JP3321252B2 - Transmission line fault section detection device - Google Patents

Transmission line fault section detection device

Info

Publication number
JP3321252B2
JP3321252B2 JP16743893A JP16743893A JP3321252B2 JP 3321252 B2 JP3321252 B2 JP 3321252B2 JP 16743893 A JP16743893 A JP 16743893A JP 16743893 A JP16743893 A JP 16743893A JP 3321252 B2 JP3321252 B2 JP 3321252B2
Authority
JP
Japan
Prior art keywords
signal
current
fault
phase
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16743893A
Other languages
Japanese (ja)
Other versions
JPH075221A (en
Inventor
和則 杉町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimu Electronics Industries Co Inc
Original Assignee
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimu Electronics Industries Co Inc filed Critical Nishimu Electronics Industries Co Inc
Priority to JP16743893A priority Critical patent/JP3321252B2/en
Publication of JPH075221A publication Critical patent/JPH075221A/en
Application granted granted Critical
Publication of JP3321252B2 publication Critical patent/JP3321252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は送電線故障区間検出装置
に関し、特に多回線併架鉄塔におけるように、送電線に
対して所定位置に配置された複数の磁気センサの出力を
合成するだけでは各送電線負荷電流の影響を完全には相
殺できないような場合にも、各送電線負荷電流の影響を
除去して故障電流を確実に検出することができ、故障区
間を判定することができる送電線故障区間検出装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting a faulty section of a transmission line , and more particularly to an apparatus for detecting a faulty section of a transmission line by simply combining the outputs of a plurality of magnetic sensors arranged at predetermined positions with respect to the transmission line, as in a multi-circuit tower. Even when the effect of each transmission line load current cannot be completely canceled, the effect of each transmission line load current can be removed and the fault current can be reliably detected , and the fault area can be detected.
The present invention relates to a transmission line fault section detection device that can determine the interval .

【0002】[0002]

【従来の技術】送電線の故障区間を検出する方法として
は、送電線の適当な箇所(例えば、鉄塔)に設けた地
絡、短絡電流検出器などで故障電流を監視、計測し、隣
り合う計測地点で得られた故障電流の位相を比較し、故
障電流の位相反転区間を故障区間と判定する方法が広く
知られ、実施されている。例えば本出願人の提案にかか
る特開平1−209387号公報では、故障電流(短絡
電流や、地絡の場合の零相電流)を送電線の適当位置で
計測し、隣り合う計測位置での故障電流の位相反転区間
を故障区間と判定する方法を提案している。
2. Description of the Related Art As a method of detecting a faulty section of a transmission line, a fault current is monitored and measured by a ground fault or short-circuit current detector provided at an appropriate portion (for example, a steel tower) of the transmission line, and adjacent lines are measured. A method of comparing phases of fault currents obtained at measurement points and determining a phase inversion section of the fault current as a fault section is widely known and implemented. For example, in Japanese Patent Application Laid-Open No. Hei 1-209387 proposed by the present applicant, a fault current (a short-circuit current or a zero-phase current in case of a ground fault) is measured at an appropriate position on a transmission line, and a fault is detected at an adjacent measurement position. A method of determining a phase inversion section of a current as a failure section is proposed.

【0003】地絡時の零相電流の計測は、例えば実公平
4−24455号公報に記載されるように、細長い鉄心
にコイルを巻回した1対の磁気センサを、送電線の各相
電力線の位置を結ぶ多角形の外側の上下に、前記鉄心の
長手方向が電力線と直角をなし、かつ水平になるように
配置すると共に、各コイルを差動接続し、その合成出力
電圧が正常時には零または微小値となるように、前記鉄
心の素材、長さ、断面積、コイル巻回数などの磁気セン
サ定数およびその設置位置(各送電線からの距離)を設
定することによって行なうことができる。
[0003] The measurement of the zero-sequence current at the time of a ground fault is performed, for example, by using a pair of magnetic sensors each having a coil wound around an elongated iron core as described in Japanese Utility Model Publication No. 4-24455. Above and below the polygon connecting the positions, the longitudinal direction of the iron core is arranged so as to be perpendicular to the power line and horizontal, and the respective coils are differentially connected. Alternatively, it can be performed by setting the magnetic sensor constants such as the material, length, cross-sectional area, and number of coil turns of the iron core, and the installation position (distance from each transmission line) so as to be a minute value.

【0004】[0004]

【発明が解決しようとする課題】上述の零相電流の計測
と位相比較による故障区間検出方法では、零相電流計測
用の各磁気センサの定数および各送電線からの距離すな
わち設置位置を調整して、正常動作時の合成出力が零に
なるようにする必要があるが、送電線を懸吊する鉄塔の
ア−ム長やア−ム間隔が等しい特定の4回線鉄塔を除い
ては、合成出力を零にすることが極めて難しい。特に多
回線併架鉄塔では、設備する磁気センサの数を増やして
も、合成出力を零にすることは事実上不可能であるた
め、これらの方法によって零相電流を確実に検出判別し
て故障区間を正確に検出するすることは実用上難しいと
いう問題がある。
In the above-described method for detecting a fault zone by measuring the zero-phase current and comparing the phases, the constant of each magnetic sensor for measuring the zero-phase current and the distance from each transmission line, that is, the installation position are adjusted. Therefore, it is necessary to make the combined output during normal operation zero, but except for the specific four-circuit tower where the arm length and the arm interval of the tower suspending the transmission line are equal. It is extremely difficult to make the output zero. Especially with multi-circuit towers, it is virtually impossible to reduce the combined output to zero even if the number of installed magnetic sensors is increased. There is a problem that it is practically difficult to accurately detect a section.

【0005】また4回線鉄塔であっても、下回線が両端
NGR(中性点抵抗接地)で上回線が片端NTR系統電
力線の場合には、上回線で故障が発生すると、後述する
ように、零相電流計測用磁気センサの検出出力波形の位
相が全て同相になってしまうことがあり、位相比較によ
る故障区間検出ができなくなるという問題がある。
[0005] Even in the case of a four-circuit tower, if the lower line is at both ends NGR (neutral point resistance ground) and the upper line is a single-ended NTR system power line, if a failure occurs in the upper line, as described later, In some cases, the phases of the detection output waveforms of the zero-phase current measurement magnetic sensor are all in phase, and there is a problem that a failure section cannot be detected by phase comparison.

【0006】本発明の目的は、上記の問題を解決するた
めに、零相電流や短絡電流などの故障電流計測のために
設けた複数の磁気センサの合成出力を零にできない場合
でも、波形処理により、残留した負荷電流分を相殺して
容易に故障電流のみを取出し、さらに、検出された隣合
う検出地点における故障電流のピーク値および位相の両
方を比較し、その少なくとも一方が基準値以上に変化し
たことに基づいて、多回線併架鉄塔においても、正確な
故障区間の検出を可能にする装置を提供することにあ
る。
[0006] An object of the present invention is to solve the above-mentioned problem by performing waveform processing even when the combined output of a plurality of magnetic sensors provided for measuring fault current such as zero-phase current and short-circuit current cannot be reduced to zero. Accordingly, residual load current component offset the easy fault current only extraction City, to be et al., the peak value of the fault current in the adjacent detection point was detected and compared both phase, at least one of based upon the change in the reference value or more, even in the multi-circuit併架towers, it is to provide a that equipment to enable detection of an accurate fault section.

【0007】本発明の送電線故障区間検出装置は、送電
線に沿って適宜間隔ごとに配置された故障電流検出手段
と、前記故障電流検出手段の出力信号をそれぞれN/
2サイクル(Nは正整数)遅延させる遅延手段と、前記
故障電流検出手段の出力信号とN/2サイクル遅延さ
れた対応の各信号とを、前記送電線の正常時の各出力信
号が相殺されるように加減算して故障電流信号を発生す
手段とを有する。
[0007] transmission line fault segment detection device of the present invention, a fault current detection means arranged for each appropriate intervals along the transmission line, each output signal of said fault current detecting means respectively N /
Each output signal in the normal state of the transmission line cancels out a delay means for delaying two cycles (N is a positive integer) and each output signal of the fault current detection means and a corresponding signal delayed by N / 2 cycles. To generate a fault current signal
That and a means.

【0008】また送電線故障区間を検出するために、送
電線に沿った予定間隔ごとに設定された計測地点で、故
障電流の位相およびレベルを計測し、隣り合う2計測地
点で得られた故障電流の位相およびレベルの両方をそれ
ぞれ比較し、その一方の差が予め定められた基準値以上
のとき、前記隣り合う2計測地点間を故障区間と判定す
るようにした。このために、送電線に沿って適宜間隔ご
とに設定された計測地点に配置された地絡電流検出手段
および短絡電流検出手段と、前記地絡電流検出手段およ
び短絡電流検出手段の各出力信号をそれぞれN/2サイ
クル(Nは正整数)遅延させる遅延手段と、前記地絡電
流検出手段および短絡電流検出手段の各出力信号とN/
2サイクル遅延された対応の各信号とを、前記送電線の
正常時の各出力信号が相殺されるように加減算して地絡
電流および短絡電流信号を発生する手段と、1つの検出
地点における前記地絡電流および短絡電流信号の位相お
よびピーク値と、これに隣り合う検出地点における前記
地絡電流および短絡電流信号の位相およびピーク値との
差をそれぞれ演算する手段と、前記位相およびピーク値
の差の少なくとも一方が予定の基準値よりも大きいと
き、前記の隣り合う2つの検出地点間を故障区間と判定
する手段と、前記故障電流信号の位相を計測するための
位相計測手段とを具備し、前記位相計測手段は、計測対
象電流信号の零クロス点を検出する電流零クロス検知器
と、電圧信号の零クロス点を検出する電圧零クロス検知
器と、電圧零クロス検知器の出力パルスを分周する分周
器と、前記分周器の各出力によってリセットされる第1
カウンタと、前記分周器の各出力によって、前記第1カ
ウンタのリセットタイミングの中間でリセットされる第
2カウンタと、前記第1および第2カウンタにクロック
パルスを供給するクロック発振器と、前記電流零クロス
検知器の零クロス点検出信号に応答して読出される前記
第1および第2カウンタのカウント値の中の大きい方
を、計測対象電流の位相信号として選択する高値選択器
を具備した。
[0008] Further, in order to detect a transmission line fault section, the phase and level of fault current are measured at measurement points set at predetermined intervals along the transmission line, and faults obtained at two adjacent measurement points are measured. Both the phase and the level of the current are compared, and when the difference between the two is greater than or equal to a predetermined reference value, the two measurement points adjacent to each other are determined to be a failure zone. For this purpose, ground fault current detecting means and short-circuit current detecting means arranged at measurement points set at appropriate intervals along the transmission line, and output signals of the ground fault current detecting means and short-circuit current detecting means are output. Delay means for delaying each of N / 2 cycles (N is a positive integer), and N / N
Means for adding and subtracting each corresponding signal delayed by two cycles to generate and output a ground fault current and a short-circuit current signal so that each output signal in a normal state of the transmission line is canceled; Means for calculating the difference between the phase and the peak value of the ground fault current and the short-circuit current signal, and the phase and the peak value of the ground fault current and the short-circuit current signal at a detection point adjacent thereto, respectively, Means for determining a fault section between the two adjacent detection points when at least one of the differences is greater than a predetermined reference value, and for measuring a phase of the fault current signal.
Phase measurement means, wherein the phase measurement means
Current zero-cross detector that detects the zero-cross point of an elephant current signal
And voltage zero cross detection to detect the zero cross point of the voltage signal
Divides the output pulse of the detector and the voltage zero cross detector
And a first reset by each output of said divider
A counter and the respective outputs of the frequency divider determine the first clock.
Counter reset in the middle of the timer reset timing.
2 counter and a clock applied to the first and second counters.
A clock oscillator for supplying a pulse, and the current zero crossing
The signal read out in response to the zero crossing point detection signal of the detector.
The larger of the count values of the first and second counters
Value selector that selects as the phase signal of the current to be measured
It equipped with a door.

【0009】[0009]

【作用】故障電流検出手段の出力信号とN/2サイクル
遅延された信号とを、前記送電線の正常時の出力信号が
相殺されるように加減算するので、送電線の正常時に前
記故障電流検出手段の出力信号に負荷電流成分が含まれ
ていたとしても、その負荷電流成分の影響を除去し、故
障電流成分のみを分別して取出すことが可能になる。
[Action] The output signal and the N / 2-cycle delayed signal of the fault current detecting means, wherein the output signal of the normal transmission line is added or subtracted so as to cancel out, the fault current detected during the normal power lines Even if a load current component is included in the output signal of the means , it is possible to remove the influence of the load current component and separate and extract only the fault current component.

【0010】また故障区間の検出のために、送電線に沿
って設定された1つの検出地点における前記地絡電流お
よび短絡電流信号の位相およびピーク値と、これに隣り
合う検出地点における地絡電流および短絡電流信号の位
相およびピーク値との差をそれぞれ演算し、前記差の少
なくとも一方が予定の基準値を超えたかどうかを判定す
るようにしたので、従来は位相差が発生しないために検
出できなかった故障区間をも確実に検出できるようにな
る。
In order to detect a fault section, the phase and peak values of the ground fault current and the short-circuit current signal at one detection point set along the transmission line and the ground fault current at a detection point adjacent thereto are determined. And the difference between the phase and the peak value of the short-circuit current signal is calculated, and it is determined whether at least one of the differences exceeds a predetermined reference value. It is possible to reliably detect a failed section that has not been detected.

【0011】[0011]

【実施例】以下に図を参照して本発明の実施例を説明す
る。図1は本発明の1実施例のブロック図、図4は本実
施例に用いる各種センサの送電線鉄塔への取付け状態の
1例を示す概略図である。鉄塔8のそれぞれの腕金には
碍子を介して送電線R1 、S1 、T1 、U1 、V1 、W
1 、R2 、S2 、T2 、U2 、V2 、W2 が懸吊され、
その最上部には架空地線38が敷設される。零相電流計
測用の磁気センサ(以下、地絡センサという)11〜1
3はY結線されており、対をなすセンサ11と12、お
よび12と13の各加算出力がA/D変換器(図示せ
ず)およびフィルタ24、25を介してマルチプレクサ
29に供給される。短絡電流検出センサ(以下、短絡セ
ンサという)14、15および位相基準/トリップ監視
用の電圧センサ16もそれぞれ対応のA/D変換器(図
示せず)およびフィルタ26〜28を介してマルチプレ
クサ29に供給される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of one embodiment of the present invention, and FIG. 4 is a schematic diagram showing an example of a state in which various sensors used in the present embodiment are mounted on a power transmission tower. The power lines R1, S1, T1, U1, V1, W1 are connected to the respective arms of the tower 8 via insulators.
1, R2, S2, T2, U2, V2, W2 are suspended,
An overhead ground wire 38 is laid at the top. Magnetic sensors for measuring zero-phase current (hereinafter referred to as ground fault sensors) 11 to 1
Reference numeral 3 is Y-connected, and the added outputs of the paired sensors 11 and 12 and 12 and 13 are supplied to a multiplexer 29 via A / D converters (not shown) and filters 24 and 25. Short-circuit current detection sensors (hereinafter, referred to as short-circuit sensors) 14, 15 and a voltage sensor 16 for phase reference / trip monitoring are also provided to a multiplexer 29 via corresponding A / D converters (not shown) and filters 26 to 28, respectively. Supplied.

【0012】前記フィルタはセンサ出力中のノイズ成分
を除去するのに役立つ。
The filter serves to remove noise components in the sensor output.

【0013】これらの各センサは、既知の適当な手法に
したがって、例えば4回線鉄塔の場合には、図4に示す
ように、各地絡センサ11〜13はそれぞれ対応の送電
線を結んでできる多角形の外側に位置するように、また
短絡センサ14、15は、その鉄心の長手軸の方向がV
1 、V2 相またはS1 、S2 相電線に垂直で、その延長
線が前記電線と交わるように配置されることができる
(実公平4−24455号公報参照)。
In the case of a four-circuit tower, for example, as shown in FIG. 4, each of these sensors 11 to 13 is connected to a corresponding transmission line. The short-circuit sensors 14 and 15 are positioned outside the square, and the direction of the longitudinal axis of the iron core is V.
1, the V2 phase or the S1, S2 phase electric wires can be arranged so that their extension lines intersect with the electric wires (see Japanese Utility Model Publication No. 4-24455).

【0014】マルチプレクサ29で選択されたセンサ出
力はレジスタ31に一時記憶されると共に、演算処理部
32に供給される。演算処理部32では、後述するよう
な方法で、故障電流(地絡時の零相電流や短絡電流)の
波形が演算され、さらにその位相およびピ−ク値が検出
される。故障波形の位相およびピ−ク値は、故障発生時
刻を表わす信号(時計33の出力)と共に、光リンク
(送信機)35に供給され、適当な伝送線例えば架空地
線や光ファイバケブール38を介して親局または総合監
視所40へ伝送される。図1中の鎖線で囲まれた故障電
流計測部100は、図4に示したように、鉄塔8の下部
に設置することができる。他の隣接鉄塔の故障電流計測
部120において検出された故障電流情報も同様にし
て、架空地線などを介して親局40へ伝送される。
The sensor output selected by the multiplexer 29 is temporarily stored in a register 31 and supplied to an arithmetic processing unit 32. The arithmetic processing unit 32 calculates the waveform of the fault current (zero-phase current or short-circuit current at the time of ground fault) by a method described later, and further detects the phase and peak value. The phase and peak value of the fault waveform are supplied to an optical link (transmitter) 35 together with a signal indicating the time of occurrence of the fault (output of the clock 33), and are transmitted to an appropriate transmission line such as an overhead ground wire or an optical fiber cable 38. The data is transmitted to the master station or the general monitoring station 40 via the main station. The fault current measurement unit 100 surrounded by a chain line in FIG. 1 can be installed below the steel tower 8 as shown in FIG. Similarly, the fault current information detected by the fault current measuring unit 120 of another adjacent tower is transmitted to the master station 40 via an overhead ground wire or the like.

【0015】図2は演算処理部32の詳細を示す機能ブ
ロック図である。マルチプレクサ29から出力された地
絡または短絡などの故障電流信号aは遅延回路(シフト
レジスタ)101および演算器103に供給される。一
方、マルチプレクサ29から出力された位相基準用の電
圧信号dは電圧零クロス検知器111に供給される。遅
延回路101の機能は、図1のレジスタ31に一旦蓄積
された信号波形を、予め設定された遅延時間経過後に読
出すか、あるいはシフトレジスタを用いることによって
達成される。演算器103では、前記のように遅延され
た故障電流信号bとマルチプレクサ29から直接供給さ
れた故障電流信号aとが、負荷電流成分が相殺されるよ
うに加減算されて事故電流が検出される。その様子を図
3を参照して説明する。
FIG. 2 is a functional block diagram showing details of the arithmetic processing unit 32. The fault current signal a such as a ground fault or short circuit output from the multiplexer 29 is supplied to the delay circuit (shift register) 101 and the arithmetic unit 103. On the other hand, the voltage signal d for phase reference output from the multiplexer 29 is supplied to the voltage zero cross detector 111. The function of the delay circuit 101 is achieved by reading out the signal waveform once stored in the register 31 in FIG. 1 after a predetermined delay time has elapsed, or by using a shift register. In the arithmetic unit 103, the fault current signal b delayed as described above and the fault current signal a directly supplied from the multiplexer 29 are added and subtracted so that the load current component is canceled, and the fault current is detected. This will be described with reference to FIG.

【0016】図3は、演算処理部32の動作を説明する
ための波形図であり、(a)は、例えば上回線用の地絡
センサ20からA/D変換器24およびマルチプレクサ
29を介して演算器103に直接供給された地絡電流波
形、(b)は前記波形を3サイクル遅延した遅延回路1
01の出力波形である。地絡事故発生時刻t2より前の正
常時においては各送電線には零相電流は流れないので、
地絡センサ20の出力は零になるはずであるが、送電線
の構造、配置やセンサの特性、配置によっては、各相電
線の負荷電流のセンサに対する影響が平衡されないこと
があり、実際には小振幅の負荷電流が検出されることが
多い。図(a)、(b)ではこの状態を表わしている。
FIG. 3 is a waveform diagram for explaining the operation of the arithmetic processing section 32. FIG. 3A shows, for example, a signal from the ground fault sensor 20 for the upper line via the A / D converter 24 and the multiplexer 29. The ground fault current waveform directly supplied to the arithmetic unit 103, (b) is a delay circuit 1 obtained by delaying the waveform by three cycles.
01 is the output waveform. At the normal time before the ground fault occurrence time t2, zero-phase current does not flow through each transmission line.
Although the output of the ground fault sensor 20 should be zero, the effect of the load current of each phase wire on the sensor may not be balanced depending on the structure, layout, characteristics of the sensor, and layout of the transmission line. Often a small amplitude load current is detected. FIGS. 7A and 7B show this state.

【0017】この例では、波形(a)と(b)との間に
は整数サイクルの位相差があるので、両波形の差を演算
すると、時刻t2 以前の負荷電流成分および時刻t2 か
ら3サイクル(遅延時間)経過後の地絡電流成分は相殺
され、地絡事故発生時刻t2から3サイクルの間の地絡
電流成分のみが、図(c)のように検出される。明らか
なように、遅延時間が整数サイクルのときは、上述の波
形(a)と(b)との差演算でよいが、遅延時間が1/
2サイクルの奇数倍であるときは波形(a)と(b)と
を加算しなければならない。要するに、演算器103
は、送電線の正常時に故障電流検出器によって検出され
る小振幅の負荷電流信号を相殺するような演算をするよ
うに設定される。
In this example, since there is an integer cycle phase difference between the waveforms (a) and (b), when the difference between the two waveforms is calculated, the load current component before time t2 and three cycles from time t2 are calculated. The ground fault current components after the lapse of (delay time) are cancelled, and only the ground fault current components during three cycles from the ground fault occurrence time t2 are detected as shown in FIG. As is apparent, when the delay time is an integer cycle, the difference calculation between the waveforms (a) and (b) may be performed, but the delay time is 1 /
If it is an odd multiple of two cycles, waveforms (a) and (b) must be added. In short, the arithmetic unit 103
Is set so as to cancel the load current signal of small amplitude detected by the fault current detector when the transmission line is normal.

【0018】波形(c)はピーク値検出器105、レベ
ル比較回路106および電流零クロス検知器107に供
給される。なお、前記ピーク値検出器105および電流
零クロス検知器107は、故障電流の信号波形cのレベ
ルが予定値を超えたことに応答してレベル比較回路10
6が出力を発生するまでは動作しないか、あるいはこれ
らの出力が抑止される。
The waveform (c) is supplied to a peak value detector 105, a level comparison circuit 106, and a current zero cross detector 107. Note that the peak value detector 105 and the current zero cross detector 107 respond to the fact that the level of the signal waveform c of the fault current exceeds a predetermined value, and
6 do not operate until they generate outputs, or these outputs are suppressed.

【0019】電圧零クロス検知器111は位相基準用電
圧センサ16の出力波形dを供給され、零クロスに同期
したパルスを分周器113に供給する。分周器113は
故障電流の位相計測のための位相基準点B1 (図3)を
決定する機能を有する。本実施例では1/4分周器であ
るので、図3(e)の実線で示すように、波形dの4周
期毎にパルスを発生する。第1、第2カウンタ117、
119は、図示しないクロック発振器からのクロックパ
ルスCKを計数する。分周器113の出力パルスは第1
カウンタ117のリセット端子に供給され、位相基準用
電圧の分周数周期(この例では4周期)ごとにこのカウ
ンタ117をリセットする。前記分周器113の出力パ
ルスは同時に、リセット遅延回路115を介して第2カ
ウンタ119のリセット端子に供給されてこれをリセッ
トする。リセット遅延回路115は、第1カウンタ11
7のリセットタイミングの中間(なるべくは中央)で第
2カウンタ119がリセットされるようにするものであ
り、図3(e)の点線で示すようなパルスを発生する。
The voltage zero cross detector 111 is supplied with the output waveform d of the phase reference voltage sensor 16 and supplies a pulse synchronized with the zero cross to the frequency divider 113. The frequency divider 113 has a function of determining a phase reference point B1 (FIG. 3) for measuring the phase of the fault current. In this embodiment, since the frequency divider is a 1/4 frequency divider, a pulse is generated every four periods of the waveform d, as shown by the solid line in FIG. A first and a second counter 117,
119 counts clock pulses CK from a clock oscillator (not shown). The output pulse of the frequency divider 113 is the first
The counter 117 is supplied to a reset terminal of the counter 117, and resets the counter 117 at every frequency division cycle (four cycles in this example) of the phase reference voltage. The output pulse of the frequency divider 113 is simultaneously supplied to the reset terminal of the second counter 119 via the reset delay circuit 115 and resets it. The reset delay circuit 115 includes the first counter 11
The second counter 119 is reset in the middle (preferably at the center) of the reset timing of FIG. 7, and generates a pulse as shown by a dotted line in FIG.

【0020】図3の時刻t2 で事故が発生し、時刻t3
で、故障電流の信号波形cの振幅が予め設定された基準
レベルを超えると、レベル比較回路106が出力を発生
し、これによって前記ピーク値検出器105および電流
零クロス検知器107が起動(あるいは、出力可能状態
に)される。その後の時刻t4 で、故障電流の零クロス
が検出されると、その検出信号が第1、第2カウンタ1
17、119に加えられる。なお図3の例では、事故発
生直後の故障電流の過渡現象を考慮し、レベル比較回路
106が出力を発生した直後の零クロス信号は採用しな
いこととしているが、前記直後の零クロス信号でカウン
タの読出しをしてもよい。前記両カウンタ117、11
9の時刻t4 における各計数値g、hが高値選択器10
8に供給され、大きい方の計数値が位相角信号Tp とし
て選択され、デ−タバッファ109に転送される。一
方、前記ピーク値検出器105によって故障電流のピー
ク値P1 が検出され、同様にデ−タバッファ109に転
送される。レベル比較回路106の出力は時計33にも
加えられ、事故発生時刻がデ−タバッファ109に転送
される。前記事故発生時刻、故障電流のピーク値、およ
び故障電流位相角はデ−タバッファ109で送信に適す
るように編集され、光リンク35を介して親局40へ伝
送される。親局40では、ある送電線の隣接する2つの
故障電流計測部から伝送された故障電流のピーク値およ
び位相角を比較し、それらの少なくとも一方の差が予定
値以上であるときは、上記2つの故障電流計測部の間に
事故点があると判定し、必要に応じてその表示、記録、
警報をする。
An accident occurs at time t2 in FIG.
When the amplitude of the signal waveform c of the fault current exceeds a preset reference level, the level comparison circuit 106 generates an output, whereby the peak value detector 105 and the current zero cross detector 107 are activated (or , Output enabled state). At time t4, when a zero cross of the fault current is detected, the detection signal is sent to the first and second counters 1 and 2.
17, 119. In the example of FIG. 3, the zero cross signal immediately after the output is generated by the level comparison circuit 106 is not used in consideration of the transient phenomenon of the fault current immediately after the occurrence of the accident. May be read. Both counters 117, 11
9 at time t4, the count values g and h are
8 and the larger count value is selected as the phase angle signal Tp and transferred to the data buffer 109. On the other hand, the peak value detector 105 detects the peak value P1 of the fault current, which is similarly transferred to the data buffer 109. The output of the level comparison circuit 106 is also applied to the clock 33, and the time of occurrence of the accident is transferred to the data buffer 109. The accident occurrence time, the fault current peak value, and the fault current phase angle are edited by the data buffer 109 so as to be suitable for transmission, and transmitted to the master station 40 via the optical link 35. The master station 40 compares the peak value and the phase angle of the fault current transmitted from two adjacent fault current measurement units of a certain transmission line, and when at least one of them is greater than or equal to a predetermined value, the above-mentioned 2 It is determined that there is an accident point between the two fault current measurement units, and its display, record,
Give an alarm.

【0021】つぎに本発明による送電線事故区間検出の
原理を、図5および図6を参照して説明する。これらの
図は、片端NGR(中性点抵抗接地)の上回線と両端N
GRの下回線から成る4回線送電線の系統において、上
回線および下回線のいずれかで1線地絡事故を生じた場
合の本発明による検出状態を説明するものである。なお
ここでは、上下回線用の地絡センサ11〜13が図4に
示したように設置されているものと仮定する。
Next, the principle of detecting a transmission line fault section according to the present invention will be described with reference to FIGS. These figures show the upper line of one end NGR (neutral point resistance ground)
FIG. 4 illustrates a detection state according to the present invention when a single-line ground fault occurs in either the upper line or the lower line in a four-line transmission line system including a lower line of a GR. Here, it is assumed that the ground fault sensors 11 to 13 for the upper and lower lines are installed as shown in FIG.

【0022】図5のように上回線の地点X1で地絡事故
が発生すると、上回線では送電端SS1および受電端S
S2から地絡電流I1 、I2 が地絡点X1に流れ込み、
下回線では受電端SS3の中性点抵抗接地NGR2を通
り、送電端SS1に向かって故障電流I3 が流れる。地
絡点X1を挟んで隣り合う2つの検出地点のうち、故障
点よりも送電端SS1側の検出地点F1では、上回線の
U1 、U2 相には前記電流I1 、I2 が同方向に流れ、
下回線のR1 、R2 相には受電端SS3から送電端SS
1に向かって故障電流I2 が流れる。これらの故障電流
によって図5に矢印で示すような方向の磁界が生じ、こ
れによって各地絡センサ11〜13には正方向の電流が
誘起される。
As shown in FIG. 5, when a ground fault occurs at the point X1 on the upper line, the power transmitting end SS1 and the power receiving end S
Ground fault currents I1 and I2 flow from S2 to ground fault point X1,
In the lower line, the fault current I3 flows toward the power transmitting terminal SS1 through the neutral point resistance ground NGR2 of the power receiving terminal SS3. Of the two detection points adjacent to each other with the ground fault point X1 therebetween, at the detection point F1 closer to the transmitting end SS1 than the fault point, the currents I1 and I2 flow in the same direction in the U1 and U2 phases of the upper line,
The R1 and R2 phases of the lower line are from the receiving end SS3 to the transmitting end SS.
1, a fault current I2 flows. These fault currents generate a magnetic field in the direction indicated by the arrow in FIG. 5, thereby inducing a positive current in each of the ground fault sensors 11 to 13.

【0023】したがって、地絡センサ11と12、およ
び12と13の各出力電流の和が上および下回線地絡セ
ンサ20、22の出力となる。
Accordingly, the sum of the respective output currents of the ground fault sensors 11 and 12 and 12 and 13 becomes the output of the upper and lower line ground fault sensors 20 and 22.

【0024】一方、故障点X1よりも受電端SS2、S
S3側の検出地点F2では、上回線のU1 、U2 相には
前記電流I2 が互いに逆方向に流れ、下回線のR1 、R
2 相には受電端SS3から送電端SS1に向かって同方
向に故障電流I3 が流れる。明らかなように、故障電流
I2 の地絡センサ11、12に対する影響は相殺される
ので、主として電流I3 によって、センサ12に矢印で
示すような方向の磁界が生じ、図示方向の電流が誘起さ
れる。前述のように、センサ12の出力はそれぞれセン
サ11および13の出力と同極性に加算されて上回線お
よび下回線地絡センサ20、22の出力となる。
On the other hand, the receiving ends SS2, S
At the detection point F2 on the S3 side, the currents I2 flow in opposite directions to the U1 and U2 phases of the upper line, and R1 and R2 of the lower line.
In the two phases, the fault current I3 flows in the same direction from the power receiving end SS3 to the power transmitting end SS1. As is apparent, the influence of the fault current I2 on the ground fault sensors 11 and 12 is cancelled, so that a magnetic field in the direction indicated by the arrow is generated in the sensor 12 mainly by the current I3, and a current is induced in the illustrated direction. . As described above, the output of the sensor 12 is added with the same polarity as the output of the sensors 11 and 13 to become the outputs of the upper and lower line ground fault sensors 20 and 22, respectively.

【0025】以上の説明から明らかなように、図5の例
では、事故点を挟んで隣り合う2つの地点F1 、F2 間
での地絡センサ20、22の出力は同位相となるので、
従来の手法では故障検出ができない。しかし本発明で
は、故障電流の位相のみでなく、その大きさ(ピーク
値)をも比較するので、下回線地絡センサ22では差が
ないが、以下に詳述するように、上回線地絡センサ20
の出力電流の大きさは地点F1 側の方が地点F2 の2倍
以上になっていることが判別でき、地点F1 、F2間で
の地絡を検出できる。
As is apparent from the above description, in the example of FIG. 5, the outputs of the ground fault sensors 20 and 22 between two points F1 and F2 adjacent to each other with the accident point in between have the same phase.
Failure detection cannot be performed by the conventional method. However, in the present invention, not only the phase of the fault current but also its magnitude (peak value) is compared, so that there is no difference in the lower line ground fault sensor 22, but as described in detail below, the upper line ground fault will be described. Sensor 20
It can be determined that the magnitude of the output current of the point F1 is twice or more that of the point F2, and a ground fault between the points F1 and F2 can be detected.

【0026】地点X1での事故が完全地絡(地絡抵抗が
0)であると仮定すると、電流T3の値はNGR2の抵
抗値で決まる。NGR1から上回線に流れる電流をI0
とすると、 I1 +I2 =I0 +2I3 となる。またF1点およびF2点における上回線地絡セ
ンサ20の出力レベルV(1) 、V(2) 、および両者の比
は次のように表わされる。 V(1) =α{K1 (I1 +I2 )+K2 ×2I3 } =α{K1 (I0 +2I3 )+K2 ×2I3 } …(1) V(2) =α{K1 (I2 −I2 )+K2 ×2I3 } =αK2 ×2I3 …(2) (1)(2)式より、 V(1) /V(2) =K1 ×I0 /K2 ×2I3 +K1 /K2 +1 …(3) ここで、αは定数、またK1 、K2 は各センサと各相送
電線との距離によって決まる定数である。そして通常
は、図4のように各センサを配置し、Y結線とした場
合、K1 >K2 であるから、(3)式は2より大きくな
る。つぎに図6のように、下回線の地点X2で地絡事故
が発生すると、下回線では地絡電流I4 、I5 が地絡点
X2に流れ込むが、上回線には地絡電流は流れない。こ
れにより、地絡点から送電端側および受電端側の各検出
地点F1、F2における上下回線地絡センサ20、22
の出力は位相が反対になる。したがって、この場合は位
相比較によって地点F1 、F2 間での地絡を検出でき
る。なおこの場合、センサ11、12の出力が逆位相に
なって相殺されるので、上回線地絡センサ20の出力レ
ベル出力は小さくなる。
Assuming that the accident at the point X1 is a complete ground fault (ground fault resistance is 0), the value of the current T3 is determined by the resistance value of the NGR2. The current flowing from NGR1 to the upper line is I0
Then, I1 + I2 = I0 + 2I3. The output levels V (1) and V (2) of the upper line ground fault sensor 20 at the points F1 and F2 and the ratio between the two are expressed as follows. V (1) = α {K1 (I1 + I2) + K2 × 2I3} = α {K1 (I0 + 2I3) + K2 × 2I3} (1) V (2) = α {K1 (I2−I2) + K2 × 2I3} = αK2 × 2I3 (2) From the equations (1) and (2), V (1) / V (2) = K1 × I0 / K2 × 2I3 + K1 / K2 + 1 (3) where α is a constant and K1 , K2 are constants determined by the distance between each sensor and each phase transmission line. Normally, when each sensor is arranged as shown in FIG. 4 and Y-connection is established, since K1> K2, the expression (3) is larger than 2. Next, as shown in FIG. 6, when a ground fault occurs at the point X2 on the lower line, the ground fault currents I4 and I5 flow into the ground point X2 on the lower line, but do not flow on the upper line. Thereby, the upper and lower circuit ground fault sensors 20, 22 at the respective detection points F1, F2 on the power transmission end side and the power reception end side from the ground fault point.
Have opposite phases. Therefore, in this case, a ground fault between the points F1 and F2 can be detected by the phase comparison. In this case, since the outputs of the sensors 11 and 12 have opposite phases and are canceled, the output level output of the upper line ground fault sensor 20 becomes smaller.

【0027】図7は、片端電源系4回線送電線に短絡事
故が生じた場合の短絡検知の原理を説明するための概念
図である。送電線の地点X3で上回線のU1 、V1 相間
に短絡が生じたものと仮定すると、容易に理解されるよ
うに、U1 、V1 相間およびU2 、V2 相間にそれぞれ
短絡電流Is1、Is2が図示のように流れる。短絡センサ
14は、前述したように、その鉄心の長手軸の延長線が
電線V1 、V2 と交わり、かつこれらと垂直になるよう
に配置される。このため、電線V1 、V2 に流れる電流
による誘導磁界の方向は短絡センサ14の鉄心と垂直に
なり、これによる誘導電流は発生しない。事故点X3よ
りも送電端SS1側のF1点では、電線U1 、U2 の同
方向電流Is1、Is2によって短絡センサ14に2重矢印
方向の誘導電流が発生する。一方、事故点X3よりも受
電端SS2側のF2点では、電線U1 、U2 の電流は大
きさが等しく、極性が反対になるので、短絡センサ14
にはほとんど誘導電流が発生しない。したがって、事故
点X3を挟む点F1、F2での短絡センサ出力のピーク
値を比較することにより、短絡事故を検出し故障区間を
特定できる。
FIG. 7 is a conceptual diagram for explaining the principle of short-circuit detection when a short-circuit accident has occurred in a single-ended power supply system four-line transmission line. Assuming that a short circuit has occurred between the U1 and V1 phases of the upper line at the point X3 of the transmission line, as will be easily understood, the short circuit currents Is1 and Is2 between the U1 and V1 phases and between the U2 and V2 phases respectively are shown in FIG. Flows like so. As described above, the short-circuit sensor 14 is arranged such that the extension of the longitudinal axis of the iron core intersects the electric wires V1 and V2 and is perpendicular to these. Therefore, the direction of the induced magnetic field caused by the current flowing through the electric wires V1 and V2 is perpendicular to the iron core of the short-circuit sensor 14, and no induced current is generated. At point F1 on the power transmission end SS1 side from the fault point X3, induced currents in the double arrow direction are generated in the short-circuit sensor 14 by the same-direction currents Is1 and Is2 of the electric wires U1 and U2. On the other hand, at the point F2 closer to the power receiving end SS2 than the fault point X3, the currents of the electric wires U1 and U2 are equal in magnitude and opposite in polarity.
Generates almost no induced current. Therefore, by comparing the peak value of the output of the short-circuit sensor at points F1 and F2 sandwiching the fault point X3, a short-circuit fault can be detected and the fault section can be specified.

【0028】以上では、検出信号は架空地線38を介し
て親局40へ伝送するものとしたが、微弱電波を用いる
などの他の適宜の方法で伝送しても良いし、あるいは各
検出地点に異常発生時刻、故障電流の位相角、ピーク値
などを表示、記録しておき、作業員が巡視によって同一
発生時刻の位相角、ピーク値を比較し、それらの差が基
準値以上の区間を事故区間と判定するようにすることも
できる。なお事故発生の判定基準値としては、位相角の
場合は180°程度、電流電圧のピーク値の場合は1、
5〜2倍以上に設定するのが望ましい。位相角測定の基
準点は、分周器113の分周比を適当に選ぶことによっ
て任意に決定でき、異常発生後の電圧零クロス点とする
こともできるが、異常発生時点よりも前の電圧零クロス
点とするのが望ましい。また本発明は、図2に示したよ
うなハード構成によらなくても、1チップマイコンなど
を用いてソフト的に実施することもできることは容易に
理解できるであろう。
In the above description, the detection signal is transmitted to the master station 40 via the overhead ground line 38. However, the detection signal may be transmitted by another appropriate method such as using a weak radio wave, or at each detection point. Display and record the abnormal occurrence time, fault current phase angle, peak value, etc., and compare the phase angle and peak value at the same occurrence time by patrol, and find the section where the difference is more than the reference value. It can also be determined that the section is an accident. The reference value for determining the occurrence of an accident is about 180 ° for the phase angle, 1 for the peak value of the current voltage,
It is desirable to set it to 5 to 2 times or more. The reference point of the phase angle measurement can be arbitrarily determined by appropriately selecting the frequency division ratio of the frequency divider 113, and can be the voltage zero crossing point after the occurrence of the abnormality. It is desirable to set the zero cross point. It will be easily understood that the present invention can be implemented by software using a one-chip microcomputer or the like without using the hardware configuration as shown in FIG.

【0029】[0029]

【発明の効果】本発明によれば、特に多回線併架鉄塔に
おけるように、送電線に対して所定位置に配置された複
数の磁気センサの出力を演算するだけでは各送電線負荷
電流の影響を完全には相殺できないような場合にも、各
送電線負荷電流の影響を除去して故障電流を確実に検出
できるようになる。したがって、地絡および短絡センサ
の設計、これらセンサの鉄塔への設置や調整の余裕度が
改善され、コスト低減にも有用である。また隣り合う検
出地点で得られた故障電流の位相角およびピーク値の両
方を比較し、少なくとも一方の差が基準値を超えている
ときに、この隣り合う検出地点間を故障区間と判定する
ので、従来法では位相差が発生しないために検出できな
かった態様の事故も確実に検出できる。
According to the present invention, the effect of each transmission line load current can be obtained simply by calculating the outputs of a plurality of magnetic sensors arranged at predetermined positions with respect to the transmission line, as in the case of a multi-circuit tower. In the case where the current cannot be completely canceled, the influence of each transmission line load current can be removed and the fault current can be detected reliably. Therefore, the design of the ground fault and short circuit sensors, the installation of these sensors on the steel tower and the margin of adjustment are improved, which is also useful for cost reduction. Further, both the phase angle and the peak value of the fault current obtained at the adjacent detection points are compared, and when at least one of the differences exceeds the reference value, the interval between the adjacent detection points is determined as the fault section. In addition, it is possible to reliably detect an accident that cannot be detected by the conventional method because no phase difference occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.

【図2】図1の演算処理部の詳細を示す機能ブロック図
である。
FIG. 2 is a functional block diagram illustrating details of an arithmetic processing unit in FIG. 1;

【図3】図1の演算処理部の動作を説明するための波形
図である。
FIG. 3 is a waveform diagram for explaining the operation of the arithmetic processing unit in FIG. 1;

【図4】本実施例に用いる各種センサの送電線鉄塔への
取付け状態を示す概略図である。
FIG. 4 is a schematic diagram showing how various sensors used in the present embodiment are attached to a transmission line tower.

【図5】本発明による地絡事故の故障区間検出の原理を
説明するための概念図である。
FIG. 5 is a conceptual diagram for explaining the principle of detecting a fault section of a ground fault according to the present invention.

【図6】本発明による地絡事故の故障区間検出の原理を
説明するための概念図である。
FIG. 6 is a conceptual diagram for explaining the principle of detecting a fault section of a ground fault according to the present invention.

【図7】本発明による短絡事故の故障区間検出の原理を
説明するための概念図である。
FIG. 7 is a conceptual diagram for explaining the principle of detecting a fault section in a short circuit accident according to the present invention.

【符号の説明】[Explanation of symbols]

11〜13…地絡センサ 14、15…短絡センサ 1
6…電圧センサ 29…マルチプレクサ 32…演算処
理部 33…時計 35…光リンク 38…伝送線 4
0…親局 100、120…故障電流計測部 101…
遅延回路 103…演算器 105…ピーク値検出器
106…レベル比較器 107…電流零クロス検知器
108…高値選択器 109…デ−タバッファ 111
…電圧零クロス検知器 113…分周器 115…リセ
ット遅延回路 117、119…第1、第2カウンタ
11 to 13: ground fault sensor 14, 15 ... short circuit sensor 1
6 Voltage sensor 29 Multiplexer 32 Operation processing unit 33 Clock 35 Optical link 38 Transmission line 4
0: master station 100, 120: fault current measuring unit 101:
Delay circuit 103: arithmetic unit 105: peak value detector
106: Level comparator 107: Zero current cross detector
108: High value selector 109: Data buffer 111
... voltage zero cross detector 113 ... frequency divider 115 ... reset delay circuit 117, 119 ... first and second counters

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 31/08 - 31/11 G01R 19/00 - 19/32 H02H 7/26 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G01R 31/08-31/11 G01R 19/00-19/32 H02H 7/26

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 送電線に沿って適宜間隔ごとに設定され
た計測地点に配置された故障電流検出手段と、前記故障
電流検出手段の各出力信号をそれぞれN/2サイクル
(Nは正整数)遅延させる遅延手段と、前記故障電流検
出手段の各出力信号とN/2サイクル遅延された対応の
各信号とを、前記送電線の正常時の各出力信号が相殺さ
れるように加減算して故障電流信号を発生する手段と、
1つの検出地点における前記故障電流信号の位相および
ピーク値と、これに隣り合う検出地点における故障電流
信号の位相およびピーク値との差をそれぞれ演算する手
段と、前記位相およびピーク値の差の少なくとも一方が
予定の基準値よりも大きいとき、前記の隣り合う2つの
検出地点間を故障区間と判定する手段と、前記故障電流
信号の位相を計測するための位相計測手段とを具備し、 前記位相計測手段は、計測対象電流信号の零クロス点を
検出する電流零クロス検知器と、電圧信号の零クロス点
を検出する電圧零クロス検知器と、電圧零クロス検知器
の出力パルスを分周する分周器と、前記分周器の各出力
によってリセットされる第1カウンタと、前記分周器の
各出力によって、前記第1カウンタのリセットタイミン
グの中間でリセットされる第2カウンタと、前記第1お
よび第2カウンタにクロックパルスを供給するクロック
発振器と、前記電流零クロス検知器の零クロス点検出信
号に応答して読出される前記第1および第2カウンタの
カウント値の中の大きい方を、計測対象電流信号の位相
信号として選択する高値選択器とを具備したことを特徴
とする送電線故障区間検出装置。
(1) It is set at appropriate intervals along a transmission line.
Fault current detecting means disposed at the measurement point
N / 2 cycles of each output signal of the current detection means
(N is a positive integer) delay means for delaying, and the fault current detection
Output signal of the output means and the corresponding signal delayed by N / 2 cycles.
Each signal is canceled by each output signal in the normal state of the transmission line.
Means for adding and subtracting so as to generate a fault current signal,
The phase of the fault current signal at one detection point and
Peak value and fault current at the adjacent detection point
A method for calculating the difference between the signal phase and the peak value, respectively.
Step and at least one of the difference between the phase and the peak value is
When it is larger than the predetermined reference value, the two adjacent
Means for determining a fault section between the detection points, and the fault current
Phase measuring means for measuring the phase of the signal, wherein the phase measuring means comprises a current zero cross detector for detecting a zero cross point of the current signal to be measured, and a voltage for detecting a zero cross point of the voltage signal. A zero-crossing detector, a frequency divider that divides an output pulse of the voltage zero-crossing detector, a first counter that is reset by each output of the frequency divider, and the first counter that is reset by each output of the frequency divider. A second counter reset in the middle of the reset timing of one counter, a clock oscillator for supplying a clock pulse to the first and second counters, and reading in response to a zero cross point detection signal of the current zero cross detector characterized in that the larger among the first and the count value of the second counter, and and a high value selector for selecting as the phase signal to be measured current signal is
Transmission line fault section detection device.
【請求項2】 前記故障電流信号の振幅レベルが予定の
基準値を超えた時に出力を発生するレベル比較手段をさ
らに有し、当該レベル比較手段が出力を発生するまで
は、前記零クロス点検出信号に応答する前記第1および
第2カウンタのカウント値の読出しが禁止される請求項
記載の装置。
2. The apparatus according to claim 1, further comprising a level comparing unit for generating an output when an amplitude level of the fault current signal exceeds a predetermined reference value, and detecting the zero crossing point until the level comparing unit generates an output. The reading of count values of the first and second counters in response to a signal is inhibited.
An apparatus according to claim 1 .
【請求項3】故障電流は短絡電流および地絡電流の少な
くとも一方である請求項または記載の装置。
3. A fault current apparatus according to claim 1 or 2, wherein at least one of the short-circuit current and fault current.
【請求項4】地絡電流検出手段は、4回線併架鉄塔に懸
吊された上回線の各相電力線の位置を結ぶ第1の6角形
の上下、および下回線の各相電力線の位置を結ぶ第2の
6角形の下側に設置され、互いにY型結線された3個の
地絡センサよりなり、各地絡センサは細長い鉄心と、そ
の上に巻回されたコイルとよりなり、前記鉄心は、その
長手方向が各相電力線と直角をなし、かつ水平になるよ
うに配置された請求項記載の装置。
4. The ground fault current detecting means detects the positions of the upper and lower first hexagons connecting the positions of the respective phase power lines of the upper line and the positions of the respective phase power lines of the lower line, which are suspended from the tower having four lines. The three earth fault sensors installed in the lower side of the second hexagon to be connected and connected in a Y-shape to each other, each of the short-to-earth sensors comprises an elongated core and a coil wound thereon. 4. The apparatus according to claim 3 , wherein the longitudinal direction is arranged so that a longitudinal direction thereof is perpendicular to each phase power line and is horizontal.
JP16743893A 1993-06-14 1993-06-14 Transmission line fault section detection device Expired - Lifetime JP3321252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16743893A JP3321252B2 (en) 1993-06-14 1993-06-14 Transmission line fault section detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16743893A JP3321252B2 (en) 1993-06-14 1993-06-14 Transmission line fault section detection device

Publications (2)

Publication Number Publication Date
JPH075221A JPH075221A (en) 1995-01-10
JP3321252B2 true JP3321252B2 (en) 2002-09-03

Family

ID=15849715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16743893A Expired - Lifetime JP3321252B2 (en) 1993-06-14 1993-06-14 Transmission line fault section detection device

Country Status (1)

Country Link
JP (1) JP3321252B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048589B (en) * 2012-12-18 2015-06-17 福建省电力有限公司 Device time mark fault-tolerance processing method in grid fault diagnosis
CN105425106B (en) * 2015-11-11 2018-02-09 国网山西省电力公司晋城供电公司 A kind of Cable fault examination pilot system and its method of work
CN110208645A (en) * 2019-05-16 2019-09-06 国网河南省电力公司商丘供电公司 A kind of monitoring and protecting system of transmission line of electricity
CN110531216B (en) * 2019-07-15 2024-02-23 重庆大学 Overhead line and cable hybrid transmission line fault section distinguishing method
CN112527544B (en) * 2020-11-23 2022-04-29 聚好看科技股份有限公司 Server, and method and device for triggering fusing

Also Published As

Publication number Publication date
JPH075221A (en) 1995-01-10

Similar Documents

Publication Publication Date Title
US7535233B2 (en) Traveling wave based relay protection
US5206595A (en) Advanced cable fault location
JP2012189392A (en) Waveform recorder and fault point locating system
JP3680152B2 (en) Power line monitoring device
JP3321252B2 (en) Transmission line fault section detection device
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
JPH09152462A (en) Partial discharge detection method for transformer
JPH0454470A (en) Fault point locating device for power transmission line
JPH0738867Y2 (en) Transmission line failure direction detector
JP3137684B2 (en) Ground fault prediction method for high voltage cables
JP3226554B2 (en) Locating the accident section of the transmission line
JPH0870531A (en) Ground fault direction judging method and ground fault direction judging equipment in high voltage power distribution system
JPH0283467A (en) Apparatus for detecting distribution line accident section
JPH01209387A (en) Fault current detection sensor and detection of fault section in transmission line using the same
JP2722789B2 (en) Overhead transmission line fault location system
JPH0274117A (en) System for judging fault phase of aerial transmission line
JPS62282278A (en) Method for detecting trouble section of cable line
JPS628068A (en) System for locating troubled point direction
JP3528544B2 (en) Method of locating insulation breakdown of power cable line
CA2366467A1 (en) Apparatus and method for fault detection on conductors
JPH01296173A (en) Method for locating accident section of overhead transmission line
JPH04223280A (en) Detecting fault section in power cable
JPH0210170A (en) Locating device for fault point on electricity transmission line
JPH0541420Y2 (en)
JPS628070A (en) Failure orientation system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term