JPH03124045A - Wiring of semiconductor integrated circuit - Google Patents

Wiring of semiconductor integrated circuit

Info

Publication number
JPH03124045A
JPH03124045A JP1260109A JP26010989A JPH03124045A JP H03124045 A JPH03124045 A JP H03124045A JP 1260109 A JP1260109 A JP 1260109A JP 26010989 A JP26010989 A JP 26010989A JP H03124045 A JPH03124045 A JP H03124045A
Authority
JP
Japan
Prior art keywords
wiring
circuit
regions
area
interconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1260109A
Other languages
Japanese (ja)
Inventor
Masahiko Washimi
鷲見 昌彦
Toshiaki Ueda
上田 俊晃
Mototaka Kuribayashi
栗林 元隆
Takaaki Aoki
孝哲 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1260109A priority Critical patent/JPH03124045A/en
Publication of JPH03124045A publication Critical patent/JPH03124045A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten a wiring route by a method wherein a chip region is divided into a plurality of regions, the wiring route between the regions is decided according to information on a position of an obstacle inside the regions and the wiring route inside the regions is decided by using one part of its interconnection. CONSTITUTION:A chip region 21 is divided into a plurality of circuit regions 22 composed of circuit cells or circuit blocks. Then, points of the same sign stretching over the regions 22 and points of the same sign confined inside the regions 22 are gusted, and an interconnection stretching between the regions is selected. Then, regarding the selected interconnection, a wiring route stretching between the regions is decided by using a line-segment search method by taking into consideration points of another sign which constitute an obstacle in the other regions 22. The points of the same sign inside the regions 22 are wired; one part of an interconnection between the regions which has been already decided at this time is utilized. Thereby, it is possible to prevent an inessential detour interconnection and to shorten the interconnection between the regions.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、スタンダードセル方式の半導体集積回路装置
の配線方法に係り、特に、コンピュータを用いた自動配
線処理による配線方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a wiring method for a standard cell type semiconductor integrated circuit device, and particularly relates to a wiring method using automatic wiring processing using a computer. .

(従来の技術) スタダードセル方式の半導体集積回路装置は、論理機能
や記憶機能を有する矩形の回路セル及び回路ブロックを
チップ内に配置して、各回路セル及び回路ブロックの入
出力端子間を配線することにより、所望の回路動作を得
るものである。回路セルとしては、NANDゲートセル
、NORゲートセル等比較的小規模な回路を取り扱い回
路ブロックとしては、ROM、PLA、ALU、CPU
等回路セルよりは規模の大きな回路を取り扱う。
(Prior Art) A standard cell type semiconductor integrated circuit device arranges rectangular circuit cells and circuit blocks having logic functions and memory functions in a chip, and wires the input and output terminals of each circuit cell and circuit block. By doing so, desired circuit operation can be obtained. As circuit cells, we handle relatively small-scale circuits such as NAND gate cells and NOR gate cells.As circuit blocks, we handle ROM, PLA, ALU, and CPU.
It handles circuits that are larger in scale than equal-circuit cells.

この様に回路セル及び回路ブロックの組合せにより、複
雑かつ大規模な回路システムから成る半導体集積回路装
置を実現できる。
By combining circuit cells and circuit blocks in this way, a semiconductor integrated circuit device consisting of a complex and large-scale circuit system can be realized.

第6図に一般的なスタンダードセル方式による半導体集
積回路チップの概略構成を示す。チップは、素子領域で
ある複数の回路セル行41.各回路セル行間にある配線
領域42.および周辺に設けられた入出力回路領域43
に分けられている。
FIG. 6 shows a schematic configuration of a semiconductor integrated circuit chip using a general standard cell method. The chip has a plurality of circuit cell rows 41. which are element regions. Wiring area 42 between each circuit cell row. and an input/output circuit area 43 provided in the periphery.
It is divided into

配線には通常2〜3層の金属配線が用いられ、水号■l
方向と垂直方向にそれぞれ別の層が割当てられる。
Usually 2 to 3 layers of metal wiring are used for wiring, and water number ■l
Separate layers are assigned to the direction and vertical direction.

この様な半導体集積回路装置において計算機を用いた自
動配線処理により配線レイアウトを決定する場合は、集
積回路の面積を最小にし、また各配線長を最小にするこ
とが必要である。この為の自動配線手法としては、迷路
法や線分探索法によるものが知られている。これらの方
法によれば、チップの全領域を対象として配線処理を進
められるが、未配線が生じたり多大の計算処理時間を必
要とする問題点があった。この為通常チップを複数の回
路セル又は回路ブロックから成る回路領域に分割し、ま
ず、この回路領域間での経路を決定し、次にこの複数の
回路領域内の各々で詳細な配線経路を決定しチップ全面
の配線経路を求めるといった方法が提案されている。し
かし、この方法だけでは迂回配線、スルーホールが多数
生じ集積度を効率的に上げることができないという問題
点があった。
When determining the wiring layout in such a semiconductor integrated circuit device by automatic wiring processing using a computer, it is necessary to minimize the area of the integrated circuit and the length of each wiring. Known automatic wiring methods for this purpose include the maze method and the line segment search method. According to these methods, wiring processing can proceed over the entire area of the chip, but there are problems in that unwired areas occur and a large amount of calculation processing time is required. For this purpose, a chip is usually divided into circuit areas consisting of multiple circuit cells or circuit blocks, first, routes between these circuit areas are determined, and then detailed wiring routes are determined for each of these multiple circuit areas. A method has been proposed in which the wiring route is determined over the entire surface of the chip. However, this method alone has the problem that a large number of detour wiring and through holes are generated, and the degree of integration cannot be efficiently increased.

この問題点を第5図を用いてより具体的に説明する。This problem will be explained in more detail using FIG. 5.

チップが6つの回路領域(領域1から領域6)に分割さ
れており、同一記号の付加された点は同一信号につなが
る端子とする。また、゛説明の簡単化の為にこの回路領
域内には、縦横方向2種の配線グリッドしか存在しない
ものとする。この状態において、線分探索法を用いて例
えばA1からA2に配線する場合を考える。A2につい
ては、どの方向に存在するという情報しかなく、領域2
゜領域3に存在する障害物の位置情報もないためA1を
始点とした場合、領域1と領域2の境界では、任意の境
界点、例えばX印の点に定まることになる。ここで始め
て領域2の障害物となるB点の情報を入手し、このB点
との衝突を防ぐため迂回し、領域2と領域3ではX印の
境界点に到達することになる。領域3の情報を入手し、
A2に到達する。
The chip is divided into six circuit areas (area 1 to area 6), and points with the same symbol are terminals connected to the same signal. Furthermore, for the sake of simplicity, it is assumed that only two types of wiring grids exist in the vertical and horizontal directions in this circuit area. In this state, consider the case of wiring from A1 to A2 using the line segment search method, for example. Regarding A2, there is only information about which direction it exists, and area 2
゜Since there is no positional information of obstacles existing in area 3, if A1 is taken as the starting point, an arbitrary boundary point, for example, the point marked with an X, will be determined at the boundary between area 1 and area 2. For the first time, information on point B, which is an obstacle in area 2, is obtained, and in order to prevent a collision with point B, the vehicle takes a detour and reaches the boundary point marked with an X between areas 2 and 3. Obtain information on area 3,
Reach A2.

A3についても同様である。また同じ領域1内のA1と
A4についても同様に線分探索法を用いて配線経路を決
定する。
The same applies to A3. Also, wiring routes for A1 and A4 in the same area 1 are similarly determined using the line segment search method.

この様な配線方法においては、回路領域上でのクローバ
ルな経路決定の際、他の領域の情報のない状態でX印で
示す境界点を決め、その後領域内の詳細な配線経路を求
めている。したがって図に示す様に各領域間の配線で迂
回配線を生じ、またその配線の一部を利用した領域内部
の配線も、冗長なものとなってしまい、集積度向」二を
目的とするを効な配線処理が困難となる問題点があった
In this wiring method, when determining a global route on a circuit area, boundary points indicated by X marks are determined without information on other areas, and then detailed wiring routes within the area are determined. . Therefore, as shown in the figure, detour wiring occurs in the wiring between each area, and the wiring inside the area that uses a part of the wiring becomes redundant. There was a problem that effective wiring processing was difficult.

(発明が解決しようとする課題) 以上の様に従来の配線方法では、各ブロック間のグロー
バルな配線経路の決定の際、他の領域内部の端子位置情
報を正確に参照していないため、各領域間の配線が迂回
し、その迂回配線の一部を利用した領域内部の配線も冗
長なものとなってしまう。従って配線領域の利用効率が
悪く、集積度向上を目的とする配線処理が困難であると
いう問題点があった。
(Problem to be Solved by the Invention) As described above, in the conventional wiring method, when determining the global wiring route between each block, terminal position information within other areas is not accurately referred to. Wiring between regions takes a detour, and wiring within the region that uses part of the detour wiring also becomes redundant. Therefore, there are problems in that the wiring area is inefficiently used and wiring processing aimed at improving the degree of integration is difficult.

本発明は、この様な課題を解決する為の半導体集積回路
装置の配線方法を提供することを目的とする。
An object of the present invention is to provide a wiring method for a semiconductor integrated circuit device to solve such problems.

〔発明の構成コ (課題を解決するための手段) 本発明は上記事情に鑑みて為されたもので、半導体基板
上の回路セルは回路ブロックの入出力端子間の配線経路
を自動配線処理により決定する際に、前記半導体基板を
前記回路セル又は前記回路ブロックを含む複数の回路領
域に分割し、前記回路領域に存在する障害物の位置情報
を検知し、この障害物の位置情報に応じて前記回路領域
間の配線経路を決定し、この決定された配線経路の一部
を用いて前記分割された各回路領域内の配線経路を決定
することを特徴とする半導体集積回路の配線方法を提供
する。
[Structure of the Invention (Means for Solving the Problems) The present invention has been made in view of the above-mentioned circumstances, and the present invention has been made in view of the above-mentioned circumstances, in which a circuit cell on a semiconductor substrate has a wiring path between input and output terminals of a circuit block by automatic wiring processing. When determining, the semiconductor substrate is divided into a plurality of circuit areas including the circuit cells or the circuit blocks, the positional information of an obstacle present in the circuit area is detected, and the positional information of the obstacle is detected. Provided is a wiring method for a semiconductor integrated circuit, characterized in that a wiring route between the circuit areas is determined, and a part of the determined wiring route is used to determine a wiring route within each of the divided circuit areas. do.

(作  用) この様に、本発明では、回路領域間のブローパルな配線
経路決定の際、他の領域の情報を参照して経路を求めて
いるため不必要な迂回配線を防ぐことができる。また、
その配線の一部を利用した領域内部の配線も短縮化をは
かることができる。
(Function) In this way, according to the present invention, when determining a broad-pulse wiring route between circuit areas, the route is determined by referring to information on other areas, so that unnecessary detour wiring can be prevented. Also,
It is also possible to shorten the wiring inside the area by using a part of the wiring.

従って、高集積化された高速の配線処理方法が可能とな
る。
Therefore, a highly integrated and high-speed wiring processing method becomes possible.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本配線方法の処理手順を示したものである。FIG. 1 shows the processing procedure of this wiring method.

スタート後、チップ領域を複数の回路ブロック又は回路
セルから成る回路領域に分割する(Sl)。次に、この
回路領域間にまたがる同一符号のポイントと回路領域内
部で閉じた同一符号のポイントを判別して回路領域間に
またがる信号線を選択する(S2)。次に、選択された
信号線について他の回路領域で障害となる他の符号のポ
イントを考慮し線分探索法により配線する(S3)。次
に、Slにより分割された領域間にまたがるすべての同
一符号のポイントに対してS2゜S3の処理を繰返す(
S4)。次に、Slで分割された回路領域の1つを選択
する(S5)。次に、回路領域内の同一符号のポイント
に対してSlで決められた領域内で迷路法により配線す
る(S6゜S7.S8)。この際、S3により配線され
た信号線の配線の一部として利用する。次に、S6゜S
7.S8の各処理ステップを領域内のすべてのネットに
対して縁り返す(S9)。次に、配線処理を81で分割
した各回路領域のすべてに対して繰り返す(S 10)
。以上によりチップ全体の配線を終了する。
After starting, the chip area is divided into circuit areas each consisting of a plurality of circuit blocks or circuit cells (Sl). Next, points with the same sign that extend between the circuit areas and points with the same sign that are closed within the circuit area are determined, and a signal line that extends between the circuit areas is selected (S2). Next, the selected signal line is routed using a line segment search method, taking into account points of other codes that may cause obstacles in other circuit areas (S3). Next, the processes of S2 and S3 are repeated for all points with the same sign that span the areas divided by Sl (
S4). Next, one of the circuit areas divided by Sl is selected (S5). Next, wiring is performed using the maze method within the area determined by Sl for points with the same sign in the circuit area (S6, S7, S8). At this time, it is used as part of the wiring of the signal line wired in S3. Next, S6゜S
7. Each processing step in S8 is repeated for all nets in the area (S9). Next, the wiring process is repeated for all of the circuit areas divided by 81 (S10).
. With the above steps, wiring for the entire chip is completed.

第2図は、本配線方法を用いて処理された配線図である
。チップ領域21が回路セル又は回路ブロックから成る
複数の回路領域22に分解されている。回路領域内22
の同じ符号の付加された点は、同一信号線につながる入
出力端子である。第1図Sl、S2.S3.S4各処理
ステップにより第2図の実線で示された配線経路が決定
する。
FIG. 2 is a wiring diagram processed using this wiring method. A chip area 21 is decomposed into a plurality of circuit areas 22 consisting of circuit cells or circuit blocks. Inside the circuit area 22
Dots with the same sign are input/output terminals connected to the same signal line. Figure 1 SL, S2. S3. S4: The wiring route indicated by the solid line in FIG. 2 is determined by each processing step.

ここで具体的に回路領域22□のA1から回路領域22
3のA2へ線分探索法を用いて配線する場合を考える。
Specifically, from A1 of the circuit area 22□ to the circuit area 22
Consider the case of wiring to A2 of No. 3 using the line segment search method.

第3図にその配線方法を示す。まず、各回路領域22を
更に格子状の配線単位に分割する。ここでは例えば5X
5−25個の配線単位に区分する。従ってA1は回路領
域22、の6番地。
Figure 3 shows the wiring method. First, each circuit area 22 is further divided into grid-like wiring units. For example, 5X
Divide into 5-25 wiring units. Therefore, A1 is address 6 in the circuit area 22.

A2は回路領域223の19番地、Bは回路領域222
の18番地に存在することになる(第3図(a))。次
に第3図(b)に示す様にA1より垂直線分30を引く
。この垂直線分30からさらに垂直に線分31,31.
、・・・・・・を引く。この線分2 31 .31  、・・・・・・は障害物B及び、回路
領域2 22 と22.22  と223の境界とは交わ1  
     2      2 るが、A2とは未だ交わらない。次に線分312に対し
て垂直に線分32.32□・・・・・32□2゜32 
を引き線分3213を引く時にA2と交わる3 ことがわかり実線で示す様な経路か発見されたことにな
る。
A2 is address 19 of the circuit area 223, B is the circuit area 222
(Figure 3(a)). Next, as shown in FIG. 3(b), a vertical line segment 30 is drawn from A1. Further perpendicularly from this vertical line segment 30 are line segments 31, 31 .
,······pull. This line segment 2 31 . 31 , . . . are obstacle B and the boundaries of circuit areas 2 22 and 22 . 22 and 223 intersect 1
2 2 , but it still does not intersect with A2. Next, perpendicular to the line segment 312 is a line segment 32.32□...32□2゜32
When we draw the line segment 3213, we find that it intersects with A2, which means that we have discovered a route as shown by the solid line.

次に35.S6の各処理ステップにより、注目すべき同
一符号のポイントが決定する。次に第1図S7.S8の
各処理ステップにより、回路領域22内の配線経路が決
定する。ここで具体的に回路領域22、にあるA1とA
4を経路探索法を用いて配線する場合を考える。第4図
にその配線方法を示す。配線単位は第3図(a)に示す
ものと同一である。まず、A1から接続可能な隣接する
上下左右3点を1番目の到達点ということで“1”と指
定する。次に3つの“11からみて未だ到達されていな
い隣接する3点に“2″を指定する以下同様に3“、“
4“を指定する“3″から“4“を周囲に書き込もうと
調べている時、A4を発見する。ここから出発点A1へ
は逆に番号をたどっていくことにより容易に戻ることが
できる。
Next 35. Points with the same sign to be noted are determined by each processing step in S6. Next, Figure 1 S7. The wiring route within the circuit area 22 is determined by each processing step in S8. Specifically, A1 and A in the circuit area 22
Consider the case where 4 is wired using the route search method. Figure 4 shows the wiring method. The wiring unit is the same as that shown in FIG. 3(a). First, the three adjacent points on the top, bottom, left and right sides that can be connected from A1 are designated as "1" as the first arrival point. Next, specify "2" to the three adjacent points that have not been reached yet from the point of view of the three "11". Similarly, 3", "
When searching to write "4" around "3" which specifies "4", A4 is discovered. From here, one can easily return to the starting point A1 by tracing the numbers in reverse.

この時、回路領域゛22、内で各回路領域22間の配線
の際、決定された実線に示す経路の一部を利用し、点線
で示すような経路が決定されたことになる。もし、回路
領域221内に更に同一符号の点が存在すればS9によ
りS6.S7.S8の各処理ステップを回路領域22□
内の同一符号の端子位置に対して繰り返し回路領域22
、内部の配線を完了する。今の場合は、AIとA4の配
線経路を決定する1回の処理で終了する。次に810の
処理ステップにより領域内の配線処理を81で分割した
各領域のすべてに対して繰り返しチップ全体の配線を行
ない配線処理を終了する。
At this time, when wiring between the circuit areas 22 within the circuit area 22, a part of the determined route shown by the solid line is used to determine the route shown by the dotted line. If there are more points with the same sign in the circuit area 221, the process proceeds to step S6. S7. Each processing step of S8 is stored in the circuit area 22□
Iterative circuit area 22 for terminal positions with the same sign within
, complete the internal wiring. In this case, the process ends with one process of determining the wiring routes for AI and A4. Next, in the process step 810, the wiring process within the area is repeated for all of the areas divided by 81, and the wiring process for the entire chip is completed.

以上の様な配線方法によれば、各ブロック間の配線経路
決定の際、他の領域の情報を参照して経路を求めている
ため不必要な迂回配線を防ぐことができる。また、その
配線の一部を利用した領域内部の配線も短縮化をはかる
ことができる。従って高集積化された高速の配線処理方
法が可能となる。
According to the wiring method described above, when determining the wiring route between each block, the route is determined by referring to information in other areas, so that unnecessary detour wiring can be prevented. Moreover, the wiring inside the area using a part of the wiring can also be shortened. Therefore, a highly integrated and high-speed wiring processing method becomes possible.

[発明の効果] 以上述べた様に本発明によれば、グローバルな配線経路
の決定と、詳細な配線経路の決定が密に連結し、不必要
な迂回配線、スルーホールの多発を防ぎ、高速に自動配
線処理を行なうことが可能となりまた、スタンダードセ
ル方式の半導体集積回路チップの集積度向上を図ること
ができる。
[Effects of the Invention] As described above, according to the present invention, global wiring route determination and detailed wiring route determination are closely connected, preventing unnecessary detour wiring and frequent occurrence of through holes, and achieving high-speed It becomes possible to perform automatic wiring processing, and it is also possible to improve the degree of integration of standard cell type semiconductor integrated circuit chips.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の処理手順を示すフローチャ
ート、第2図は本処理手順を用いて配線された処理結果
、第3図は本発明の線分探索法を用いた配線方法を説明
するための図、第4図は、本発明の迷路探索法を用いた
配線方法を説明するための図、第5図は、従来例の配線
処理を示す図、第6図は、スタンダードセル方式の半導
体集積回路の構成図である。 図において、 21・・・集積回路チップの全領域、22・・・回路ブ
ロック、30・・・垂直線分、31・・・線分、32・
・・水平線分、41・・・回路セルの行、42・・・配
線専用の領域、43・・・入出力回路領域。
Fig. 1 is a flowchart showing the processing procedure of the embodiment of the present invention, Fig. 2 shows the processing results of wiring using this processing procedure, and Fig. 3 shows the wiring method using the line segment search method of the invention. Figure 4 is a diagram for explaining the wiring method using the maze search method of the present invention, Figure 5 is a diagram showing the conventional wiring process, and Figure 6 is a diagram for explaining the wiring method using the maze search method of the present invention. FIG. 2 is a configuration diagram of a semiconductor integrated circuit according to the method. In the figure, 21... Entire area of integrated circuit chip, 22... Circuit block, 30... Vertical line segment, 31... Line segment, 32...
. . . horizontal line segment, 41 . . . row of circuit cells, 42 . . . area dedicated to wiring, 43 . . . input/output circuit area.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上の回路セル又は回路ブロックの入出
力端子間の配線経路を自動配線処理により決定する際に
、前記半導体基板を前記回路セル又は前記回路ブロック
を含む複数の回路領域に分割し、前記回路領域に存在す
る障害物の位置情報を検知し、この障害物の位置情報に
応じて前記回路領域間の配線経路を決定し、この決定さ
れた配線経路の一部を用いて前記分割された回路領域内
の配線経路を決定することを特徴とする半導体集積回路
の配線方法。
(1) When determining wiring routes between input and output terminals of circuit cells or circuit blocks on a semiconductor substrate by automatic wiring processing, the semiconductor substrate is divided into a plurality of circuit areas including the circuit cells or circuit blocks. , detecting positional information of obstacles existing in the circuit area, determining a wiring route between the circuit areas according to the positional information of the obstacle, and using a part of the determined wiring route to perform the division. 1. A wiring method for a semiconductor integrated circuit, comprising determining a wiring route within a circuit area.
(2)前記回路領域間の配線経路の決定方法として、線
分探索法を用いることを特徴とする請求項1記載の半導
体集積回路の配線方法。
(2) The wiring method for a semiconductor integrated circuit according to claim 1, wherein a line segment search method is used as a method for determining the wiring route between the circuit areas.
(3)前記分割された回路領域内の配線経路の決定方法
として、迷路探索法を用いることを特徴と
(3) A maze search method is used as a method for determining the wiring route within the divided circuit area.
JP1260109A 1989-10-06 1989-10-06 Wiring of semiconductor integrated circuit Pending JPH03124045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1260109A JPH03124045A (en) 1989-10-06 1989-10-06 Wiring of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1260109A JPH03124045A (en) 1989-10-06 1989-10-06 Wiring of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH03124045A true JPH03124045A (en) 1991-05-27

Family

ID=17343412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260109A Pending JPH03124045A (en) 1989-10-06 1989-10-06 Wiring of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH03124045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151771A (en) * 1990-10-16 1992-05-25 Nec Corp Wiring system for circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151771A (en) * 1990-10-16 1992-05-25 Nec Corp Wiring system for circuit board

Similar Documents

Publication Publication Date Title
US4823276A (en) Computer-aided automatic wiring method for semiconductor integrated circuit device
JP3219500B2 (en) Automatic wiring method
JPS63137A (en) Processor for determining wiring region
JPH10270563A (en) Automatic general wiring method for integrated circuit
JPS63225869A (en) Wiring path search system
JPH03124045A (en) Wiring of semiconductor integrated circuit
JP3102365B2 (en) Placement and wiring method
Chen et al. On crossing minimization problem
JP2523702B2 (en) Automatic wiring method for semiconductor integrated circuits
JP2000057175A (en) Automatic wiring system of semi-conductor integrated circuit device
US20020026625A1 (en) Method for dividing a terminal in automatic interconnect routing processing, a computer program for implementing same, and an automatic interconnect routing processor using the method
JP2818247B2 (en) Automatic wiring method for semiconductor device
US4885625A (en) Integrated circuit chip manufacture
JP2529342B2 (en) Channel wiring method
JP3208014B2 (en) Wiring path inspection device and wiring path inspection method
JPH05181936A (en) Wiring method
JPH05160375A (en) Automatic routing method
JPH0677323A (en) Automatic layout system
JP3570883B2 (en) Semiconductor integrated circuit wiring method
JP2810771B2 (en) Semiconductor device wiring method
JP2523703B2 (en) Automatic wiring method for semiconductor integrated circuits
JP2858677B2 (en) Semiconductor integrated circuit mask layout method
JPH07147324A (en) Treatment method of automatic arrangement and wiring by cad apparatus
JPH05183054A (en) Method of wiring between functional blocks and method of compression of such wiring region
JP2825928B2 (en) Channel merge wiring method