JPH0312526A - Noncontact temperature sensor - Google Patents

Noncontact temperature sensor

Info

Publication number
JPH0312526A
JPH0312526A JP1147396A JP14739689A JPH0312526A JP H0312526 A JPH0312526 A JP H0312526A JP 1147396 A JP1147396 A JP 1147396A JP 14739689 A JP14739689 A JP 14739689A JP H0312526 A JPH0312526 A JP H0312526A
Authority
JP
Japan
Prior art keywords
temperature
optical shutter
pyroelectric body
output
pyroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1147396A
Other languages
Japanese (ja)
Inventor
Tadashi Harada
原田 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP1147396A priority Critical patent/JPH0312526A/en
Publication of JPH0312526A publication Critical patent/JPH0312526A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a measurement system and to miniaturize a sensor by providing an optical shutter constituted of ferroelectric ceramic and an infrared- ray transmissive thin film in front of a pyroelectric body in a package. CONSTITUTION:The pyroelectric body 13 is arranged in the package constituted of a base 11 and a cover 17. The optical shutter 33 is positioned between the pyroelectric body 13 and a silicon window 18 and supported on the base 11 by a supporting member 34 facing the entire surface of the silicon window 18. The optical shutter is constituted by forming silicon films 36 and 37 as infrared-ray transmissive thin films on both surfaces of the ferroelectric ceramic 35. Infrared light which is intermitted by the optical shutter 35 is made incident on the pyroelectric body 134. The output of the pyroelectric body 13 depends upon the temperature difference between a body to be measured and the optical shutter 33. The optical shutter 33 is further fitted with a temperature detecting element 38 which measures the temperature of the shutter and its output and the output of the pyroelectric body 13 are supplied to a compensating circuit element 39 to perform temperature compensation. Consequently, the need for an external optical shutter is eliminated and the capacity of the temperature measurement system is reduced.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は焦電体を検出部とする非接触温度センサに関
し、特に静止物体の温度測定を行う場合でも外部光チョ
ッパを必要とせず単体で動作可能なようにしようとする
ものである。
[Detailed Description of the Invention] "Industrial Application Field" The present invention relates to a non-contact temperature sensor that uses a pyroelectric material as a detection part, and in particular can be used as a stand-alone temperature sensor without the need for an external light chopper even when measuring the temperature of a stationary object. I'm trying to make it work.

「従来の技術」 従来の焦電型非接触温度センサを第3図に示す。"Conventional technology" A conventional pyroelectric non-contact temperature sensor is shown in FIG.

ベース11上に導電性支持体12が取付けられ、導電性
支持体12上に焦電体13が固定され、焦電体13の上
面には表面電極14が形成されている。ベース11上に
は絶縁性支持体15を介して電界効果トランジスタ16
が取付けられ、電界効果トランジスタ16に表面1ti
14が接続され、焦電体13の出力はインピーダンス変
換されて出力される。ベース11の焦電体13側にはカ
バー17が被され、カバー17の前面、つまり表面電極
14と対向する面には赤外線を透過させるシリコン窓1
8が設けられている。ベース11には端子19が導出さ
れている。
A conductive support 12 is mounted on the base 11, a pyroelectric body 13 is fixed on the conductive support 12, and a surface electrode 14 is formed on the upper surface of the pyroelectric body 13. A field effect transistor 16 is disposed on the base 11 via an insulating support 15.
is attached to the field effect transistor 16, and the surface 1ti
14 is connected, and the output of the pyroelectric body 13 is impedance-converted and output. A cover 17 is placed on the pyroelectric body 13 side of the base 11, and a silicon window 1 that transmits infrared rays is provided on the front surface of the cover 17, that is, the surface facing the surface electrode 14.
8 is provided. A terminal 19 is led out from the base 11.

焦電体13の表面には自発分極に基く電荷が現われるが
、大気中では浮遊電荷を捕獲して電気的中性になってい
る。焦電体13の自発分極Psの大きさは温度によって
変化するため、被測定対象物体から放射される赤外線が
焦電体13の表面に照射され、吸収されると、焦電体1
3の温度はT度から(T+ΔT)度に変化し、自発分極
の大きさもPsからΔI’sだけ変化し、焦電体13の
表面に短時間だけ電荷が現われる。この電荷を負荷抵抗
を通して検出することにより、被測定対象物体が放射す
る熱放射エネルギ、即ち被測定対象物体の温度を測定す
ることができる。
Charges based on spontaneous polarization appear on the surface of the pyroelectric body 13, but in the atmosphere it captures floating charges and becomes electrically neutral. Since the magnitude of the spontaneous polarization Ps of the pyroelectric body 13 changes depending on the temperature, when the infrared rays emitted from the object to be measured are irradiated onto the surface of the pyroelectric body 13 and absorbed,
The temperature of 3 changes from T degrees to (T+ΔT) degrees, the magnitude of spontaneous polarization also changes from Ps to ΔI's, and charges appear on the surface of the pyroelectric body 13 for a short time. By detecting this charge through a load resistor, it is possible to measure the thermal radiation energy emitted by the object to be measured, that is, the temperature of the object to be measured.

この後焦電体13の温度が安定すると再度浮遊電荷を捕
獲して表面電荷が観測されなくなる。従ってこの焦電型
被接触温度センサを用いて静止物体の温度を測定するた
めには第4図に示すように焦電型非接触温度センサ21
の前面側、つまり被測定対象物体22からの赤外線が入
射される側に光チョッパ23を配し、被接触温度センサ
21に入射される赤外線を一定周期で断続させ、常に焦
電体13に温度変化を与えるようにしている。光チョッ
パ23は切欠部のある金属円板24をモータ25で回転
させ、その金属円板24により比接触温度センサ21に
入射する赤外線を断続させる。
After this, when the temperature of the pyroelectric body 13 stabilizes, floating charges are captured again and no surface charges are observed. Therefore, in order to measure the temperature of a stationary object using this pyroelectric non-contact temperature sensor, as shown in FIG.
An optical chopper 23 is disposed on the front side of the pyroelectric body 13, that is, on the side where the infrared rays from the object to be measured 22 are incident, and intermittents the infrared rays incident on the temperature sensor 21 to be touched at regular intervals, so that the temperature of the pyroelectric body 13 is always maintained. I'm trying to make a difference. The optical chopper 23 uses a motor 25 to rotate a metal disk 24 having a notch, and the metal disk 24 interrupts the infrared rays incident on the specific contact temperature sensor 21 .

この第4図の構成においては非接触温度センサ21の出
力は、光チジッパ23の温度あるいは光チョッパ23の
周囲温度と、被測定対象物体22の温度との温度差に依
存するため、光チッッパ23の温度あるいは光チョッパ
23の周囲温度を測定する、白金抵抗体などの温度検知
素子26を非接触温度センサ21とは独立に設け、非接
触温度センサ21の出力と温度検知素子26の出力とを
補償回路27へ供給して被測定対象物体22の温度を求
めていた。なお補償回路27では非接触温度センサ21
の出力及び温度検知素子26の出力はそれぞれ増幅器2
8及び29で増幅された後、加算回路31へ供給され、
その加算結果が出力回路32を通じて出力される。
In the configuration shown in FIG. 4, the output of the non-contact temperature sensor 21 depends on the temperature difference between the temperature of the optical chipper 23 or the ambient temperature of the optical chopper 23 and the temperature of the object to be measured 22. A temperature sensing element 26 such as a platinum resistor is provided independently of the non-contact temperature sensor 21 to measure the temperature of the optical chopper 23 or the ambient temperature of the optical chopper 23, and the output of the non-contact temperature sensor 21 and the output of the temperature sensing element 26 are The temperature of the object to be measured 22 was determined by supplying the temperature to the compensation circuit 27. Note that in the compensation circuit 27, the non-contact temperature sensor 21
and the output of the temperature sensing element 26 are respectively output from the amplifier 2.
After being amplified by 8 and 29, it is supplied to the adder circuit 31,
The addition result is outputted through the output circuit 32.

「発明が解決しようとする課題」 以上述べたように従来の焦電型非接触温度センサによれ
ば、静止物体の温度を測定する場合、外部に赤外線を断
続するための光チョッパを必要とし、更に、光チョッパ
の温度あるいは光チョッパの周囲温度を検知する温度検
知素子と、その温度検知素子の出力により非接触温度セ
ンサの出力を補償する補償回路とを必要とし、システム
が複雑で大きくなる欠点があった。
``Problems to be Solved by the Invention'' As mentioned above, according to the conventional pyroelectric non-contact temperature sensor, when measuring the temperature of a stationary object, an optical chopper is required to intermittent infrared rays to the outside. Furthermore, it requires a temperature detection element that detects the temperature of the optical chopper or the ambient temperature of the optical chopper, and a compensation circuit that compensates the output of the non-contact temperature sensor using the output of the temperature detection element, which has the disadvantage that the system becomes complicated and large. was there.

この発明の目的は外部光チョンパを不要とし、静止物体
の温度測定のためのシステムの容積を著しく小形化でき
る焦電型非接触温度センサを提供することにある。
An object of the present invention is to provide a pyroelectric non-contact temperature sensor that does not require an external optical sensor and can significantly reduce the volume of a system for measuring the temperature of a stationary object.

「課題を解決するための手段」 この発明によればパッケージ内において焦電体の前部に
、強誘電性セラミックスと赤外線透過溝Ti、膜とによ
り構成された光シャッタが設けられる。
"Means for Solving the Problems" According to the present invention, an optical shutter made of ferroelectric ceramics, an infrared transmitting groove Ti, and a film is provided in front of a pyroelectric body in a package.

この構成によれば静止物体の温度を測定する場合は光シ
ャッタを制御して焦電体へ入射される赤外線が断続され
、外部光チぢツバを必要とせず、外部光チッッパの温度
あるいは外部光チョッパの周囲温度を測定するための温
度検知素子も必要としない。
According to this configuration, when measuring the temperature of a stationary object, the infrared rays incident on the pyroelectric material are interrupted by controlling the optical shutter, eliminating the need for an external light chipper and measuring the temperature of the external light chipper or external light. There is also no need for a temperature sensing element to measure the ambient temperature of the chopper.

「実施例」 第1図にこの発明の実施例を示し、第3図と対応する部
分には同一符号を付けである。ベース11とカバー17
とによりパッケージが構成され、そのパッケージ内に焦
電体13が配されている。この発明においてはパッケー
ジ内において焦電体13の前部に光シャッタ33が配さ
れる。つまり光シャッタ33は焦電体13とシリコン窓
18との間に位置し、シリコン窓18の全面と対向して
、支持部材34によりベース11に支持されている。
"Embodiment" FIG. 1 shows an embodiment of the present invention, and parts corresponding to those in FIG. 3 are given the same reference numerals. Base 11 and cover 17
A package is constituted by the above, and the pyroelectric material 13 is disposed within the package. In this invention, an optical shutter 33 is arranged in front of the pyroelectric body 13 within the package. That is, the optical shutter 33 is located between the pyroelectric body 13 and the silicon window 18, and is supported by the base 11 by the support member 34, facing the entire surface of the silicon window 18.

光シャッタ33は第2図に示すように、PLZTに代表
される赤外域まで透光性を有する強誘電性セラミックス
35の両面に赤外線透過導電膜としてシリコン膜36.
37が形成されて構成される。
As shown in FIG. 2, the optical shutter 33 includes a silicon film 36 as an infrared-transmissive conductive film on both sides of a ferroelectric ceramic 35 typified by PLZT that is transparent up to the infrared region.
37 is formed and configured.

強誘電性セラミ7クス35は室温で反強誘電相であり、
原文方晶の結晶構造をもつため光学異方性は非常に小さ
く、光透過率は非常に高い。シリコン膜36.37を介
して強誘電性セラミックス35に電圧を印加すると強誘
電性セラミックス35中には強誘電相が誘起され、光学
異方性の大きい結晶構造となり、入射光は散乱されるよ
うになる。
Ferroelectric ceramic 7x35 is in an antiferroelectric phase at room temperature,
Because it has a square crystal structure, its optical anisotropy is extremely small and its light transmittance is extremely high. When a voltage is applied to the ferroelectric ceramic 35 through the silicon films 36 and 37, a ferroelectric phase is induced in the ferroelectric ceramic 35, forming a crystal structure with large optical anisotropy, so that incident light is scattered. become.

強誘電性セラミックス35に対する印加電圧のオン、オ
フを繰返すことにより強誘電性セラミックス35は光シ
ャッタとして機能する。
By repeatedly turning on and off the applied voltage to the ferroelectric ceramic 35, the ferroelectric ceramic 35 functions as a light shutter.

再び第1図に戻って説明する。光シャッタ33により断
続された赤外光が焦電体13に入射される。この焦電体
13の出力は被測定対象物体と光シャッタ33との温度
差に依存する。そこで光シャッタ33に光シャッタ33
の温度を測定する温度検知素子38が取付けられ、その
温度検知素子38の出力と焦電体13の出力とが補償回
路素子39へ供給されて温度補償が行われる。補償回路
素子39は例えば第4図中の補償回路27を半導体IC
化したものであり、必要に応じて第3図中の電界効果ト
ランジスタ16も補償回路素子39に含める。補償回路
素子39は絶縁性支持体15によりベース11上に取付
けられる。温度検知素子338としては例えば熱電対が
用いられる。
The explanation will be given by returning to FIG. 1 again. Infrared light interrupted by the optical shutter 33 is incident on the pyroelectric body 13 . The output of the pyroelectric body 13 depends on the temperature difference between the object to be measured and the optical shutter 33. Therefore, the optical shutter 33
A temperature sensing element 38 is attached to measure the temperature of the temperature sensing element 38, and the output of the temperature sensing element 38 and the output of the pyroelectric body 13 are supplied to a compensation circuit element 39 to perform temperature compensation. For example, the compensation circuit element 39 replaces the compensation circuit 27 in FIG. 4 with a semiconductor IC.
The field effect transistor 16 in FIG. 3 is also included in the compensation circuit element 39 if necessary. Compensation circuit element 39 is mounted on base 11 by means of insulating support 15 . For example, a thermocouple is used as the temperature detection element 338.

「発明の効果」 以上述べたようにこの発明によれば強誘電性セラミック
スを用いた光シャッタをパッケージ内に内蔵させること
により、静止物体の測温を行う場合にも、外部光チョッ
パ、その外部光ナヨッパの温度検知素子、外部の補償回
路を不要とし、測定システムを著しく単純化、小形化す
ることができる。
"Effects of the Invention" As described above, according to the present invention, by incorporating an optical shutter using ferroelectric ceramics into the package, even when measuring the temperature of a stationary object, the external optical chopper and its external This eliminates the need for the temperature detection element of the optical sensor and an external compensation circuit, making it possible to significantly simplify and downsize the measurement system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、二の発明の非接触温度センサの一例を示す断
面図、第2図は第1図中の光シャッタ33の断面図、第
3図は従来の非接触温度センサを示す断面図、第4図は
従来の非接触温度センサを用いて静止物体の温度を測定
するシステムを示すブロック図である。
Fig. 1 is a sectional view showing an example of the non-contact temperature sensor of the second invention, Fig. 2 is a sectional view of the optical shutter 33 in Fig. 1, and Fig. 3 is a sectional view showing a conventional non-contact temperature sensor. , FIG. 4 is a block diagram showing a system for measuring the temperature of a stationary object using a conventional non-contact temperature sensor.

Claims (1)

【特許請求の範囲】[Claims] (1)焦電体を検出部とする非接触温度センサにおいて
、 パッケージ内において上記焦電体の前部に、強誘電性セ
ラミックスと赤外線透過導電膜とにより構成された光シ
ャッタが設けられていることを特徴とする非接触温度セ
ンサ。
(1) In a non-contact temperature sensor that uses a pyroelectric material as a detection part, an optical shutter made of ferroelectric ceramics and an infrared-transmissive conductive film is provided in front of the pyroelectric material in the package. A non-contact temperature sensor characterized by:
JP1147396A 1989-06-09 1989-06-09 Noncontact temperature sensor Pending JPH0312526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1147396A JPH0312526A (en) 1989-06-09 1989-06-09 Noncontact temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1147396A JPH0312526A (en) 1989-06-09 1989-06-09 Noncontact temperature sensor

Publications (1)

Publication Number Publication Date
JPH0312526A true JPH0312526A (en) 1991-01-21

Family

ID=15429331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1147396A Pending JPH0312526A (en) 1989-06-09 1989-06-09 Noncontact temperature sensor

Country Status (1)

Country Link
JP (1) JPH0312526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352870A (en) * 2004-06-11 2005-12-22 Hochiki Corp Heat sensor
CN103792011A (en) * 2014-01-27 2014-05-14 无锡艾立德智能科技有限公司 Method and device for compensating for temperature drift through thermal infrared imager in a self-adaptation mode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352870A (en) * 2004-06-11 2005-12-22 Hochiki Corp Heat sensor
JP4603299B2 (en) * 2004-06-11 2010-12-22 ホーチキ株式会社 Heat sensor
CN103792011A (en) * 2014-01-27 2014-05-14 无锡艾立德智能科技有限公司 Method and device for compensating for temperature drift through thermal infrared imager in a self-adaptation mode

Similar Documents

Publication Publication Date Title
JP3409848B2 (en) Thermal infrared detector
KR100205384B1 (en) Infrared sensor and method of temperature compensation
Kruse Principles of uncooled infrared focal plane arrays
EP1333504A3 (en) Monolithically-integrated infrared sensor
NL7907759A (en) PYRO-ELECTRIC DETECTOR.
JPH0312526A (en) Noncontact temperature sensor
Choi et al. Epitaxially grown pyroelectric infrared sensor array for human body detection
JPS637611B2 (en)
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
JPH11337415A (en) Radiation temperature detecting element
KR20170135153A (en) Non-contact infrared temperature sensor module
Watton et al. Uncooled IR imaging: hybrid and integrated bolometer arrays
JP2003294526A (en) Laser power detection device
JPH0783756A (en) Oscillatory type infrared sensor, oscillatory type infrared imager, and infrared-ray detecting method
GB2105460A (en) Radiation detectors
KR100395618B1 (en) Thermopile sensor having a temperature revision function
RU2811537C1 (en) Quartz thermal radiation receiver
JPH0634448A (en) Radiation thermometer
Kuwano et al. The Pyroelectric Sensor
KR200282421Y1 (en) temperature revision equipment of thermopile sensor
KR100395617B1 (en) temperature revision equipment of thermopile sensor
JPH07151609A (en) Infrared sensor
JPH11337414A (en) Radiation temperature detecting element
JPS61187625A (en) Temperature sensor
JPH0750681Y2 (en) Temperature-corrected infrared detector