JPH0312391A - Molecular-beam crystal growing device - Google Patents

Molecular-beam crystal growing device

Info

Publication number
JPH0312391A
JPH0312391A JP14416889A JP14416889A JPH0312391A JP H0312391 A JPH0312391 A JP H0312391A JP 14416889 A JP14416889 A JP 14416889A JP 14416889 A JP14416889 A JP 14416889A JP H0312391 A JPH0312391 A JP H0312391A
Authority
JP
Japan
Prior art keywords
liquid nitrogen
shroud
growth
metallic foil
nitrogen shroud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14416889A
Other languages
Japanese (ja)
Other versions
JPH0517195B2 (en
Inventor
Toshihiro Nakamura
中村 智弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14416889A priority Critical patent/JPH0312391A/en
Publication of JPH0312391A publication Critical patent/JPH0312391A/en
Publication of JPH0517195B2 publication Critical patent/JPH0517195B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent molecules from being built-up on the surface of a shroud and to eliminate a factor of deterioration of quality of grown crystal by equipping the molecular-beam source cells, a growth base plate, a base plate supporting base and a liquid nitrogen shroud and detachably fitting a metallic foil to the specified face of the liquid nitrogen shroud incorporated in the device. CONSTITUTION:A molecular-beam crystal growing device is equipped with the molecular-beam source cells 11-13, a growth base plate 2, a heater 3, a base plate supporting base 4, a liquid nitrogen shroud 5, a vacuum wall 7 and a growth chamber 8. Graphite coating 51 is formed on the surface of the side for surrounding the supporting base 4 of the outer face of the shroud 5 incorporated in the device. A metallic foil 6 made of stainless steel is fitted thereon by a screw, etc. This metallic foil 6 may be considered as elongation of the shroud 5 and can be replaced when vacuum of the vacuum chamber 8 is broken. The metallic foil is replaced while excessive molecules are not built-up on the metallic foil 6. Thereby gas can be prevented from being redischarged from the surface of the metallic foil 6. Deterioration of quality of grown crystal can be prevented.

Description

【発明の詳細な説明】 〔概要] 分子線結晶成長装置に関し。[Detailed description of the invention] 〔overview] Regarding molecular beam crystal growth equipment.

成長結晶の品質の低下を防止する機構を有する分子線結
晶成長装置の提供を目的とし。
The purpose of the present invention is to provide a molecular beam crystal growth apparatus that has a mechanism that prevents the quality of grown crystals from deteriorating.

分子線源セルと、成長基板を支持する基板支持台と、該
基板支持台を取り囲んで配置された液体窒素シュラウド
と、該液体窒素シュラウドの外面の該基板支持台を取り
囲む側の面に取り付けられた着脱可能な金属箔とを含む
分子線結晶成長装置により構成する。
a molecular beam source cell, a substrate support for supporting a growth substrate, a liquid nitrogen shroud disposed surrounding the substrate support, and a liquid nitrogen shroud attached to an outer surface of the liquid nitrogen shroud on a side surrounding the substrate support. It consists of a molecular beam crystal growth apparatus that includes a removable metal foil.

〔産業上の利用分野〕[Industrial application field]

本発明は分子線結晶成長(MBE)装置に関する。 The present invention relates to a molecular beam crystal growth (MBE) apparatus.

結晶成長は半導体装置を作成する上での基礎技術であり
、その中で分子線結晶成長(MBE)法は化合物半導体
の結晶成長に広く使用されるようになってきた。
Crystal growth is a basic technology for producing semiconductor devices, and among these, molecular beam crystal growth (MBE) has come to be widely used for crystal growth of compound semiconductors.

MBE法は超高真空中で、金属ソースを加熱し分子線を
発生させ、加熱した基板上に照射して。
The MBE method heats a metal source in an ultra-high vacuum to generate molecular beams, which are then irradiated onto the heated substrate.

結晶成長を行う技術である。最近では、金属ソースの代
わりに化合物ガスを利用したガスソースMBE法も開発
されている。
This is a technology that grows crystals. Recently, a gas source MBE method using a compound gas instead of a metal source has also been developed.

分子線結晶成長(MBE)装置の液体窒素シュラウドは
、超高真空を保つための部品として非常に重要である。
The liquid nitrogen shroud of a molecular beam crystal growth (MBE) apparatus is extremely important as a component for maintaining ultra-high vacuum.

液体窒素シュラウドは自身からガスを出さないことは勿
論、真空壁からのガスや。
Of course, the liquid nitrogen shroud does not emit gas from itself, but it also releases gas from the vacuum wall.

結晶成長中の基板支持台からのガスを取り込む効果があ
り、その結果、成長室を高真空を保つことができる。
This has the effect of taking in gas from the substrate support during crystal growth, and as a result, it is possible to maintain a high vacuum in the growth chamber.

ところで、結晶成長中は分子線が液体窒素シュラウド表
面にも照射されるため、そこにも分子が付着する。MB
E装置では1分子線源がなくなると成長室を大気圧にし
て新たにソースチャージを行う。この時、成長室に入れ
るガスは窒素であるが、空気も混入してしまう。
By the way, during crystal growth, the surface of the liquid nitrogen shroud is also irradiated with molecular beams, so molecules adhere there as well. M.B.
In the E device, when the single molecule beam source is exhausted, the growth chamber is brought to atmospheric pressure and a new source charge is performed. At this time, the gas introduced into the growth chamber is nitrogen, but air is also mixed in.

その結果、液体窒素シュラウド表面に付着している分子
が空気中の酸素等のガスを取り込んでしまう。
As a result, molecules adhering to the surface of the liquid nitrogen shroud take in gases such as oxygen from the air.

この取りこまれたガスは1通常、装置の立ち上げ時のベ
ーキングによりある程度取り除かれるが液体窒素シュラ
ウド表面に付着している分子の量が多くなってくると、
完全に取り除くことが難しくなる。
This trapped gas is usually removed to some extent by baking when starting up the equipment, but as the amount of molecules attached to the surface of the liquid nitrogen shroud increases,
It becomes difficult to completely remove it.

液体窒素シュラウドは、もともと、その表面にガスを取
り込むためのものであるが、結晶成長時に成長基板の加
熱により、液体窒素シュラウド表面まで加熱されると、
そこに堆積している分子の量が多い場合は、取り込まれ
ていたガスが放射され、成長結晶内に不純物として取り
込まれる。このことが成長結晶の品質を低下させる一つ
の要因となっている。
The liquid nitrogen shroud was originally intended to capture gas on its surface, but when the surface of the liquid nitrogen shroud is heated by the heating of the growth substrate during crystal growth,
If the amount of molecules deposited there is large, the trapped gas is emitted and incorporated into the growing crystal as an impurity. This is one of the factors that reduces the quality of grown crystals.

このため、かかる要因を取り除く必要がある。Therefore, it is necessary to eliminate such factors.

〔従来の技術〕[Conventional technology]

第3図に一般的な従来のMBE装置の断面概略図を示す
FIG. 3 shows a schematic cross-sectional view of a general conventional MBE device.

第3図において、11乃至13は分子線源セル 2は成
長基板、3はヒータ、4は基板支持台、5は液体窒素シ
ュラウド、7は真空壁、8は成長室を表す。
In FIG. 3, 11 to 13 are molecular beam source cells, 2 is a growth substrate, 3 is a heater, 4 is a substrate support, 5 is a liquid nitrogen shroud, 7 is a vacuum wall, and 8 is a growth chamber.

真空壁7はステンレス製で、はぼその内面全体を取り囲
む液体窒素シュラウド5が配置されている。液体窒素シ
ュラウド5は一般にステンレス製で、結晶成長中は液体
窒素が流れており、 −200°C程度の温度になって
いる。真空壁7や基板支持台4から放出されるガスは、
液体窒素シュラウド5の表面に吸着してしまうため、成
長室8の真空度は10−”Torrのオーダの超高真空
が維持されている。
The vacuum wall 7 is made of stainless steel, and a liquid nitrogen shroud 5 surrounding the entire inner surface of the vacuum wall is arranged. The liquid nitrogen shroud 5 is generally made of stainless steel, and during crystal growth, liquid nitrogen flows therethrough and the temperature is about -200°C. The gas released from the vacuum wall 7 and the substrate support 4 is
Since the liquid nitrogen is adsorbed onto the surface of the liquid nitrogen shroud 5, the degree of vacuum in the growth chamber 8 is maintained at an ultra-high vacuum on the order of 10-'' Torr.

ところで、結晶成長時は分子線源セル11乃至13から
の分子線は、成長基板2だけに照射されているのはでな
く、いわゆる、 cos 6分布をなして成長基板2を
取り囲む液体窒素シュラウド5の表面にも照射され、そ
こに吸着する。
By the way, during crystal growth, the molecular beams from the molecular beam source cells 11 to 13 are not irradiated only to the growth substrate 2, but are irradiated to the liquid nitrogen shroud 5 surrounding the growth substrate 2 in a so-called cos 6 distribution. It is also irradiated onto the surface of and adsorbed there.

液体窒素シュラウド5の表面に吸着する分子の量は成長
の回数を重ねる度に累積される。この堆積された分子の
量が多(なり過ぎると、結晶成長時に基板支持台4の温
度を上げた際、その付近の液体窒素シュラウド5の表面
が温められて、そこから吸着ガスが再放出されることが
ある。特に。
The amount of molecules adsorbed on the surface of the liquid nitrogen shroud 5 is accumulated each time the growth is repeated. If the amount of these deposited molecules is too large, when the temperature of the substrate support 4 is raised during crystal growth, the surface of the liquid nitrogen shroud 5 in the vicinity will be warmed, and the adsorbed gas will be re-released from there. Sometimes, especially.

砒素(As)のように蒸気圧の高い分子では再放出が起
こりやすい。もっとも、同じソースチャージで毎回同じ
成長を行っている間は再放出があっても、たいして成長
結晶の品質の低下を来さない。
Molecules with high vapor pressure, such as arsenic (As), are likely to be re-emitted. However, as long as the same source charge is used to perform the same growth every time, even if there is re-emission, the quality of the grown crystal will not deteriorate significantly.

しかし、新たにソースチャージを行うために真空を破る
時、液体窒素シュラウド5の表面に付着した分子が酸素
等の不純物を取り込むので問題となる。取り込まれた不
純物ガスが次回の成長基板加熱時に液体窒素シュラウド
5の表面から再放出され、成長結晶の品質低下を招く。
However, when the vacuum is broken to perform a new source charge, molecules adhering to the surface of the liquid nitrogen shroud 5 take in impurities such as oxygen, which poses a problem. The captured impurity gas is re-emitted from the surface of the liquid nitrogen shroud 5 during the next heating of the growth substrate, resulting in a decrease in the quality of the grown crystal.

従来、この問題に対して、液体窒素シュラウド表面を洗
浄して付着物を除去することが試みられたが2作業が大
変で実用的でなく、装置立ち上げ時のベーキングを長い
時間をかけて行うことがせいぜいであった。しかし、付
着物に取り込まれた不純物ガスを完全に除去することは
難しかった。
Conventionally, attempts have been made to solve this problem by cleaning the surface of the liquid nitrogen shroud to remove deposits, but the process is difficult and impractical, requiring a long baking time when starting up the equipment. That was at best. However, it has been difficult to completely remove impurity gases trapped in deposits.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記課題を解決するために、新たにソースチャージをす
る度に液体窒素シュラウド5を交換することは大変高価
になって現実的でない。
In order to solve the above problem, it would be very expensive and impractical to replace the liquid nitrogen shroud 5 every time a new source charge is performed.

従って、従来は液体窒素シュラウド5表面をいつも清浄
な状態に保つことが難しく、従って、残留ガスが成長結
晶へ入り込むのを防ぐことが難しかった。
Therefore, in the past, it was difficult to keep the surface of the liquid nitrogen shroud 5 always clean, and therefore it was difficult to prevent residual gas from entering the growing crystal.

本発明は、液体窒素シュラウド5表面に分子が堆積する
ことを防止して、残留ガスの取込みをなくすことにより
、成長結晶の品質低下の要因を取り除いた機構を有する
MBE装置を提供することを目的とする。
An object of the present invention is to provide an MBE apparatus having a mechanism that prevents molecules from being deposited on the surface of the liquid nitrogen shroud 5 and eliminates the incorporation of residual gas, thereby eliminating the factors that degrade the quality of grown crystals. shall be.

〔課題を解決するための手段] 上記課題は1分子線源セル11乃至13と、成長基板2
を支持する基板支持台4と、該基板支持台4を取り囲ん
で配置された液体窒素シュラウド5と。
[Means for solving the problem] The above problem is solved by the single molecule beam source cells 11 to 13 and the growth substrate 2.
a substrate support stand 4 supporting the substrate support stand 4; and a liquid nitrogen shroud 5 disposed surrounding the substrate support stand 4.

該液体窒素シュラウド5の外面の該基板支持台4を取り
囲む側の面に取り付けられた着脱可能な金属箔6とを含
む分子線結晶成長装置によって解決される。
The present invention is solved by a molecular beam crystal growth apparatus including a removable metal foil 6 attached to the outer surface of the liquid nitrogen shroud 5 on the side surrounding the substrate support 4.

[作用] 本発明では成長基板2を取り囲んで配置された液体窒素
シュラウド5の表面に1着脱可能な金属箔6を装着する
。この金属箔6はいわば液体窒素シュラウド5の延長と
みなすべきものであるが。
[Function] In the present invention, a removable metal foil 6 is attached to the surface of the liquid nitrogen shroud 5 placed surrounding the growth substrate 2. This metal foil 6 should be regarded as an extension of the liquid nitrogen shroud 5, so to speak.

成長室8の真空を破った時に取り替えることができる。It can be replaced when the vacuum in the growth chamber 8 is broken.

この金属箔6に過度の分子が堆積しないうちに取り替え
るようにすれば、金属箔6の表面からのガスの再放出を
なくすことができる。
If this metal foil 6 is replaced before excessive molecules are deposited on it, re-emission of gas from the surface of the metal foil 6 can be prevented.

このようにして、成長結晶の品質低下を防止することが
できる。
In this way, deterioration in the quality of the grown crystal can be prevented.

金属箔6は結晶成長時、液体窒素シュラウド5の表面と
等しい温度になることが理想で、そのために液体窒素シ
ュラウド5の表面との熱交換がよいことが望まれる。金
属箔は熱伝導が大きく、シかも液体窒素シュラウド5表
面との密着をよくできるので、上の目的に適うものであ
る。
Ideally, the metal foil 6 should have the same temperature as the surface of the liquid nitrogen shroud 5 during crystal growth, and therefore it is desirable that heat exchange with the surface of the liquid nitrogen shroud 5 be good. Metal foil has a high thermal conductivity and can be in good contact with the surface of the liquid nitrogen shroud 5, so it is suitable for the above purpose.

〔実施例〕〔Example〕

第1図は本発明のMBE装置の断面概略図である。第1
図において、 11乃至13は分子線源セル。
FIG. 1 is a schematic cross-sectional view of the MBE apparatus of the present invention. 1st
In the figure, 11 to 13 are molecular beam source cells.

2は成長基板53はヒータ、4は基板支持台、5は液体
窒素シュラウド、51はグラファイト被覆。
2 is a growth substrate 53, a heater, 4 is a substrate support, 5 is a liquid nitrogen shroud, and 51 is a graphite coating.

6は金属箔、7は真空壁、8は成長室を表す。6 represents a metal foil, 7 represents a vacuum wall, and 8 represents a growth chamber.

液体窒素シュラウド5の外面の基板支持台4を取り囲む
側の表面に厚さ50μmのグラファイト被覆51を形成
する。さらに、グラファイト被覆51の上に、厚さ50
μmのステンレス製の金属箔6を取り付ける。金属箔6
はグラファイト被覆51上全面に取り付ける必要はなく
、最も影響の大きい基板支持台4付近の面に取り付ける
だけでも大きな効果が得られる。
A graphite coating 51 with a thickness of 50 μm is formed on the outer surface of the liquid nitrogen shroud 5 on the side surrounding the substrate support stand 4 . Further, on the graphite coating 51, a thickness of 50
Attach a μm stainless steel metal foil 6. metal foil 6
It is not necessary to attach it to the entire surface of the graphite coating 51, and a great effect can be obtained just by attaching it to the surface near the substrate support 4 where the influence is greatest.

第2図は金属箔6の取り付けを説明するだめの図である
FIG. 2 is a diagram for explaining the attachment of the metal foil 6.

金属箔6は一枚である必要はな(、複数枚に分はグラフ
ァイト被覆51を挟んで液体窒素シュラウド5にねじ6
1で固定される。
The metal foil 6 does not need to be a single sheet (although it is possible to use multiple sheets to attach the screw 6 to the liquid nitrogen shroud 5 with the graphite coating 51 in between.
It is fixed at 1.

グラファイト被覆51は金属箔6と液体窒素シュラウド
5との熱交換の効率を上げるために形成されている。
The graphite coating 51 is formed to increase the efficiency of heat exchange between the metal foil 6 and the liquid nitrogen shroud 5.

金属箔6の基板支持台4側の面は、平滑にして熱反射を
よ<シ、できるだけ温度上昇を避けるようにする。金属
箔6のグラファイト被覆51に接する側の面は、微細な
凹凸の面として伝導及び輻射によるグラファイト被覆5
1との熱交換の効率を高めるようにする。
The surface of the metal foil 6 on the substrate support stand 4 side is made smooth to prevent heat reflection and to avoid temperature rise as much as possible. The surface of the metal foil 6 that is in contact with the graphite coating 51 is a finely uneven surface that allows the graphite coating 5 to be formed by conduction and radiation.
1 to increase the efficiency of heat exchange with 1.

かかる構造のMBE装置を用いて、 GaAs基板2上
にGaAs層を1μmの厚さに100回成長した。
Using the MBE apparatus having such a structure, a GaAs layer was grown 100 times to a thickness of 1 μm on the GaAs substrate 2.

100回目の成長結晶を評価して、結晶の品質が低下し
ていないことを確認した。このことは、このステンレス
製の金属箔6が液体窒素シュラウド5の延長としての機
能を充分果たしていることを示すものである。結晶成長
時の金属箔6の温度を測定してみると、それがない時の
液体窒素シュラウド5の温度より10°C乃至30°C
程度高くなっていたが、成長結晶の品質を低下させるほ
どのものではなかった。
The 100th grown crystal was evaluated and it was confirmed that the quality of the crystal had not deteriorated. This shows that the stainless steel metal foil 6 sufficiently functions as an extension of the liquid nitrogen shroud 5. When we measured the temperature of the metal foil 6 during crystal growth, it was 10°C to 30°C higher than the temperature of the liquid nitrogen shroud 5 without it.
Although it was somewhat high, it was not to the extent that it degraded the quality of the grown crystal.

その後、新たなソースチャージのために真空を破り、ス
テンレス製の金属箔6を交換して1通常の立ち上げを行
い、再び成長試験を行った。この時も、成長結晶の品質
低下は見られなかった。
Thereafter, the vacuum was broken for a new source charge, the stainless steel metal foil 6 was replaced, a normal start-up was performed, and the growth test was performed again. At this time, no deterioration in quality of the grown crystal was observed.

(発明の効果〕 以上説明した様に1本発明によれば、液体窒素シュラウ
ド5の表面をいつも清浄な状態に保ち。
(Effects of the Invention) As explained above, according to the present invention, the surface of the liquid nitrogen shroud 5 can be kept clean at all times.

結晶成長装置の状態をいつも一定に保つことができるの
で、良質の成長結晶を安定して得ることができる。
Since the conditions of the crystal growth apparatus can always be kept constant, high-quality grown crystals can be stably obtained.

を表す。represents.

Claims (1)

【特許請求の範囲】 分子線源セル(11乃至13)と、 成長基板(2)を支持する基板支持台(4)と、該基板
支持台(4)を取り囲んで配置された液体窒素シュラウ
ド(5)と、 該液体窒素シュラウド(5)の外面の該基板支持台(4
)を取り囲む側の面に取り付けられた着脱可能な金属箔
(6)と を含むことを特徴とする分子線結晶成長装置。
[Claims] Molecular beam source cells (11 to 13), a substrate support (4) that supports a growth substrate (2), and a liquid nitrogen shroud (4) disposed surrounding the substrate support (4). 5) and the substrate support (4) on the outer surface of the liquid nitrogen shroud (5).
) A removable metal foil (6) attached to a surface surrounding the molecular beam crystal growth apparatus.
JP14416889A 1989-06-08 1989-06-08 Molecular-beam crystal growing device Granted JPH0312391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14416889A JPH0312391A (en) 1989-06-08 1989-06-08 Molecular-beam crystal growing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14416889A JPH0312391A (en) 1989-06-08 1989-06-08 Molecular-beam crystal growing device

Publications (2)

Publication Number Publication Date
JPH0312391A true JPH0312391A (en) 1991-01-21
JPH0517195B2 JPH0517195B2 (en) 1993-03-08

Family

ID=15355783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14416889A Granted JPH0312391A (en) 1989-06-08 1989-06-08 Molecular-beam crystal growing device

Country Status (1)

Country Link
JP (1) JPH0312391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237085A (en) * 1990-02-14 1991-10-22 Hitachi Ltd Vacuum deposition device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237085A (en) * 1990-02-14 1991-10-22 Hitachi Ltd Vacuum deposition device

Also Published As

Publication number Publication date
JPH0517195B2 (en) 1993-03-08

Similar Documents

Publication Publication Date Title
JP2009530493A (en) Self-supporting multilayer film with diamond-like carbon layer
JP2001288575A (en) Deposited film forming method and deposited film forming equipment
JPS6130661A (en) Coating forming device
JPH0312391A (en) Molecular-beam crystal growing device
JP3659564B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus using the same
US20090294776A1 (en) Highly Oxygen-Sensitive Silicon Layer and Method for Obtaining Same
GB2048232A (en) Method of obtaining polycrystalline silicon and workpiece useful therein
JPS5884111A (en) Improved plasma deposition for silicon
JP2004260086A (en) Manufacturing method of silicon wafer
JPH09142820A (en) Anisotropic graphite thin film substrate, and application device and application element using the same
JPH02208925A (en) Formation of semiconductor film
JPH0565586B2 (en)
JP2009239160A (en) Plasma cvd device and plasma cvd method
JP3049534B2 (en) Method for producing polyperinaphthalene thin film
JP2001185488A (en) Device and method for gas phase growth
JP2510340B2 (en) Method for producing Si-based crystal thin film
JPH10223620A (en) Semiconductor manufacturing device
JP2891991B1 (en) Plasma CVD equipment
JP3029953B2 (en) Semiconductor wafer heat treatment equipment
JPS60238476A (en) Vacuum vapor deposition device
JP2529024B2 (en) Molecular beam crystal growth apparatus and molecular beam crystal growth method
JPS6225249B2 (en)
JP3462999B2 (en) Molecular beam epitaxy apparatus and method for removing deposits therefrom
JPH06216045A (en) Vapor growth device
JPS6372111A (en) Method for controlling temperature of semiconductor substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term