JPH0312566A - Fault section detecting method for transmission/ distribution lines - Google Patents
Fault section detecting method for transmission/ distribution linesInfo
- Publication number
- JPH0312566A JPH0312566A JP14714589A JP14714589A JPH0312566A JP H0312566 A JPH0312566 A JP H0312566A JP 14714589 A JP14714589 A JP 14714589A JP 14714589 A JP14714589 A JP 14714589A JP H0312566 A JPH0312566 A JP H0312566A
- Authority
- JP
- Japan
- Prior art keywords
- fault
- waveform
- output
- current
- buffer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims description 6
- 238000001514 detection method Methods 0.000 claims description 17
- 238000012806 monitoring device Methods 0.000 claims description 7
- 230000003111 delayed effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Locating Faults (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、送配電線の保守情報システム用故障区間検出
方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fault section detection method for a maintenance information system for power transmission and distribution lines.
送配電線の保守情報システム用故障検出方法としては、
常時位相比較方式がある。As a fault detection method for the maintenance information system of power transmission and distribution lines,
There is a constant phase comparison method.
常時位相比較方式は、常時、該当支持物と隣接支持物の
零相電流や架空地線電流等の位相差を測定しておくもの
で、地絡事故発生時又は短絡事故発生時に、位相が変化
したことを検出して、その情報を監視局に伝送するもの
であり、変電所間の故障送電線検出、鉄塔間の架空地線
電流による故障区間検出に従来から使用されている。The continuous phase comparison method constantly measures the phase difference between the zero-sequence current, overhead ground wire current, etc. of the relevant support and adjacent supports, and the phase changes when a ground fault or short circuit occurs. This system detects the occurrence of a fault and transmits the information to a monitoring station, and has been used in the past to detect faulty transmission lines between substations and to detect faulty sections based on overhead ground wire current between steel towers.
しかしながら、常時位相比較方式で光通信を使用するも
のは、常時光出力を出しておく必要があるため、太陽電
池等に電源を依存する鉄塔局では都合が悪い。However, systems that use optical communication using a constant phase comparison method require constant optical output, which is not convenient for tower stations that rely on solar cells or the like for power.
鉄塔局の電源は小型、安価にするよう要望が強い。従来
の故障区間検出器は刑整が難しいためシステム向きでは
ない。There is a strong demand for power supplies for tower stations to be smaller and cheaper. Conventional failure section detectors are not suitable for systems because they are difficult to correct.
そこで本発明は、鉄塔局の電源の小型化、コストダウン
化及びシステム構成の自由度の拡大を目的とする。SUMMARY OF THE INVENTION Therefore, the present invention aims to downsize the power supply of a tower station, reduce costs, and increase the degree of freedom in system configuration.
この目的を達成するため、本発明の送配電線の故障区間
検出方法は、送配電線の各支持物等に設置された故障検
出装置とこれらの故障検出装置からの情報を収集する監
視装置とを有する送配電線の故障区間検出システムにお
いて、前記各部]、4検出装置では、故障直前の電流又
は電圧波形と故障電流の波形を比較し、その位相差を記
憶しておき、前記監視装置では、故障発生時あるいは適
当な時間に各故障検出装置から収集し、その収集した前
記位相差に関する情報に基づいて、位相差が変化した区
間を故障区間と判定することを特徴とする。In order to achieve this objective, the method for detecting faulty sections of power transmission and distribution lines of the present invention includes fault detection devices installed on each support of the power transmission and distribution lines, and a monitoring device that collects information from these fault detection devices. In the fault section detection system for power transmission and distribution lines, the detection device compares the current or voltage waveform immediately before the fault with the waveform of the fault current, and stores the phase difference, and the monitoring device The information is collected from each failure detection device when a failure occurs or at an appropriate time, and based on the collected information regarding the phase difference, an interval in which the phase difference has changed is determined to be a failure interval.
本発明においては、電流の位相比較を鉄塔間に適用する
。In the present invention, current phase comparison is applied between towers.
負荷電流(電圧でもよい)の故障発生時点より前の正の
立ち上がりより、故障電流の正の立ち上がりまでの時間
を適当なりロックでカウントし、記憶する。システムの
処理装置で各鉄塔から送られてきたカウント数を比較し
、故障区間を判断する。このようにすることにより、時
間的、システム的制約の悪い条件で複数地点の同時故障
も検出が可能となる。The time from the positive rise of the load current (or voltage may be used) before the failure occurrence point to the positive rise of the fault current is counted and stored in an appropriate lock. The system's processing equipment compares the counts sent from each tower and determines the failure zone. By doing so, it becomes possible to detect simultaneous failures at multiple points under poor conditions of time and system constraints.
以下、本発明を実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically explained based on Examples.
第1図は本発明の実施例の構成を示す回路図、第2図は
各部の動作波形図である。FIG. 1 is a circuit diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is an operation waveform diagram of each part.
第1図において、lは送電線鉄塔等に設置された電流セ
ンサ、2はノイズ除去用のフィルタである。電流センサ
lは、送電線鉄塔で支持される3相の送電線から等距離
になる点より少しずれた位置に設置することにより、3
相の送電線に平衡電流が流れている正常送電時において
も、センサ出力が検出されるようにする(第2図(a)
前半参照)。In FIG. 1, 1 is a current sensor installed on a power transmission line tower, etc., and 2 is a filter for noise removal. By installing the current sensor l at a position slightly shifted from the point equidistant from the three-phase power transmission line supported by the transmission line tower,
The sensor output is to be detected even during normal power transmission when a balanced current is flowing in the phase transmission line (Figure 2 (a)
(See first half).
電流センサ1の出力はコンパレータ3によって波形整形
され、第2図ら〕に示すように矩形波となるうその出力
はインバータ4により反転され(第2図(C)参、照)
、次の波形ンフト回路5に人力される。The output of the current sensor 1 is waveform-shaped by a comparator 3, and the output, which becomes a rectangular wave as shown in Fig. 2, is inverted by an inverter 4 (see Fig. 2 (C)).
, the next waveform is manually input to the lift circuit 5.
−力、クロック発生器6は、第2図(d)に示すように
クロックパルスを発生しており、波ルシフト回路5のe
の出力には人力波形からクロックパルスの2力ウント分
遅延した信号が現れ、fの出力には、(b)の周波数を
半分に分周した波形が現れる。- The clock generator 6 generates clock pulses as shown in FIG. 2(d), and the wave shift circuit 5
A signal delayed by two clock pulses from the human input waveform appears at the output of f, and a waveform obtained by dividing the frequency of (b) in half appears at the output of f.
波形シフト回路5のeの出力はフリップフロップ回路7
によって分周され、第2図(匂に示す波形及びその反転
波形(社)が出力される。波形((至)はEOR(排他
的論理和)ゲート8及びANDゲート9により第2図(
1)に示す第1カウンタリセツト用パルス信号となり、
波形(5)はEORゲート8及びANDゲート10によ
り第2図(コ)に示す第2カウンタリセツト用パルス信
号となる。第1カウンタ11はパルス信号(1)の立ち
下がりでクロックパルス発生器6のクロックパルスをカ
ウント開始し、次の立ち上がりでカウントを停止する。The output of the waveform shift circuit 5 is the flip-flop circuit 7.
The waveform shown in FIG. 2 and its inverted waveform are output.
The first counter reset pulse signal shown in 1) is obtained.
The waveform (5) becomes the second counter reset pulse signal shown in FIG. 2(C) by the EOR gate 8 and AND gate 10. The first counter 11 starts counting the clock pulses of the clock pulse generator 6 at the falling edge of the pulse signal (1), and stops counting at the next rising edge.
軍2カウンタ12はパルス信号(」)の立ち下がりでク
ロックパルス発生器6のクロックパルスをカウント開始
し、次の立ち上がりでカウントを停止する。The second counter 12 starts counting the clock pulses of the clock pulse generator 6 at the falling edge of the pulse signal (''), and stops counting at the next rising edge.
送電線に事故が発生し、電流センサ1による検出信号が
第2図(a)に示す基準レベルを超えると、第1図の振
幅比較回路13がこれを検出し、第2図(ト)に示す出
力信号を出す。ANDゲート14は、故障が発生したと
きのみ、フリップフロップ7のQ出力(第2図(f>参
照)を出力し、出力(β)がHの場合に第1バツフア1
5に第1カウンタ11のカウzト値を読み出す。AND
ゲート16は、故障時にフリップフロップ7のQ出力(
第2図(g)参照)を出力し、信号(g)がHの場合に
第2バツフア17に第2カウンタ12のカウント値を読
み出す。19は波形シフト回路5の出力波形を分周する
フリップフロップであり、故障時にインバータ18によ
って反転された信号によりリセットされ、第2図(ホ)
に示す波形の信号を出力し、ラッチ回路20にラッチ信
号を与える。ラッチ回路20は、ラッチ信号(ホ)がH
になった時点のバッファ出力値をラッチする。本例の場
合は第2カウンタ12の値がバッファ17より出力され
ており、ゆえに第2カウンタ12のカウント値をラッチ
する。このラッチ信号は、故障後の入力波形の立ち上が
りと同期しており、ラッチした値は故障前の立ち上がり
から故障後の立ち上がりまでのカウント値を示す。When an accident occurs on the power transmission line and the detection signal from the current sensor 1 exceeds the reference level shown in FIG. 2(a), the amplitude comparison circuit 13 in FIG. 1 detects this and the signal in FIG. It outputs an output signal that indicates. The AND gate 14 outputs the Q output (see FIG. 2 (f>)) of the flip-flop 7 only when a failure occurs, and outputs the first buffer 1 when the output (β) is H.
5, the count value of the first counter 11 is read out. AND
The gate 16 outputs the Q output (
(see FIG. 2(g)), and when the signal (g) is H, the count value of the second counter 12 is read out to the second buffer 17. A flip-flop 19 divides the frequency of the output waveform of the waveform shift circuit 5, and is reset by a signal inverted by the inverter 18 in the event of a failure.
A signal having a waveform shown in is outputted, and a latch signal is given to the latch circuit 20. The latch circuit 20 has a latch signal (E) of H
Latch the buffer output value at the time it becomes . In this example, the value of the second counter 12 is output from the buffer 17, so the count value of the second counter 12 is latched. This latch signal is synchronized with the rise of the input waveform after the failure, and the latched value indicates the count value from the rise before the failure to the rise after the failure.
また、ラッチ信号が発生した時に、時計21が計時して
いる時刻をバッファ22より出力する。Further, when a latch signal is generated, the buffer 22 outputs the time measured by the clock 21.
第3図に送電線の平行2回線の場合の電流の流れを記し
ている。t2 は平常時の負荷電流であり、jl’+t
2は故障電流とする。また、S、、S、 は電源を有す
る変電所であり、故障点Xを挟んでF。Figure 3 shows the flow of current in the case of two parallel transmission lines. t2 is the load current under normal conditions, and jl'+t
2 is the fault current. Also, S, , S, is a substation with power supply, and F is located across failure point X.
〜F4 の鉄塔に本装置を設置した場合を考える。Consider the case where this device is installed on the steel tower of ~F4.
鉄塔F、、F、を流れる電流い′、t2は、平常時の負
荷電流L1と位相比較するとい′は同相、t2は逆相と
なる。そこで今、本装置のタロツクを15゜/1カウン
トとなるように設定すると、F、、F2のカウント値は
24、F、、 F、のカウント値は24+12(180
°)となる。When the phase of the current I', t2 flowing through the steel towers F, , F is compared with the normal load current L1, I' is in phase and t2 is in opposite phase. So now, if we set the tarok of this device to be 15°/1 count, the count value of F,,F2 will be 24, and the count value of F,,F, will be 24+12(180
°).
そこで、監視装置にて収集した値についてそれぞれ差を
とると、F、−F2=O1F、−Fa=12、F、−F
、=Oとなり、故障点を挟んだ区間では位相ずれ分の1
2(180°)という値が現れ、F2とFl。Therefore, if we take the difference between the values collected by the monitoring device, F, -F2=O1F, -Fa=12, F, -F
, = O, and in the section between the failure points, the phase shift is 1
The value 2 (180°) appears, F2 and Fl.
の値の区間が故障点と判定できる。The interval between the values of can be determined as the failure point.
また、監視装置にデータを収集する時間は故障検出装置
が故障時のデータを記憶しているので、常時伝送の必要
はなく、適当な時間に行うことが可能である。Furthermore, since the failure detection device stores the data at the time of failure, there is no need for constant transmission of data, and data can be collected at any appropriate time in the monitoring device.
以上に述べたように、本発明によれば、下記のような利
点がある。As described above, the present invention has the following advantages.
■ 検出装置がデータを記憶しているため、監視装置に
常時伝送する必要がなく、検出装置の電源を小型、安価
にすることができる。(2) Since the detection device stores the data, there is no need to constantly transmit it to the monitoring device, and the power supply for the detection device can be made smaller and cheaper.
■ 検出装置がデータを記憶しているので、データの収
集が任意に行えるので、システムの自由度が拡大する。■ Since the detection device stores data, data can be collected at will, increasing the flexibility of the system.
■ データとして、故障前の負荷電流又は電圧と故障電
流との位相差を用いているため、故障区間の判定が容易
で、正確なものとなる。(2) Since the phase difference between the load current or voltage before the failure and the fault current is used as data, it is easy and accurate to determine the failure area.
第1図は本発明の実施例を示すブロック図、第2図は各
部の動作を示す波形図、第3図は送電線の平行2回線の
場合の電流の流れを記す説明図である。
1:電流センサ
3:波形整ル器
5:波形シフト回路
7;フリップフロップ
9.10:ANDゲート
12;第2カウンタ
14:ANDゲート
16:ANDゲート
18:インバータ
20:ラッチ回路
22:バッファ
フィルタ
インバータ
クロック発生器
EORゲート
:第1カウンタ
:振幅比較回路
;第1バッファ
第2バツフア
フリップフロップ
時計FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a waveform diagram showing the operation of each part, and FIG. 3 is an explanatory diagram showing the flow of current in the case of two parallel power transmission lines. 1: Current sensor 3: Waveform adjuster 5: Waveform shift circuit 7; Flip-flop 9.10: AND gate 12; Second counter 14: AND gate 16: AND gate 18: Inverter 20: Latch circuit 22: Buffer filter inverter Clock generator EOR gate: 1st counter: amplitude comparison circuit; 1st buffer 2nd buffer flip-flop clock
Claims (1)
これらの故障検出装置からの情報を収集する監視装置と
を有する送配電線の故障区間検出システムにおいて、前
記各故障検出装置では、故障直前の電流又は電圧波形と
故障電流の波形を比較し、その位相差を記憶しておき、
前記監視装置では、故障発生時あるいは適当な時間に各
故障検出装置から収集し、その収集した前記位相差に関
する情報に基づいて、位相差が変化した区間を故障区間
と判定することを特徴とする送配電線の故障区間検出方
法。1. In a fault section detection system for power transmission and distribution lines that includes fault detection devices installed on each support of the power transmission and distribution lines and a monitoring device that collects information from these fault detection devices, each of the fault detection devices , compare the current or voltage waveform just before the failure with the fault current waveform, and memorize the phase difference.
The monitoring device is characterized in that information is collected from each fault detection device at the time of a fault occurrence or at an appropriate time, and based on the collected information regarding the phase difference, a section in which the phase difference has changed is determined to be a fault section. Method for detecting faulty sections of power transmission and distribution lines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14714589A JPH0312566A (en) | 1989-06-09 | 1989-06-09 | Fault section detecting method for transmission/ distribution lines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14714589A JPH0312566A (en) | 1989-06-09 | 1989-06-09 | Fault section detecting method for transmission/ distribution lines |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0312566A true JPH0312566A (en) | 1991-01-21 |
Family
ID=15423603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14714589A Pending JPH0312566A (en) | 1989-06-09 | 1989-06-09 | Fault section detecting method for transmission/ distribution lines |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0312566A (en) |
-
1989
- 1989-06-09 JP JP14714589A patent/JPH0312566A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8024157B2 (en) | Device for detecting voltage disturbance | |
CN106569129B (en) | Motor safety detection method and system and electric machine control system | |
CN103018532B (en) | Method and system for high-speed voltage drop detection | |
EP2898418B1 (en) | Branch circuit monitoring | |
US6516279B1 (en) | Method and apparatus for calculating RMS value | |
JP3750924B2 (en) | Radiation monitor | |
JPH0312566A (en) | Fault section detecting method for transmission/ distribution lines | |
CN110412400B (en) | PT broken line and PT three-phase reverse sequence fault judgment method and fault protection device | |
JP3321252B2 (en) | Transmission line fault section detection device | |
JPH01153969A (en) | Abnormality detecting device for repetitive waveform | |
JP2000078740A (en) | Digital protective relay system | |
JPH0454470A (en) | Fault point locating device for power transmission line | |
JPS63300976A (en) | Polarity decision type accident point locating device | |
CN115825560B (en) | Intelligent phase checking method of electric power network based on frequency tracking technology | |
CN106154031B (en) | Factory power load information acquisition system | |
JP3104531B2 (en) | Step-out detection device | |
JP2555395B2 (en) | Partial discharge diagnostic device | |
JP2722789B2 (en) | Overhead transmission line fault location system | |
JP2585345B2 (en) | Polarity determination method | |
RU1807426C (en) | Method of determination of distance to point of fault in power line and device for its implementation | |
JPS5849086B2 (en) | Transmission signal abnormality detection device | |
JPH02306175A (en) | Apparatus for detecting abnormality of transmission line | |
Kitzig et al. | Using Mains Frequency Synchronously Sampled Data for Frequency and RoCoF Event Detection | |
JPH02188034A (en) | System information collecting method for electric power system and system supervisory and controlling equipment using the same | |
JP2022022061A (en) | Measuring device, measuring method, and power converting device |