分が第5図11〜13のような光
路を取るため、ほとんど有効な光線とはならない。
Furthermore, the fact that the spread angle δ is not O means that the value of the refraction angle α has a corresponding spread, so even if θ:00 is set, there are light ray components as shown in rays 11 to 13 in Figure 5. , although strictly speaking it is not as shown in Figure 4,
θ Aya θ. In this case, the effect shown in FIG. 4 can be obtained if the spread angle δ is not too large. In order for the equalization component of the present invention to work effectively, it is necessary that δ is smaller than θ, and a part of any prism unit 30 on the entrance surface 20 and the exit surface 23 is located at the top of the prism formed by the adjacent surface. Most of the light rays at large angles that are blocked by corners take optical paths as shown in FIGS. 11 to 13, so they are hardly effective light rays.

次に、θの値の有効な範囲の求め方について説明する.
第6図で入射面において広がり角がδの光束は屈折率n
の媒体に入るときその広がり角がδ゛になるとすれば、
δ゜は第一近似で以下のように表わされる。
Next, we will explain how to find the valid range of the value of θ.
In Figure 6, the beam with a divergence angle δ at the incident plane has a refractive index n
If the spread angle becomes δ゛ when it enters the medium, then
δ゜ is expressed as follows in the first approximation.

sin(π/2−ψ)=nsin(π/2−φ)..C
OSψ=ncosφ .’.sinψdψ= n sinφdφ.’.dφ=
 (sinψ/nsinφ)dψδ’ = (sinψ
/nsinφ)δこのとき角ψはθ。に等しいとすれば
、φ=2ψ=20。であるから d$=dψ/ 2 n cosψ … oδ゜2 δ/
2ncosψ ・・・  ■次に第7図のように角ψを
Δψだけ増加させたときを考える。平行光の曲がる角度
φ゛は○式を使って φ1 =φ+Δφ=φ+Δψ/ 2 n cos  ψ
=2ψ+Δψ/2ncos  ψ =2(ψ+Δψ)  12−1 / 2 ncos  
ψ)Δψ・・・ O Δψが小さければ媒体内の広がり角は■式のδ゜にほぼ
等しい、もしδ゜がO式の右辺第二項より大きければ、
広がり角内に φ゛=2(ψ+Δψ) ・・・ O を満たす光線成分を持つことになる。この成分は本発明
の効果を最も効率よ《発揮する成分であるから、この成
分を有することが本発明を適用するための条件となる。
sin(π/2−ψ)=nsin(π/2−φ). .. C
OSψ=ncosφ. '. sinφdφ= n sinφdφ. '. dφ=
(sinψ/nsinφ)dψδ' = (sinψ
/nsinφ)δ In this case, the angle ψ is θ. If it is equal to , then φ=2ψ=20. Therefore, d$=dψ/ 2 n cosψ … oδ゜2 δ/
2n cos ψ... ■Next, consider the case where the angle ψ is increased by Δψ as shown in Figure 7. The bending angle φ゛ of parallel light can be calculated using the formula φ1 = φ + Δφ = φ + Δψ / 2 n cos ψ
=2ψ+Δψ/2ncos ψ =2(ψ+Δψ) 12-1/2 ncos
ψ) Δψ... O If Δψ is small, the spread angle within the medium is approximately equal to δ° in equation ■. If δ° is larger than the second term on the right side of equation O,
There is a ray component that satisfies φ゛=2(ψ+Δψ)...O within the spread angle. Since this component is the component that most efficiently exhibits the effects of the present invention, having this component is a condition for applying the present invention.

よって δ’ > (2− 1/2ncosψ)Δψ。゜.Δψ
くδ/(4ncosψ−1).゜.八〇〈δ/(4nc
osθ。−1).゛.Δθくδ/ (1+8n”)””
    −  Oこれから■式が導かれる。
Therefore, δ'> (2-1/2 n cos ψ) Δψ.゜. Δψ
δ/(4ncosψ−1).゜. 80〈δ/(4nc
osθ. -1).゛. Δθkuδ/ (1+8n”)””
- O From this, the ■ formula is derived.

この推論は入射光の広がり角について行なったが、δが
出射光の有効な広がり角の場合は、出射面において視線
を追跡することによって全く同様な結果を得ることにな
る。
This inference was made regarding the spread angle of the incident light, but if δ is the effective spread angle of the output light, exactly the same result will be obtained by tracking the line of sight at the exit surface.

本発明の特徴点は、入射面に垂直に入射する光束を、透
明板1にて光軸を角度β,一βだけ曲げた光束に分(づ
、一定の距離をおいた透明板2で元の軸と平行な光束番
こ戻すことにより、あたかも元の光源のI/2の光量の
光源が2つ並んだのと同様な効果を得るものである。こ
れによって光束の均一化がなされるが、これはまた光束
を拡大する効果も持っている。
The characteristic feature of the present invention is that a light beam incident perpendicularly to the incident surface is divided into light beams whose optical axis is bent by an angle β, 1β by a transparent plate 1, and the light beam is By returning the beam parallel to the axis of , which also has the effect of expanding the luminous flux.

この効果は第1図において、透明板1の入射面20、透
明板2の出射面23に形成された各プリズム単位30の
周期T(プリズムの巾とも言える)には影響されず、プ
リズム単位30がX軸となす角度θが正確に形成されて
さえおれば達成されるものである。例えば、第8図に示
すように入射面20側のプリズム単位30のピッチ(周
期)T1が出射面23側のビッチT2に比べて、2倍の
長さになっているような構成でも採用できる。
In FIG. 1, this effect is not affected by the period T (also called the prism width) of each prism unit 30 formed on the entrance surface 20 of the transparent plate 1 and the exit surface 23 of the transparent plate 2; This can be achieved as long as the angle .theta. formed by .theta. with the X axis is formed accurately. For example, as shown in FIG. 8, a configuration in which the pitch (period) T1 of the prism units 30 on the input surface 20 side is twice as long as the pitch T2 on the output surface 23 side can also be adopted. .

また、第9図に示すように、入射面20と出射面23の
各プリズム単位30のY軸方向のずれciyは問題とな
らず、従って、透明板1及び2の位置決め精度が要求さ
れない利点がある。
Furthermore, as shown in FIG. 9, the deviation ciy of each prism unit 30 between the entrance surface 20 and the exit surface 23 in the Y-axis direction is not a problem, and therefore there is an advantage that positioning accuracy of the transparent plates 1 and 2 is not required. be.

[実施例] 次に本発明の光束を均一化する光学部品について具体的
な実施例に基づき詳細に説明する。
[Example] Next, the optical component for uniformizing the luminous flux of the present invention will be described in detail based on a specific example.

第10図に本発明の光束を均一化する光学部品の斜視図
を示す。第10図(a)が反射面を有さない構成、第1
0図(b)が反射面を有する構成である。反射面は部品
の上下の側面にも設置されているが、これによってZ方
向に角度をもった光線が上下の面から漏れて損失になる
のを防いでいる。両図に示すようにプリズム単位30は
図中、Z軸方向に延びて形成され、複数個設けられ、筋
状に形成されている。透明体l及び2はそれぞれ射出成
形などで一体成形され、前述の間隔Lたけ離れて平行に
配置される。
FIG. 10 shows a perspective view of an optical component for uniformizing the luminous flux of the present invention. FIG. 10(a) shows a configuration without a reflective surface, the first
FIG. 0(b) shows a configuration having a reflective surface. Reflective surfaces are also installed on the top and bottom sides of the component, which prevents light rays angled in the Z direction from leaking from the top and bottom surfaces and resulting in loss. As shown in both figures, a plurality of prism units 30 are formed extending in the Z-axis direction in the figures, and are formed in a striped shape. The transparent bodies 1 and 2 are each integrally molded by injection molding or the like, and are arranged in parallel with each other by the above-mentioned distance L.

なお、本発明においては、全体の形状が重要であり、一
体成形したものである必要はなく、第11図のように、
同じ形状の厚さdの片鋸南状透明体50を揃えて高さH
まで積層し、第10図と同じ形状の透明体にしたもので
も、機能的には同等である。この場合、接着剤は透明な
ものを使わなければならない。
In addition, in the present invention, the overall shape is important, and there is no need for it to be integrally molded, as shown in Fig. 11.
Align the semi-serrated transparent bodies 50 of the same shape and thickness d to a height H.
A transparent body having the same shape as that shown in FIG. 10 may be functionally equivalent. In this case, the adhesive must be transparent.

また第12図は、重なり合う出射面の波形が1/2周期
(T/2)だけずれるように積層した実施例である。透
明体工及び2において、この様に積層される片鋸歯状透
明体50は同一形状である必要はなく、プリズム単位3
0の周期Tや位相が異なるものを積層したものであって
もよい。
FIG. 12 shows an embodiment in which the waveforms of the overlapping emission surfaces are stacked such that they are shifted by 1/2 period (T/2). In the transparent body construction and 2, the serrated transparent bodies 50 stacked in this way do not need to have the same shape, and the prism unit 3
It may be a stack of layers having different periods T and phases of 0.

この様にプリズム単位30の周期Tや位相の異なる片鋸
歯状透明体1を積層することにより、前述した周期Tの
光量斑が現れにくくなる効果がある。第12図において
板厚dがTより小さければ、■式に変わって■式が周期
Tの光量斑が現れない条件になる。
By stacking the serrated transparent bodies 1 having different periods T and phases of the prism units 30 in this manner, there is an effect that the light intensity unevenness with the period T described above is less likely to appear. In FIG. 12, if the plate thickness d is smaller than T, the equation (2) is replaced by the equation (2), and the equation (2) becomes the condition under which light intensity irregularities with a period T do not appear.

Dad/tanδ゜       ・・・■但しここで
δ゜は入射光束、ないしは出射光束を利用する装置が利
用できる板厚方向の広がり角のいずれか小さい方を表わ
す。
Dad/tan δ°...■ Here, δ° represents whichever is smaller of the spread angle in the plate thickness direction that can be used by a device that utilizes the incident light flux or the output light flux.

なお、本発明において透明板1,2の間は空気の空間と
するのが一般的であり、光束の均一化効果も一番大きい
が、空気中に配置することができない場合などにおいて
は、空気のかわりに、透明板1.2の屈折率より小さい
屈折率を有する気体または液体等の媒体(真空含む)中
に本発明に係る構造単位を配置しても、本発明を構成で
きることは明らかである。第13図は屈折率n2の媒体
中に構造単位(屈折率n l+ n + > n 2)
を配置した構成を示す図であり、ブリスム単位の角度、
屈折率等は前配媒体の屈折率に応じて選定設計される。
In addition, in the present invention, it is common to provide an air space between the transparent plates 1 and 2, which has the greatest effect of uniformizing the luminous flux, but in cases where it is not possible to arrange the transparent plates in the air, Instead, it is clear that the present invention can be constituted by arranging the structural unit according to the present invention in a medium (including vacuum) such as a gas or liquid having a refractive index smaller than the refractive index of the transparent plate 1.2. be. Figure 13 shows structural units (refractive index n l + n + > n 2) in a medium with refractive index n2.
It is a diagram showing a configuration in which the angle in Brism unit,
The refractive index and the like are selected and designed according to the refractive index of the front medium.

また、第1図の構造単位は一軸方向にのみ光量均一化の
効果を持ち、第14図に示すように光量の不均一が一方
向に限られる光源43を使用する場合は、この構造単位
l5を一つ使った装置でもよいが、光量の不均一が2次
元の光源43゜の場合は、第15図の様に構造単位15
を均一化軸を直行させて2つ使って均一化をはかる必要
がある。
Furthermore, the structural unit shown in FIG. 1 has the effect of making the light amount uniform only in one axis direction, and when using a light source 43 in which the light amount is uneven only in one direction as shown in FIG. 14, this structural unit l5 However, if the non-uniformity of the light amount is a two-dimensional light source of 43 degrees, the structural unit 15 as shown in Fig. 15 may be used.
It is necessary to use two with their equalization axes perpendicular to each other to achieve uniformity.

さらに、光源の光量不均一が極めて大きく、第14図、
第15図の様に1〜2段程度ではこの不均一を十分取り
除《ことができない場合は、Qの異なる部品を多段にす
ることにより十分な均一化を達成することができる。簡
単には一段目のQ=W/4としてm段目をQ,=W/2
’″+1とすればよい。
Furthermore, the non-uniformity of the light amount of the light source is extremely large, and as shown in FIG.
If this non-uniformity cannot be sufficiently removed with one or two stages as shown in FIG. 15, sufficient uniformity can be achieved by arranging parts with different Qs in multiple stages. To simplify, let the first stage Q = W/4 and the mth stage Q, = W/2.
'''+1 is sufficient.

以下に設計、制作の実際を示すことによって、その容易
さを示し、さらに得られた性能を示す。
The ease of design and production is shown below, as well as the performance obtained.

ここでは、側面が反射面であるタイプを設計する.35
mmスライド映写機用に、フィルムサイズより若干大き
めの縦28n+mX横40InI!+の光束を得るもの
とする。
Here, we will design a type with reflective surfaces on the sides. 35
Slightly larger than the film size, 28n+m x 40InI for mm slide projectors! Assume that + luminous flux is obtained.

第6図の構成を採用し、まず縦方向の均一化のための部
品として W=28mm H=40mm 材質はメタクリル樹脂(PMMA樹脂)を使うこととし
て n = 1.49 ■式を使って θ=θ。= 26.5’ ■,■式から α= 26. 5’   β=41.8°Q=W/4 
=7+nm, d+ =cL =1.5 mmとして■
式に代入 7=(1.5X2)X0.5 +LX0.89これから L=:6.2mm 制作を容易にするため T = l.Omm とする。次に横方向の均一化に使われる部品についても
θ,Tは等し《とり W=40mm H=28mm Q=W/4 = 1 0mm,  d + = da 
=1.5 mmとして1 0 = (1.5X 2) 
X O.5 + L X O.89これから L”9.6mm となる。
Adopting the configuration shown in Figure 6, first, as parts for vertical uniformity, W = 28 mm H = 40 mm, the material is methacrylic resin (PMMA resin), n = 1.49 Using the formula, θ = θ. = 26.5' From equations ■ and ■, α = 26. 5' β=41.8°Q=W/4
=7+nm, d+ =cL =1.5 mm■
Substitute into the formula 7 = (1.5X2)X0.5 +LX0.89 From this L =: 6.2mm To facilitate production, T = l. Omm. Next, for the parts used for horizontal uniformization, θ and T are equal (W = 40 mm H = 28 mm Q = W/4 = 1 0 mm, d + = da
= 1.5 mm as 1 0 = (1.5X 2)
XO. 5 + L x O. 89, it becomes L”9.6mm.

設計は以上で終わりであり極めて簡単である.第16図
、第17図は第1図の構成において、本設計例での入射
光5出射光の測定例で、Y軸は出射面の長辺に平行にと
られ、各々の面の中心を通る直線上と,これからH/4
だけ離れた直線上の光量分布を示している。入射光とし
て第16図の光量分布のものを使用したとき、出射光の
光量分布は第17図の様になり,十分な均一化がなされ
ていることがわかる。
This concludes the design and is extremely simple. Figures 16 and 17 are measurement examples of the incident light 5 output light in this design example in the configuration shown in Figure 1.The Y axis is parallel to the long side of the output surface, and the center of each surface is On the straight line passing through and from now on H/4
It shows the light intensity distribution on straight lines separated by . When the incident light has the light amount distribution shown in FIG. 16, the light amount distribution of the output light becomes as shown in FIG. 17, and it can be seen that sufficient uniformity has been achieved.

ここで光束の広がり角δ=20゜とすればD > T 
/ tanδ=2.8m+nであり、本光学部品の必要
とする長さは,最低で 6.2  +9.6  +1.5  X 4 +2.8
  =24.6rom若干の余裕を見たとしても3cm
足らずで十分である。この様に本発明を使った光学系は
極めてコンパクトであり、同様の機能の光学系をリレー
コンデンサーを使って構成するのは困難であり、特願昭
63−106779号に示される方法では不可能である
Here, if the spread angle of the luminous flux is δ = 20°, then D > T
/ tan δ = 2.8 m + n, and the required length of this optical component is at least 6.2 + 9.6 + 1.5 x 4 + 2.8
=24.6 ROM Even if there is some margin, it is 3 cm
Less is more than enough. As described above, the optical system using the present invention is extremely compact, and it is difficult to construct an optical system with a similar function using a relay capacitor, which is impossible using the method shown in Japanese Patent Application No. 106779/1983. It is.

なお、本発明では、プリズムの面に光線が入射する際、
プリズムの面から光線が出射する際に光線の一部が反射
し、透過光が減少する。この反射損失は、n=1.5前
後で10%程度になる,この損失を減少し、効率を高め
るには、各プリズム面に所定の入射角で反射率が最小と
なる無反射コーティングを施せば良い.また、低屈折率
の材料を薄くコーティングすることによって、反射率を
下げることも効果がある。
In addition, in the present invention, when a ray of light is incident on the surface of a prism,
When light rays exit from the surface of the prism, some of the light rays are reflected, reducing the amount of transmitted light. This reflection loss is around 10% when n = 1.5. To reduce this loss and increase efficiency, apply an anti-reflection coating to each prism surface that minimizes the reflectance at a predetermined angle of incidence. Good. It is also effective to lower the reflectance by thinly coating the material with a low refractive index material.

[発明の効果] 以上説明したように、本発明による光学部品は、 ■透明体l、2は一体成形で製造でき、設計も簡単なの
で、安価に提供できる。
[Effects of the Invention] As explained above, the optical component according to the present invention is as follows: (1) The transparent bodies 1 and 2 can be manufactured by integral molding, and the design is simple, so it can be provided at low cost.

■透明体1、2は板状であり、その間を空間とすること
ができるので、軽量且つコンパクトである。
(2) The transparent bodies 1 and 2 are plate-shaped and there is a space between them, so the transparent bodies 1 and 2 are lightweight and compact.

■両透明体1、2の位置合せが簡単であり、取付け作業
も簡単に行うことができる。
■It is easy to align both transparent bodies 1 and 2, and the installation work can be done easily.

等の利点を有する。It has the following advantages.

また、本発明によれば、光源に反射曲面やレンズを使っ
て作られた不均一な光束を、そのビーム性を損なわずに
光強度の均一化を行うことを可能とし、高効率で均一な
光束が得られる光源が容易に制作でき、実用土大きな効
果を有するものである。
Further, according to the present invention, it is possible to uniformize the light intensity of the non-uniform light flux produced by using a reflective curved surface or lens in the light source without impairing the beam properties, and to achieve uniform light flux with high efficiency. A light source that can provide a luminous flux can be easily produced and has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構造単位を示した図、第2図はその部
分拡大図、第3図は入射光の光量分布を示す図、第4図
は光鳳の均一化が行なわれる原理を示した図、第5図は
入射光束が広がり角を持つために第1図に示した光線と
異なる光路を通る光線が存在することを示した図、第6
図及び第7図はそれぞれ■式が導かれる根拠を説明する
ための図、第8図及び第9図は透明体の変形を示した図
、第10図(a) , (blはそれぞれ一体成形した
透明体を使用した実施例を示す図、第11図及び第12
図はそれぞれ本発明に係る積層物の実施例を示す図、第
13図は空気の空間のかわりに低屈折率の媒体を使用し
た実施例を示す図、第14図はひとつの構造単位で均一
化部品を構成した例を示す図、第15図は均一化方向の
直行する二つの構造単位で構成した例を示す図、第16
図及び第17図はそれぞれ入射光、出射光の光量分布を
示す図である。 1.2・・・透明体 3・・・−θ面 4・・・+θ面 7・・・反射面 15・・・構造単位 20・・・透明体1の入射面 21・・・透明体1の出射面 22・・・透明体2の入射面 23・・・透明体2の出射面 30・・・プリズム単位 43.43゜・・・光源 50・・・片鋸歯状透明体
Fig. 1 shows the structural unit of the present invention, Fig. 2 is a partially enlarged view thereof, Fig. 3 shows the light intensity distribution of incident light, and Fig. 4 shows the principle of uniformization of light beams. Figure 5 is a diagram showing that there are rays that pass through different optical paths than the rays shown in Figure 1 because the incident light beam has a divergence angle, and Figure 6
Figures 7 and 7 are diagrams for explaining the basis for deriving formula (2), Figures 8 and 9 are diagrams showing deformation of a transparent body, and Figures 10 (a) and (bl are integrally molded, respectively). Figures 11 and 12 show examples using transparent bodies made of
The figures each show an example of a laminate according to the present invention, Fig. 13 shows an example in which a low refractive index medium is used instead of an air space, and Fig. 14 shows uniformity in one structural unit. Figure 15 is a diagram showing an example of a homogenized component configured with two structural units perpendicular to each other in the homogenization direction;
17 and 17 are diagrams showing the light amount distribution of incident light and emitted light, respectively. 1.2...Transparent body 3...-θ plane 4...+θ plane 7...Reflection surface 15...Structural unit 20...Incidence surface 21 of transparent body 1...Transparent body 1 Output surface 22...Incidence surface 23 of transparent body 2...Output surface 30 of transparent body 2...Prism unit 43.43°...Light source 50...Serrated transparent body

Claims (2)

【特許請求の範囲】[Claims] (1)片面が平面で、他方の面が条件Aを満たすように
プリズム単位が筋状に複数個形成された長方形の透明板
2枚を、それぞれのプリズム単位の稜線を互いに平行に
、かつ互いの平面の側が向かい合うように平行に設置さ
れたものを構造単位とし、少なくとも一つの構造単位を
平行に重ね合わせることによって構成されることを特徴
とする光束を均一化する光学部品。 条件A 前記透明板の面の直行する2辺にそれぞれ平行にY軸、
Z軸をとり、面に垂直方向にX軸をとれば、前記プリズ
ム単位の稜線はY軸、Z軸のいずれか一方に平行で、か
つ前記各プリズム単位を構成する両面がそれぞれX軸と
下記[1]、[2]式で示される角度θないし−θをな
すように形成されている。 θ_0−δ/(1+8n^2)^1^/^2<θ<θ_
0+δ/(1+8n^2)^1^/^2・・・[1] θ_0=cos^−^1((1+8n^2)^1^/^
2/4n)・・[2] 但し、δ:入射光束の広がり角、ないしは出射光束を利
用する装置が利用できる広がり角(±δ)のいずれか小
さい方で、 δ<θ_0 n:透明体の屈折率
(1) Two rectangular transparent plates each having a plurality of prism units formed in a stripe shape so that one side is flat and the other side satisfies condition A, with the ridgelines of each prism unit parallel to each other and each other. What is claimed is: 1. An optical component for uniformizing light flux, characterized in that the optical component is constructed by superimposing at least one structural unit in parallel, with the structural units being arranged in parallel so that their plane sides face each other. Condition A: The Y-axis is parallel to the two perpendicular sides of the transparent plate,
If we take the Z-axis and the X-axis in the direction perpendicular to the surface, then the ridgeline of the prism unit is parallel to either the Y-axis or the Z-axis, and both sides of each prism unit are parallel to the X-axis, as shown below. [1] and [2] are formed so as to form an angle θ to −θ shown in equations. θ_0-δ/(1+8n^2)^1^/^2<θ<θ_
0+δ/(1+8n^2)^1^/^2...[1] θ_0=cos^-^1((1+8n^2)^1^/^
2/4n)...[2] However, δ is the smaller of the spread angle of the incident light flux or the spread angle (±δ) that can be used by a device that uses the output light flux, and δ<θ_0 n: of the transparent body. refractive index
(2)請求項1記載の光学部品に接して、条件Aの座標
系のXZ面に平行な反射面及び/またはXY面に平行な
反射面を設置することを特徴とする光学部品。
(2) An optical component characterized in that a reflective surface parallel to the XZ plane and/or a reflective surface parallel to the XY plane of the coordinate system of condition A is installed in contact with the optical component according to claim 1.
JP11512989A 1989-05-10 1989-05-10 Optical parts for uniforming luminous flux Pending JPH02294614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11512989A JPH02294614A (en) 1989-05-10 1989-05-10 Optical parts for uniforming luminous flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11512989A JPH02294614A (en) 1989-05-10 1989-05-10 Optical parts for uniforming luminous flux

Publications (1)

Publication Number Publication Date
JPH02294614A true JPH02294614A (en) 1990-12-05

Family

ID=14654993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11512989A Pending JPH02294614A (en) 1989-05-10 1989-05-10 Optical parts for uniforming luminous flux

Country Status (1)

Country Link
JP (1) JPH02294614A (en)

Similar Documents

Publication Publication Date Title
JP4642873B2 (en) Lighting device
US6464365B1 (en) Light collimator for liquid crystal displays
US6151169A (en) Sheet type optical device and backlighting unit using the same
US7209628B2 (en) Luminaire device
US8297825B2 (en) Surface light source device
JP2008515024A (en) Turning film using a two-dimensional array of roof prisms
JPWO2010061699A1 (en) Thin backlight system and liquid crystal display device using the same
JP2014126604A (en) Light source device, illumination optical system, and image display device
US20100321596A1 (en) Projection optical system and projection display unit using the same
US7639427B2 (en) Light collecting device for use in a projection apparatus
US20090109657A1 (en) Light control plate, surface light source device, and transmission type image display apparatus
JP2007531028A (en) Optical device for forming a beam, for example a laser beam
US7301701B2 (en) Compact polarization conversion system for optical displays
US7753544B2 (en) Light control plate, surface light source device and transmissive image display device
JPH02294614A (en) Optical parts for uniforming luminous flux
US6587275B2 (en) Light beam polarization converter for converting an illumination light source
JPH02277002A (en) Optical component for uniforming luminous flux
JP2006301234A (en) Uniformizing optical device and parallel light source apparatus using the same
JPH0312601A (en) Optical component which uniforms luminous flux
JPH0391714A (en) Optical parts
CN216696972U (en) Dodging device and projection system
JPH0363618A (en) Optical component
JPH10333147A (en) Back light
JP3908527B2 (en) Fresnel lens sheet and transmissive projection screen
JPH0337613A (en) Optical component uniforming luminous flux