JPH02277002A - Optical component for uniforming luminous flux - Google Patents

Optical component for uniforming luminous flux

Info

Publication number
JPH02277002A
JPH02277002A JP9726389A JP9726389A JPH02277002A JP H02277002 A JPH02277002 A JP H02277002A JP 9726389 A JP9726389 A JP 9726389A JP 9726389 A JP9726389 A JP 9726389A JP H02277002 A JPH02277002 A JP H02277002A
Authority
JP
Japan
Prior art keywords
axis
light
luminous flux
angle
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9726389A
Other languages
Japanese (ja)
Inventor
Noriji Ooishi
則司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP9726389A priority Critical patent/JPH02277002A/en
Publication of JPH02277002A publication Critical patent/JPH02277002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To obtain the optical component which is reducible in size and uniforms luminous flux with high efficiency by setting specific orthogonal coordinate axes and specifying both surfaces forming each prism unit and the array directions of respective prism units. CONSTITUTION:A body formed by laminating both saw-tooth transparent bodies which have prism units formed on a couple of opposite surfaces or a transparent body in a similar shape is used; and one of the couple of surfaces is used as an incidence surface, and the other is used as a projection surface. When an X axis is set at right angles to both those surfaces and a Y axis is set in parallel to a Z axis, the ridges of both surfaces constituting the respective prism units are parallel to the Z axis, the array direction of the respective prism units coincides with the direction of a Y axis, and both surfaces constituting each prism unit are at an angle theta or -theta shown by an X group and expressions I and II. Here, delta is a smaller angle between the divergence angle of incident luminous flux and the divergence angle (+ or -delta) that a device which utilizes projection luminous flux can utilize and less than theta0 and (n) is the refractive index of the transparent body. This constitution can uniform the light intensity of even irregular luminous flux and a light source like this can easily be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光フアイバーライトガイドの光線入射部分や
スライド投影機の照明光源などに必要とされる、均一で
かつ単一指向性を有する光束を得る技術に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a uniform and unidirectional light flux required for the light incident portion of an optical fiber light guide, the illumination light source of a slide projector, etc. Regarding the technology to obtain.

[従来の技術] シート状物の欠陥検査装置に使われるライン状光源や、
液晶プリンターにおける液晶のパックライト等に、冷光
源として光フアイバーライトガイドが使われるが、照度
塩のない良質の照明を得るために、これらの光線入射部
分には入射光の均一化をはかるために拡散板を用いたり
、特願昭63−106779号にあるように光ファイバ
ーと導光体を使った装置が考案されている。
[Prior art] Line light sources used in defect inspection equipment for sheet materials,
Optical fiber light guides are used as cold light sources in liquid crystal pack lights, etc. in LCD printers, but in order to obtain high quality illumination with no illumination salt, these light beam incident areas are equipped with a light guide to make the incident light uniform. Devices using a diffuser plate or an optical fiber and a light guide as described in Japanese Patent Application No. 63-106779 have been devised.

またスライド投影機の光源部には投影像の全体に明るさ
の斑がないようにリレーコンデンサーを使った光学系が
一般的に使用されている。
Additionally, an optical system using a relay condenser is generally used in the light source section of a slide projector to prevent uneven brightness throughout the projected image.

[発明が解決しようとする課題] これらの光源部ないし光源均一化手段に必要とされる特
徴は次のようなことである。
[Problems to be Solved by the Invention] The characteristics required of these light source sections or light source uniformizing means are as follows.

(1)光量が全体で均一である。(1) The amount of light is uniform throughout.

(2)効率が高い。(2) High efficiency.

さらにコストや実用性を考えると、 (3)設計、制作が容易である。Furthermore, considering cost and practicality, (3) Easy to design and produce.

(4)小型で場所をとらない。(4) It is small and does not take up much space.

ことも重要である。It is also important that

前述した拡散板を用いる方法や、特願昭63−1067
79号にある光ファイバーと導光体を使う方法は、反射
曲面やレンズを使って指向性を持った光束を作り、これ
を均一化部品を通して明るさ斑を除去するものであるが
、前者は拡散板によって光線が散乱する角度が大きく、
光のビーム性が損なわれ光ファイバーの開口角内におさ
まらない光が損失となるため効率が極めて悪い。一方、
後者は均一化性能も良好で、光のビーム性を損なわず効
率もよいが、小型化が困難であり、又ランダムミキシン
グの方法は品質を保持しつつ量産することが容易でない
The method using the above-mentioned diffusion plate and the patent application No. 1067-1983
The method using optical fibers and light guides in No. 79 uses reflective curved surfaces and lenses to create a directional light beam, which is passed through a homogenizing component to remove brightness irregularities, but the former uses a diffuser. The angle at which the light rays are scattered by the plate is large;
The efficiency is extremely low because the beam properties of the light are impaired and the light that does not fit within the aperture angle of the optical fiber becomes a loss. on the other hand,
The latter has good uniformity performance and is efficient without impairing the beam properties of light, but it is difficult to miniaturize, and the random mixing method is not easy to mass-produce while maintaining quality.

更に前述したリレーコンデンサーを使った光学系は、均
一化性能が良く効率もさほど悪くないが、使用電球9反
射板、コンデンサーレンズ等の設計、調整が十分注意深
く行なわれなければならず、高度な技術が必要とされる
。従って従来技術の範囲では(1)〜(4)を同時に満
たす光学系を実現することは困難である。
Furthermore, the optical system using the relay condenser described above has good uniformity performance and is not too bad in efficiency, but it requires careful design and adjustment of the bulb 9 reflector, condenser lens, etc., and requires advanced technology. is required. Therefore, within the scope of the prior art, it is difficult to realize an optical system that simultaneously satisfies (1) to (4).

[課題を解決するための手段] 本発明の目的は、上記従来技術の問題点に鑑み、小型化
が可能且つ高効率で光束を均一化することができる光学
部品を提供することにある。
[Means for Solving the Problems] In view of the problems of the prior art described above, an object of the present invention is to provide an optical component that can be miniaturized and can uniformize the luminous flux with high efficiency.

以上のような目的を達成するため、本発明の光束を均一
化する光学部品は、対向する一対の面に単位となるプリ
ズム片(以下、プリズム単位と称する)が複数個形成さ
れた両鋸歯状透明体を積層したもの又は該積層したもの
と同様の形状を有する透明体であって、 (イ)前言己一対の面の一方を光束の入射面、他方を出
射面とし、入射面及び出射面に垂直にX軸、前記両鋸歯
状透明体の積層方向にZ軸、更にX軸及びZ軸に対して
共に垂直方向にY軸をとるとき、前記各プリズム単位を
構成する両面が作る稜線が2軸と平行であり、 (ロ)前記プリズム単位の並び方向が前記Y軸の方向と
一致し、 (ハ)前記各プリズム単位を構成する両面がそれぞれX
軸と下記[1]、[2]式で示される角度θないし−θ
をなす ことを特徴としている。
In order to achieve the above objects, the optical component for uniformizing the light flux of the present invention has a double sawtooth shape in which a plurality of prism pieces serving as units (hereinafter referred to as prism units) are formed on a pair of opposing surfaces. A laminated transparent body or a transparent body having a shape similar to the laminated body; When the X-axis is perpendicular to , the Z-axis is perpendicular to the stacking direction of both the serrated transparent bodies, and the Y-axis is perpendicular to both the X-axis and the Z-axis, the ridge line formed by both surfaces of each prism unit is 2 axes, (b) the direction in which the prism units are arranged coincides with the direction of the Y-axis, and (c) both surfaces of each prism unit are parallel to the
axis and the angle θ or -θ shown in the following formulas [1] and [2]
It is characterized by the fact that

但し、δ:入射光束の広がり角、ないしは出射光束を利
用する装置が利用できる広 がり角(±δ)のいずれか小さい方 で、δくθ。
However, δ is the smaller of the spread angle of the incident light beam or the spread angle (±δ) that can be used by a device that uses the output light beam, and δ minus θ.

n:透明体の屈折率 本発明は特願昭63−106779号にある方法と同様
に反射曲面やレンズを使って指向性を持った光束を作り
、これを均一化部品を通して明るさ斑を除去する方法に
使われる光束均一化部品であって、該手法と同様に光束
のビーム性を損なわず光量の均一化を行なう特徴を持つ
ものである。
n: refractive index of a transparent body The present invention uses a reflective curved surface or a lens to create a directional light beam, similar to the method described in Japanese Patent Application No. 106779/1982, and removes brightness irregularities through a uniformizing component. This is a luminous flux equalizing component used in the method described above, and has the feature of uniformizing the amount of light without impairing the beam properties of the luminous flux, similar to that method.

この特徴は高い効率を得るために重要であって、光フア
イバーライトガイドまたはスライド投影機においても、
後に設置された光学系の開口角を越えた角度に広がる光
線は利用されず損失となるため、光源は平行光である必
要はないものの、単一指向性を持った光束であることが
望まれる。
This feature is important for obtaining high efficiency, even in fiber optic light guides or slide projectors.
Light rays that spread beyond the aperture angle of the optical system installed later are not used and are lost, so although the light source does not need to be parallel light, it is desirable that the light beam has unidirectionality. .

[作用] 第1図を使って本発明の詳細な説明する。第1図におい
て、1は本発明に係る光学部品の両鋸歯状透明体の平面
図である。該両鋸歯状透明体1は対向する平行な2面に
、それぞれプリズム単位30を一列に並べた構成の板状
物である。そして−対の面の一方を光束の入射面20.
他方を出射面22とする。図において、入射面20及び
出射面22に垂直にX軸、前記鋸歯状透明体の厚さ方向
にZ軸、更にX軸及びZ軸に対して共に垂直方向にY軸
をとるものとする。
[Operation] The present invention will be explained in detail using FIG. In FIG. 1, 1 is a plan view of both serrated transparent bodies of the optical component according to the present invention. Both of the serrated transparent bodies 1 are plate-shaped objects having prism units 30 arranged in a row on two opposing parallel surfaces. Then, one of the paired surfaces is the incident surface 20 of the light beam.
The other side is defined as the output surface 22. In the figure, the X-axis is perpendicular to the entrance surface 20 and the exit surface 22, the Z-axis is perpendicular to the thickness direction of the sawtooth transparent body, and the Y-axis is perpendicular to both the X-axis and the Z-axis.

ここで、入射面20からX軸に平行に入射する光線4に
ついて考える。入射面20においてX軸と角度子〇をな
す面を+0面(図において3で示す)、−〇をなす面を
一θ面(図において2で示す)と呼び、出射面22に於
いては入射面の+0面と平行な面を+0面、−θ面と平
行な面を一θ面と呼ぶことにする。スネルの法則により
、+0面に入射した光線は屈折により0式を満足する角
度αだけ方向を変え、Y軸方向にL tanαだけ離れ
た出射面に到達する。
Here, consider the light ray 4 that enters from the entrance surface 20 in parallel to the X-axis. On the incident surface 20, the surface forming an angle 〇 with the The plane parallel to the +0 plane of the incident plane will be called the +0 plane, and the plane parallel to the −θ plane will be called the 1θ plane. According to Snell's law, a ray of light incident on the +0 plane changes its direction by an angle α that satisfies Equation 0 due to refraction, and reaches the exit plane separated by L tan α in the Y-axis direction.

この光線が+0面に当たれば光線は元通りX軸に平行な
光線5となって出射する。このように+0面に入射し+
0面から出射する光線、あるいは同様に一θ面に入射し
一θ面から出射する光線は、それぞれL tanα、−
Ltanαだけ平行にずれて出射する。ここでθを前述
の0式で求められるθ。に等しくとればα=−〇となり
、X軸に平行なすべての光は上記した2つの光路のいず
れかを通ることになる。
If this light ray hits the +0 plane, the light ray returns to the original state as a light ray 5 parallel to the X-axis and is emitted. In this way, it is incident on the +0 plane +
A ray of light emitted from the 0-plane, or similarly a ray of light that enters the 1-θ plane and exits from the 1-θ plane, is L tanα, −
The light is emitted with a deviation in parallel by Ltanα. Here, θ is determined by the above-mentioned formula 0. If it is taken to be equal to , then α=−〇, and all light parallel to the X axis will pass through either of the two optical paths mentioned above.

また出射22面に達する以前に、Y軸に垂直な面6に達
した光はその入射角がπ/2−θ。となり、0式及び全
反射条件から n51n(−一〇、)=ncosθ0 (’、’n>1) が成り立つため、面6が他の物質と光学的に接触してお
らず、空気層に面しておれば全反射して出射面に達する
。また面6に金属蒸着等によって反射面にしておけば、
この面が他の物質と接していても、また全反射条件を満
たさな(ても同様な結果とすることができる。
Furthermore, the incident angle of the light that reaches the surface 6 perpendicular to the Y-axis before reaching the output surface 22 is π/2-θ. Since n51n (-10,) = ncosθ0 (', 'n>1) holds from the equation 0 and the total reflection condition, the surface 6 is not in optical contact with other substances and is not in contact with the air layer. If so, it will be totally reflected and reach the exit surface. Also, if surface 6 is made into a reflective surface by metal vapor deposition, etc.,
Similar results can be obtained even if this surface is in contact with another substance or does not satisfy the total reflection condition.

また、面6の平滑性が悪い、あるいは他の物質と光学的
に接している等の理由で反射が充分得られない場合には
、第3図の7°、8°がなくなるため側面付近が暗(な
る傾向がある。従って、このようなときは、側面付近の
光をすて、均一性の良好な部分のみを利用することや、
あるいはLtanαをW/4より大きめにとるなどの対
処が必要である。いずれにせよ効率は低下するため、前
述のように側面の反射が得られる構成にすることが好ま
しい。
In addition, if sufficient reflection cannot be obtained due to poor smoothness of the surface 6 or optical contact with other substances, 7° and 8° in Fig. 3 will disappear, and the vicinity of the side surface will be affected. Therefore, in such cases, it is recommended to discard the light near the sides and use only the areas with good uniformity.
Alternatively, it is necessary to take measures such as setting Ltanα to be larger than W/4. In any case, the efficiency decreases, so it is preferable to adopt a configuration that allows reflection from the sides as described above.

ここで入射面20に入射する入射光が第2図の光量分布
を持っていたとすれば、出射光は第3図の光量分布7(
+0面に入射し、+0面から出射する光線によるもの)
、光量分布8(−θ面に入射し、−θ面から出射する光
線によるもの)、光量分布7° (+0面に入射し面6
で反射した後、−θ面から出射する光線によるもの)、
光量分布8° (−θ面に入射し面6で反射した後、+
0面から出射する光線によるもの)の合成によって光量
分布9の様に均一化される。この場合において、入射光
の平行性が損なわれていないことは明°らかである。
If the incident light that enters the entrance surface 20 has the light amount distribution shown in FIG. 2, the output light will have the light amount distribution 7 (
(Due to light rays entering the +0 plane and exiting from the +0 plane)
, light intensity distribution 8 (due to rays incident on the -θ plane and emitted from the -θ plane), light intensity distribution 7° (due to rays incident on the +0 plane and emitted from the -θ plane),
(due to light rays emitted from the -θ plane after being reflected by),
Light intensity distribution 8° (after entering the −θ plane and reflecting at the surface 6, +
The light amount distribution 9 is made uniform by combining the light rays emitted from the zero surface. In this case, it is clear that the parallelism of the incident light is not impaired.

第3図かられかるように、出射面20の幅Wいっばいの
光束を得るためにはL tanα=W/4になるように
L(入射面と出射面との間の距離)を選べばよい。すな
わち とすればよく、θ=θ。であれば となる。
As can be seen from Fig. 3, in order to obtain a luminous flux as wide as the width W of the exit surface 20, L (the distance between the entrance surface and the exit surface) should be selected so that L tanα = W/4. good. In other words, θ=θ. If so, then .

入射光が完全な平行光ならば光量分布はブリズム単位3
0の周期Tの光量斑を持つが、本発明は若干の広がり角
を持つ光束の均一化を実現するものであるから、実際に
は出射面から所定の距離をおいて光を利用することによ
り周期Tの光量斑を除(ことができる。その距離をDと
置けばD>T/lanδ       ・・・■である
。但しここでδは入射光束の広がり角、ないしは出射光
束を利用する装置が利用できる広がり角のいずれか小さ
い方を表わす。
If the incident light is perfectly parallel light, the light intensity distribution will be 3 brism units.
However, since the present invention realizes uniformity of the light flux with a slight spread angle, it is actually possible to use the light at a predetermined distance from the exit surface. It is possible to remove the uneven light intensity with period T.If the distance is set as D, then D>T/lanδ...■.However, here, δ is the spread angle of the incident light flux, or the device that uses the output light flux. Represents the smaller of the available divergence angles.

従ってTが小さいほどDが小さく取れ、装置の小型化に
は好ましいが、あまり小さ(すると鋸状になった面の角
が加工精度の限界によって持つ丸みの影響が大きくなる
ため、むやみに小さ(することは好ましくない。
Therefore, the smaller T is, the smaller D can be obtained, which is preferable for downsizing the device. It is not desirable to do so.

また広がり角δが0でないことは屈折角αの値が対応す
る広がりを持つことを意味し、このためθ=θ。と置い
ても第4図における光線10〜12に示すような光線成
分があり、厳密には第3図に示す通りにはならないが、
θ岬θ。であれば広がり角δがあまり太き(なければ第
3図の効果が得られる。本発明の均一化部品が有効に働
(ためにはδがθより小さいことが必要であり、入射面
、出射面の任意のプリズム単位30を構成する一面から
入射した光が、他面の凹頂角にさえぎられるような大き
な角度の光線は、その大部分が、第4図における光線l
O〜12の様な光路を取るため、はとんど有効な光線と
はならない。
Also, the fact that the spread angle δ is not 0 means that the value of the refraction angle α has a corresponding spread, so θ=θ. Even so, there are light ray components as shown in rays 10 to 12 in Fig. 4, and strictly speaking they are not as shown in Fig. 3, but
θ Cape θ. If the divergence angle δ is too large (otherwise, the effect shown in Fig. 3 will be obtained), the uniformizing component of the present invention will work effectively (in order for δ to be smaller than θ, the incident surface, Most of the light rays at such a large angle that the light incident from one surface constituting the arbitrary prism unit 30 of the output surface is blocked by the concave apex angle of the other surface are the light rays l in FIG.
Since it takes an optical path such as O to 12, it is hardly an effective light beam.

次に、θの値の有効な範囲の求め方について説明する。Next, a method for determining the valid range of the value of θ will be explained.

第5図で入射面において広がり角がδの光束は屈折率n
の媒体に入るときその広がり角がδ゛になるとすれば、
δ°は第一近似で以下のように表わされる。
In Figure 5, the light beam with a divergence angle δ at the incident plane has a refractive index n
If the spread angle becomes δ゛ when it enters the medium, then
δ° is expressed in the first approximation as follows.

sin (π/2−ψ)=nsin(π/2−φ)、、
COSψ=ncosφ 、’、sinψdψ=nsinφdφ 、′、dφ= (sinψ/n5inφ)dψδ’ =
 (sinψ/n5inφ)δこのとき角ψはθ。に等
しいとすれば、φ=2ψ=200であるから dφ=dψ/2ncosψ ・・・O δ1 =  δ/2ncos  ψ  ・・・ 0次に
第6図のように角ψをΔψだけ増加させたときを考える
。平行光の曲がる角度φ°は0式を使って φ°=φ+Δφ=φ+Δψ/2ncosψ=2ψ+Δψ
/2ncosψ =2(ψ+Δψ) −(2−1/ 2 n cosψ)
Δψ・・・ O Δψが小さければ媒体内の広がり角は0式のδ゛にほぼ
等しい、もしδ°が0式の右辺第二項より大きければ、
広がり角内に φ =2(ψ+Δψ) ・・・ O を満たす光線成分を持つことになる。この成分は本発明
の効果を最も効率よく発揮する成分であるから、この成
分を有することが本発明を適用するための条件となる。
sin (π/2−ψ)=nsin(π/2−φ),
COSψ=ncosφ,', sinψdψ=nsinφdφ,', dφ= (sinψ/n5inφ)dψδ' =
(sinψ/n5inφ)δ At this time, the angle ψ is θ. If it is equal to , then φ = 2ψ = 200, so dφ = dψ / 2ncos ψ ...O δ1 = δ / 2ncos ψ ... 0 Next, when the angle ψ is increased by Δψ as shown in Figure 6. think of. The bending angle of parallel light φ° is calculated using the formula 0: φ° = φ + Δφ = φ + Δψ / 2 n cos ψ = 2 ψ + Δψ
/2n cosψ =2(ψ+Δψ) −(2-1/2 n cosψ)
Δψ... O If Δψ is small, the spread angle within the medium is approximately equal to δ゛ in Equation 0. If δ° is larger than the second term on the right side of Equation 0,
It has a ray component that satisfies φ = 2 (ψ + Δψ) ... O within the spread angle. Since this component is the component that exhibits the effects of the present invention most efficiently, having this component is a condition for applying the present invention.

よって δ’ > (2−1/2ncosψ)Δψ、°、Δψく
δ/(4ncosψ−1)、、Δθくδ/(4ncos
θ。−1)、“、Δθくδ/ (1+8n”)””  
  −’  Oこれから0式が導かれる。
Therefore, δ'> (2-1/2n cos ψ) Δψ, °, Δψ × δ/(4 n cos ψ−1),, Δθ × δ/(4 n cos
θ. −1), “, Δθ × δ/ (1+8n”)””
-' O Formula 0 is derived from this.

この推論は入射光の広がり角について行なったが、δが
出射光の有効な広がり角の場合は、出射面において視線
を追跡することによって全く同様な結果を得ることにな
る。
This inference was made regarding the spread angle of the incident light, but if δ is the effective spread angle of the output light, exactly the same result will be obtained by tracking the line of sight at the exit surface.

本発明の特徴点は、入射面に垂直に入射する光束を、入
射面にて光軸を角度α、−αだけ曲げた光束に分け、一
定の距離をおいた出射面で元の軸と平行な光束に戻すこ
とにより、あたかも元の光源の1/2の光量の光源が2
つ並んだのと同様な効果を得るものである。これによっ
て光束の均一化がなされるが、これはまた光束を拡大す
る効果も持っている。
The feature of the present invention is that the light beam incident perpendicularly to the incident plane is divided into beams whose optical axis is bent by angles α and −α at the incident plane, and parallel to the original axis at the exit plane at a certain distance. By returning the luminous flux to
This produces the same effect as if they were lined up. This homogenizes the luminous flux, but it also has the effect of expanding the luminous flux.

この効果は第1図において、光束の入射面20及び出射
面22に形成された各プリズム単位30の周期T(プリ
ズムのピッチとも言える)には影響されず、プリズム単
位30がX軸となす角度θが正確に形成されてさえおれ
ば達成されるものである。例えば、第7図に示すように
入射面20側のプリズム単位30の周期T1が出射面2
2側の周期T2に比べて、2倍の長さになっているよう
な構成でも採用できる。
In FIG. 1, this effect is not affected by the period T (also called the prism pitch) of each prism unit 30 formed on the incident surface 20 and exit surface 22 of the light beam, and the angle formed by the prism unit 30 with the X axis. This can be achieved as long as θ is formed accurately. For example, as shown in FIG.
A configuration in which the length is twice as long as the period T2 on the second side can also be adopted.

また、第8図に示すように、入射面20と出射面22の
各プリズム単位30のY軸方向のずれdyは上記効果上
問題とならず、製造上、入射面と出射面の位置決め精度
が要求されない利点がある。
Furthermore, as shown in FIG. 8, the deviation dy of each prism unit 30 between the entrance surface 20 and the exit surface 22 in the Y-axis direction does not pose a problem for the above-mentioned effect, and the positioning accuracy of the entrance surface and the exit surface is limited in manufacturing. There are benefits that are not required.

[実施例] 以下、本発明に係る光束を均一化する光学部品について
具体的な実施例に基づき説明する。
[Example] Hereinafter, the optical component for uniformizing the luminous flux according to the present invention will be described based on specific examples.

本発明による光束均一化部品15は、第1図の形状の両
側歯状透明体1を積層したもの、ないしはこれと同様の
形状を有する透明体で、積層物の一例を第9図に示した
。これは同じ形状の厚さdの両側歯状透明体1を揃えて
高さHまで積層した例で、接着剤は透明なものを使わな
ければならない。なお、本発明においては、全体の形状
が重要であり、積層物である必要はなく、第10図のよ
うに、第9図と同じ形状の透明体を射出成形などで一体
成形したものでも、機能的には同等である。
The light flux uniformizing component 15 according to the present invention is a laminated body of toothed transparent bodies 1 on both sides having the shape shown in FIG. 1, or a transparent body having a similar shape, and an example of the laminated body is shown in FIG. . This is an example in which two tooth-like transparent bodies 1 of the same shape and thickness d are aligned and stacked to a height H, and a transparent adhesive must be used. In addition, in the present invention, the overall shape is important, and it does not have to be a laminate, but a transparent body having the same shape as that shown in FIG. 9 may be integrally molded by injection molding or the like as shown in FIG. 10. They are functionally equivalent.

また第11図は、重なり合う出射面の波形が1/2周期
(T/2)だけずれるように積層した実施例である。こ
の様に積層される両側歯状透明体1は同一形状である必
要はなく、プリズム単位30の周期Tや位相が異なるも
のを積層したものであってもよい。この条件は、各積層
間で成り立つとともに、前述したように一つの両側歯状
透明体lの入射面と出射面間でも成り立つものである。
Further, FIG. 11 shows an embodiment in which the waveforms of the overlapping emission surfaces are stacked such that they are shifted by 1/2 period (T/2). The double-side toothed transparent bodies 1 stacked in this manner do not need to have the same shape, and may be a stack of prism units 30 with different periods T and phases. This condition holds not only between each laminated layer, but also between the entrance surface and the exit surface of one double-sided toothed transparent body l, as described above.

本発明で°°両両歯歯状透明体積層したもの、ないしは
積層したものと同様の形状を有する透明体”という表現
を用いたのはこのためである。
This is why the expression "a double-toothed transparent laminate or a transparent body having a shape similar to a laminate" is used in the present invention.

この様にプリズム単位30の周期Tや位相の異なる両側
歯状透明体lを積層することにより、前述した周期Tの
光量斑が現れにく(なる効果がある。第11図において
板厚dがTより小さければ、■式に変わって0式が周期
Tの光量斑が現れない条件になる。
In this way, by laminating the tooth-shaped transparent bodies l on both sides with different periods T and phases of the prism unit 30, there is an effect that the above-mentioned light intensity unevenness with the period T is less likely to appear. If it is smaller than T, the formula 0 is replaced by formula (2) and becomes the condition under which light intensity irregularities with period T do not appear.

D>d/lanδ°       ・・・■但しここで
δ゛は入射光束、ないしは出射光束を利用する装置が利
用できる板厚方向の広がり角のいずれか小さい方を表わ
す。
D>d/lan δ° . . . where δ” represents the smaller of the spread angles in the plate thickness direction that can be used by the device that utilizes the incident luminous flux or the emitted luminous flux.

本発明による光学部品15は、Y軸方向にのみ光量均一
化の効果を持つが、光量の不均一が方向に限られる光源
13を使用する場合は、第12図に示すように本発明を
一つ使った装置でよいが、光量の不均一が2次元である
光源13°の場合は、第13図の様に本発明をY軸を直
行させて2段にして均一化をはかる必要がある。
The optical component 15 according to the present invention has the effect of making the light amount uniform only in the Y-axis direction, but when using the light source 13 in which the non-uniformity of the light amount is limited to the direction, the present invention can be adjusted as shown in FIG. However, in the case of a light source of 13° where the non-uniformity of the light amount is two-dimensional, it is necessary to use the present invention in two stages with the Y axis perpendicular to each other to achieve uniformity, as shown in Figure 13. .

さらに、光源の光量不均一が極めて大きく、段ではこの
不均一を十分取り除くことができない場合は、L ta
nαの異なる部品を多段にすることにより十分な均一化
を達成することができる。簡単には一段目の1.、ta
nα、=W/4として、m段目のL mtanQ 1&
 = W/ 2 ”’とすればよい。第16図(E)に
3段の構成にした一例を示す。第16図(A)〜(D)
はそれぞれ第16図(E)のA−Dの位置の光量分布を
示し、段数を重ねるほど光量が均一化されることが分か
る。
Furthermore, if the light intensity non-uniformity of the light source is extremely large and the stage cannot sufficiently remove this non-uniformity, L ta
Sufficient uniformity can be achieved by arranging parts with different nα in multiple stages. The simple answer is step 1. ,ta
As nα,=W/4, m-th stage L mtanQ 1&
= W/2'''. Fig. 16 (E) shows an example of a three-stage configuration. Fig. 16 (A) to (D)
16(E) respectively show the light quantity distribution at the positions A to D in FIG. 16(E), and it can be seen that the more the number of stages increases, the more uniform the light quantity becomes.

本発明では、プリズムの面に光線が入射する際、プリズ
ムの面から光線が出射する際に光線の一部が反射し、透
過光が減少する。この反射面は、n=1.5前後で10
%程度になる。例えば、第13図の構成では、このよう
な面が4つあり、これによる損失は40%程度になる。
In the present invention, when a light ray is incident on the surface of a prism, a portion of the light ray is reflected when the light ray exits from the surface of the prism, and the amount of transmitted light is reduced. This reflective surface is around 10 when n=1.5.
It will be about %. For example, in the configuration shown in FIG. 13, there are four such surfaces, and the loss due to this is about 40%.

この損失を減少し、効率を高めるには、各プリズム面に
所定の入射角で反射率が最小となる無反射コーティング
を施せば良い。また、低屈折率の材料を薄くコーティン
グすることによって、反射率を下げることも効果がある
To reduce this loss and increase efficiency, each prism surface may be coated with an antireflection coating that minimizes reflectance at a predetermined angle of incidence. It is also effective to lower the reflectance by thinly coating the material with a low refractive index material.

以下に設計、制作の実際を示すことによって、その容易
さを示し、さらに得られた性能を示す。
The ease of design and production is shown below, as well as the performance obtained.

ここでは第10図に示されるタイプを第13図に示すよ
うに使い、35mmスライド映写機用に、フィルムサイ
ズより若干大きめの縦3cmX横4cmの光束を得るも
・のとする。
Here, it is assumed that the type shown in Fig. 10 is used as shown in Fig. 13 to obtain a luminous flux of 3 cm in length x 4 cm in width, which is slightly larger than the film size, for a 35 mm slide projector.

まず縦方向の均一化のための部品としてW=3cm H= 4 cm 材質はメタクリル(PMMA)樹脂を使うこととして n = 1.49 ■式を使って θ=θ、 =26.5’ これから tanθ。=0.50で0式を使ってL =
 W/ 2 = 1.5cm 制作を容易にするため T=2.0mm とする。次に横方向の均一化に使われる部品についても
θ、Tは等しくとり W=4Cm H= 3 cm から L=W/2=2cm となる。
First, as parts for uniformity in the vertical direction, W = 3 cm H = 4 cm Material is methacrylic (PMMA) resin, n = 1.49 Using the formula, θ = θ, = 26.5' From now on tan θ . = 0.50 and using the 0 formula, L =
W/2 = 1.5cm To make production easier, T = 2.0mm. Next, for the parts used for horizontal uniformization, θ and T are also set equal, so that W=4Cm H=3 cm, so L=W/2=2cm.

設計は以上で終わりであり、極めて簡単である。第13
図の構成で入射光として第14図の光量分布のものを使
用したとき、出射光の光量分布は第15図の様になり、
十分な均一化がなされていることがわかる。なお、第1
4図、第15図は実際の入射光、出射光の測定例であり
、Y軸は出射面の長辺に平行にとられ、各々の面の中心
を通る直線上と、これからH/4だけ離れた直線上の光
量分布を示している。
That's all for the design, and it's extremely simple. 13th
When using the configuration shown in the figure with the light intensity distribution shown in Fig. 14 as the incident light, the light intensity distribution of the output light will be as shown in Fig. 15,
It can be seen that sufficient uniformity has been achieved. In addition, the first
Figures 4 and 15 are examples of actual measurement of incident light and output light. It shows the light intensity distribution on separate straight lines.

ここで光束の広がり角δ=20°とすればD>T/la
nδ=5.5mm であり、第9図における本光学部品の必要とする長さは
、最低で 1.5 +2.0 +0.55=4.05cmであり、
若干の余裕を見たとしても5cm足らずで十分である。
Here, if the spread angle of the luminous flux is δ = 20°, then D>T/la
nδ = 5.5 mm, and the required length of this optical component in Fig. 9 is at least 1.5 + 2.0 + 0.55 = 4.05 cm,
Even if you allow some margin, less than 5 cm is sufficient.

この様に本発明を使った光学系は極めてコンパクトであ
り、同様の機能の光学系をリレーコンデンサーを使って
構成する場合、同様のサイズにまとめることは相当能し
い。
As described above, the optical system using the present invention is extremely compact, and when optical systems with similar functions are constructed using relay capacitors, it is quite possible to combine them into a similar size.

本発明に使われる透明材料の屈折率は00式かられかる
とおり高いぼどθを太き(取れ、より小型にすることが
でき好ましい。また必ずしも部品全体を同じ材料で作る
必要はなく、第17図に示すように屈折率の高い材料と
低い材料を使うことによって、より一層の小型化を可能
にすることができる。
As can be seen from the formula 00, the refractive index of the transparent material used in the present invention is preferable because it can be made smaller and more compact. As shown in FIG. 17, by using materials with high and low refractive indexes, further miniaturization can be achieved.

第17図において、n + = 1.49  n z 
= 1.40とし、nlの層はn2の層に比べ十分薄い
とする。
In Figure 17, n + = 1.49 n z
= 1.40, and the nl layer is sufficiently thinner than the n2 layer.

前記の設計例にならって θ=θ。= 26.5@ とすれば、二つの材料の境界で屈折することにより となる。前記W=4cmの時、0式からと前記設計例よ
り2mm程度短(することができる。
Following the design example above, θ=θ. = 26.5@, this is due to refraction at the boundary between the two materials. When W = 4 cm, it is possible to make it about 2 mm shorter than the design example from the 0 type.

なお、第17図でn2はn、より小さくなければ小型化
にならないため意味がない。またnlとn2の違いが大
きい程小型化の効果が大きいが、あまり違いが太き(な
ると■の全反射条件が成りたなくなるため、その場合は
面6に金属蒸着をするなどして、反射面とする必要があ
る。
Note that in FIG. 17, n2 is meaningless because it cannot be miniaturized unless it is smaller than n. Also, the larger the difference between nl and n2, the greater the effect of miniaturization, but if the difference is too large (then the total reflection condition of It needs to be a face.

[発明の効果] 以上説明したように、本発明による光学部品は、光源に
反射曲面やレンズを使って作られた不均一な光束を、そ
のビーム性を損なわずに光強度の均一化を行うことを可
能とし、高効率で均一な光束が得られる光源が容易に制
作でき、実用上大きな効果を有するものである。
[Effects of the Invention] As explained above, the optical component according to the present invention uniformizes the light intensity of a non-uniform light beam created by using a reflecting curved surface or a lens in the light source without impairing the beam properties. This makes it possible to easily produce a light source that provides a highly efficient and uniform luminous flux, and has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は相対する一対の辺が鋸状に成形された長方形の
両鍔歯状透明体を通過する光線の様子を示した平面図、
第2図は入射光の光量分布を示す図、第3図は光量の均
一化が行なわれる原理を示した光量分布図、第4図は入
射光束が広がり角を持つために第1図に示した光線と異
なる光路を通る光線が存在することを示した図、第5図
及び第6図はそれぞれ0式が導かれる根拠を説明するた
めの図、第7図及び第8図は両鍔歯状透明体の変形を示
した図、第9図及び第11図はそれぞれ本発明による積
層物の実施例を示す図、第10図は第9図の実施例と同
一形状のものを一体成形した透明体を示す図、第12図
は一方向にのみ光量の不均一を持つ入射光に本発明を適
応する場合の実施例の図、第13図は2次元的に不均一
を持つ入射光に適応する場合の使用方法を示す図、第1
4図及び第15図はそれぞれ入射光、出射光の光量分布
を示す図、第16図(A)〜(E)はそれぞれ多段化の
効果を示す図、第17図は本発明の小型化した実施例を
示す図である。 1・・・両鋸歯状透明体 2・・・−0面 3・・・+0面 6・・・側面 20・・・入射面 22・・・出射面 30・・・プリズム単位 13.13°・・・光源 15・・・光束を均一化する光学部品 代理人  弁理士  山 下 譲 平 第 図 第 図 第 図 第 図 第 図 第 図
Fig. 1 is a plan view showing the state of light rays passing through a rectangular brim-shaped transparent body with a pair of opposing sides formed in a serrated shape;
Figure 2 is a diagram showing the light quantity distribution of incident light, Figure 3 is a light quantity distribution diagram showing the principle of uniformity of light quantity, and Figure 4 is a diagram showing the light quantity distribution diagram showing the principle of uniformity of light quantity. Figures 5 and 6 are diagrams to explain the basis for deriving formula 0, respectively, and Figures 7 and 8 are diagrams showing that there are rays that pass through a different optical path than the rays. Figures 9 and 11 are diagrams showing the deformation of a shaped transparent body, Figures 9 and 11 are diagrams each showing an example of a laminate according to the present invention, and Figure 10 is a diagram showing an example of the same shape as the example in Figure 9, which is integrally molded. A diagram showing a transparent body, FIG. 12 is a diagram of an embodiment in which the present invention is applied to incident light having non-uniformity in light amount in only one direction, and FIG. 13 is a diagram showing an example in which the present invention is applied to incident light having non-uniformity in two dimensions. Diagram showing how to use when adapting, 1st
Figures 4 and 15 are diagrams showing the light intensity distribution of incident light and output light, respectively, Figures 16 (A) to (E) are diagrams each showing the effect of multi-stage formation, and Figure 17 is a diagram showing the miniaturization of the present invention. It is a figure showing an example. 1... Double serrated transparent body 2... -0 surface 3... +0 surface 6... Side surface 20... Incident surface 22... Output surface 30... Prism unit 13.13°. ...Light source 15... Optical component that homogenizes the luminous flux Agent Patent attorney Yuzuru Yamashita Figure Figure Figure Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] (1)対向する一対の面にプリズム単位が複数個形成さ
れた両鋸歯状透明体を積層したもの又は該積層したもの
と同様の形状を有する透明体であって、 (イ)前記一対の面の一方を光束の入射面、他方を出射
面とし、入射面及び出射面に垂直にX軸、前記両鋸歯状
透明体の積層方向にZ軸、更にX軸及びZ軸に対して共
に垂直方向にY軸をとるとき、前記各プリズム単位を構
成する両面が作る稜線がZ軸と平行であり、 (ロ)前記プリズム単位の並び方向が前記Y軸の方向と
一致し、 (ハ)前記各プリズム単位を構成する両面がそれぞれX
軸と下記[1]、[2]式で示される角度θないし−θ
をなす ことを特徴とする光束を均一化する光学部品。 θ_o−δ/〔(1+8n^2)^1^/^2〕<θ<
θ_o+δ/〔(1+8n^2)^1^/^2〕・・・
[1]θ_o=COS^−^1(〔1+(1+8n^2
)^1^/^2〕/〔4n〕)・・[2]但し、δ:入
射光束の広がり角、ないしは出射光束を利用する装置が
利用できる広がり角(±δ)のいずれか小さい方で、δ
<θ_o n:透明体の屈折率
(1) A laminated double-serrated transparent body in which a plurality of prism units are formed on a pair of opposing surfaces, or a transparent body having a similar shape to the laminated body, (a) The pair of surfaces one is the incident surface of the light flux, the other is the exit surface, the X axis is perpendicular to the entrance surface and the exit surface, the Z axis is in the lamination direction of both the sawtooth transparent bodies, and the direction is perpendicular to both the X axis and the Z axis. When taking the Y axis, the ridge lines formed by both surfaces constituting each of the prism units are parallel to the Z axis, (b) the direction in which the prism units are arranged coincides with the direction of the Y axis, and (c) each of the above Both sides constituting the prism unit are each X
axis and the angle θ or -θ shown in the following formulas [1] and [2]
An optical component that uniformizes the luminous flux, characterized by the following: θ_o−δ/[(1+8n^2)^1^/^2]<θ<
θ_o+δ/[(1+8n^2)^1^/^2]...
[1] θ_o=COS^-^1 ([1+(1+8n^2
)^1^/^2]/[4n])... [2] However, δ is the spread angle of the incident light beam or the spread angle (±δ) that can be used by the device that uses the output light beam, whichever is smaller. , δ
<θ_on: refractive index of transparent body
JP9726389A 1989-04-19 1989-04-19 Optical component for uniforming luminous flux Pending JPH02277002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9726389A JPH02277002A (en) 1989-04-19 1989-04-19 Optical component for uniforming luminous flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9726389A JPH02277002A (en) 1989-04-19 1989-04-19 Optical component for uniforming luminous flux

Publications (1)

Publication Number Publication Date
JPH02277002A true JPH02277002A (en) 1990-11-13

Family

ID=14187656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9726389A Pending JPH02277002A (en) 1989-04-19 1989-04-19 Optical component for uniforming luminous flux

Country Status (1)

Country Link
JP (1) JPH02277002A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6862141B2 (en) 2002-05-20 2005-03-01 General Electric Company Optical substrate and method of making
US7180672B2 (en) 2002-05-20 2007-02-20 General Electric Company Optical substrate and method of making
US7483195B2 (en) 2003-12-31 2009-01-27 Sabic Innovative Plastics Ip B.V. Optical substrate with modulated structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6862141B2 (en) 2002-05-20 2005-03-01 General Electric Company Optical substrate and method of making
US7180672B2 (en) 2002-05-20 2007-02-20 General Electric Company Optical substrate and method of making
US7324284B2 (en) 2002-05-20 2008-01-29 General Electric Company Optical substrate and method of making
US7965447B2 (en) 2002-05-20 2011-06-21 Sabic Innovative Plastics Ip B.V. Optical substrate and method of making
US7483195B2 (en) 2003-12-31 2009-01-27 Sabic Innovative Plastics Ip B.V. Optical substrate with modulated structure

Similar Documents

Publication Publication Date Title
JP4642873B2 (en) Lighting device
US7209628B2 (en) Luminaire device
US6104536A (en) High efficiency polarization converter including input and output lenslet arrays
JP2019518997A (en) Display system and light guide
WO1997014075A1 (en) Light-transmitting material, planar light source device and liquid crystal display device
EP0600728B1 (en) Polarization plane rotator applicable to polarization converter and projection display system
JPWO2010061699A1 (en) Thin backlight system and liquid crystal display device using the same
CN110161758B (en) Light conversion structure, backlight module and virtual reality display device
JPH04261502A (en) Optical apparatus
KR20130006695U (en) Wire grid polarizer, polarizing beam splitter and projection apparatus
US11635678B2 (en) Fresnel projection screen and projection system
US7175332B2 (en) Light guide device having improved light efficiency and uniformity
JPS6219837A (en) Transmission type screen
JPH02277002A (en) Optical component for uniforming luminous flux
JP2008046609A (en) Polarization recovery plate
US20090021829A1 (en) Optical module
US6587275B2 (en) Light beam polarization converter for converting an illumination light source
JPH0312601A (en) Optical component which uniforms luminous flux
JPH02294614A (en) Optical parts for uniforming luminous flux
JPH0363618A (en) Optical component
JPH0391714A (en) Optical parts
JPH0323401A (en) Optical parts for uniformizing luminous flux
CN220154786U (en) Projection optical machine
JPH0337614A (en) Optical component uniforming luminous flux
JPH0337613A (en) Optical component uniforming luminous flux