JPH03123318A - Production of liquid crystal display device - Google Patents

Production of liquid crystal display device

Info

Publication number
JPH03123318A
JPH03123318A JP26278889A JP26278889A JPH03123318A JP H03123318 A JPH03123318 A JP H03123318A JP 26278889 A JP26278889 A JP 26278889A JP 26278889 A JP26278889 A JP 26278889A JP H03123318 A JPH03123318 A JP H03123318A
Authority
JP
Japan
Prior art keywords
film
substrate
liquid crystal
alignment
oriented film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26278889A
Other languages
Japanese (ja)
Other versions
JP2799005B2 (en
Inventor
Kazuyuki Yuzaki
油嵜 和行
Shinji Shimada
伸二 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1262788A priority Critical patent/JP2799005B2/en
Publication of JPH03123318A publication Critical patent/JPH03123318A/en
Application granted granted Critical
Publication of JP2799005B2 publication Critical patent/JP2799005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain an oriented film which has uniform thickness and has no contamination, and also, in which static electricity, etc., are not accumulated by forming an oriented film consisting of a uniform accumulated film on a substrate, radiating accelerated particles to this oriented film surface from the specific direction and executing orientation processing. CONSTITUTION:While holding the surface pressure by applying a pressure by a partition plate 2 to an LB film 8 dripped down onto ion exchange water 7 in a water tank 1, a substrate 3 is drawn up vertically to the water surface and the LB film is allowed to adhere, and by repeating the operation, an accumulated film is formed on the substrate. A substrate 18 obtained by forming very thinly and uniformly a polyimide oriented film on this substrate is attached to a fixing device 17 in a bell jar 16, gas which is led in by a plasma generating device 12 is brought to plasma state, and by impressing a voltage to an acceleration electrode 13, accelerated particles are radiated to the substrate 18 from the oblique direction. In such a way, with respect to the oriented film formed on the substrate, the orientation processing is executed by a method of non- contact without contaminating the surface of the oriented film.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は液晶表示装置の製造方法に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a method for manufacturing a liquid crystal display device.

さらに詳しくはその改良に関する。More details relate to its improvement.

(ロ)従来の技術 従来、液晶分子の一方向性水平配向法に関する配向膜形
成方法としては、遠心力を利用して配向膜を基板上に形
成するスピンナ法、配向膜の溶液中に基板を漬けて配向
膜を形成するディッピング法、印刷機によって配向膜溶
液を基板上に転写して配向膜を形成するオフセット印刷
法等が知られている。
(B) Conventional technology Conventionally, as a method for forming an alignment film for unidirectional horizontal alignment of liquid crystal molecules, there is a spinner method in which an alignment film is formed on a substrate using centrifugal force, and a spinner method in which a substrate is placed in an alignment film solution. A dipping method in which an alignment film is formed by dipping the substrate, and an offset printing method in which an alignment film solution is transferred onto a substrate using a printing machine to form an alignment film are known.

また、配向膜の配向処理法としては、酸化シリコン又は
ポリイミドの配向膜を形成した基板を、起毛もしくは植
毛した布を用いて一方向に研磨するラビング法、酸化シ
リコンを基板に斜方から真空蒸着し特定の方向に成長さ
せる斜方蒸着法等が一般的である。
In addition, alignment treatment methods for alignment films include a rubbing method in which a substrate on which a silicon oxide or polyimide alignment film is formed is polished in one direction using a brushed or flocked cloth, and a vacuum evaporation method in which silicon oxide is diagonally applied to the substrate. A commonly used method is an oblique evaporation method in which the film is grown in a specific direction.

またさらに上記以外に、高分子化合物を利用したL a
ngmuir−B lodgett (L B ) l
!の引き上げによって配向膜を形成し、形成した配向膜
上をラビングする方法やLB[引き上げによって形成し
た配向膜に磁界を印加する等の配向方法が知られている
Furthermore, in addition to the above, L a using a polymer compound
ngmuir-B lodget (L B ) l
! Alignment methods are known, such as forming an alignment film by pulling up LB and rubbing the formed alignment film, and applying a magnetic field to the alignment film formed by pulling LB.

(ハ)発明が解決しようとする課題 しかしながら、上述した配向膜形成方法であるスピンナ
法、ディッピング法又はオフセット印刷法では、配向膜
の膜厚を500Å以下にすることは困難である。モして
膜厚が厚いほど絶縁性が大きくなるため電圧降下が起こ
り、液晶に印加される電圧が小さくなる。
(c) Problems to be Solved by the Invention However, it is difficult to reduce the thickness of the alignment film to 500 Å or less using the spinner method, dipping method, or offset printing method, which are the alignment film forming methods described above. Furthermore, the thicker the film, the greater the insulation, which causes a voltage drop, and the voltage applied to the liquid crystal becomes smaller.

また、上述した配向膜形成方法では膜厚を均一にするこ
とが困難である。このように膜厚が不均一であると電界
印加時に同一基板内で電圧差が生じ、表示ムラの発生の
原因となる。
In addition, it is difficult to make the film thickness uniform with the alignment film forming method described above. If the film thickness is non-uniform in this way, a voltage difference will occur within the same substrate when an electric field is applied, causing display unevenness.

一方上述した配向膜の配向処理において、ラビング法で
は、大面積高精細な基板の場合基板上の凹凸によるラビ
ング圧力の不均一が発生し易く、特にアクティブマトリ
ックス方式で非線形素子アレイが形成された基板上にお
いてはゲート電極、ソース電極、非線形素子等の厚みの
ため、基板平面との段差ができその段の影になる部分の
ラビング強度が弱くなる。また基板の厚みの差によって
もラビング圧力の不均一が発生する。これらの圧力ムラ
は液晶分子の配向ムラとして表示に悪影響を与える。さ
らにラビング法では布と接触するため布の繊維及び布に
含まれる不純物が配向膜上に付着し、これにより特性が
変化するため配向処理後の洗浄が不可欠となり、大量の
洗浄用溶媒が必要となる。またさらに、TF’T、MI
M等の非線形素子アレイを有する液晶表示素子ではラビ
ング時の摩擦により静電気が発生し、半導体スイッチン
グ素子が破壊されることかある。
On the other hand, in the above-mentioned alignment treatment of the alignment film, in the case of a large-area, high-definition substrate, unevenness in the rubbing pressure is likely to occur due to unevenness on the substrate, especially for substrates on which a nonlinear element array is formed using an active matrix method. At the top, due to the thickness of the gate electrode, source electrode, nonlinear element, etc., a step is created with respect to the substrate plane, and the rubbing strength is weakened in the shadow of the step. Furthermore, uneven rubbing pressure occurs due to differences in the thickness of the substrates. These pressure irregularities adversely affect display as alignment irregularities of liquid crystal molecules. Furthermore, since the rubbing method comes into contact with the fabric, the fibers of the fabric and impurities contained in the fabric adhere to the alignment film, which changes the properties, making cleaning after the alignment process essential and requiring a large amount of cleaning solvent. Become. Furthermore, TF'T, MI
In a liquid crystal display element having a nonlinear element array such as M, static electricity is generated due to friction during rubbing, and the semiconductor switching element may be destroyed.

一方、斜方蒸着法では付着する酸化シリコンの結晶の成
長方向が扇状に広がったり、フレークが発生し配向ムラ
が発生するという問題がある。
On the other hand, the oblique evaporation method has problems in that the growth direction of the deposited silicon oxide crystals spreads out in a fan shape, and flakes are generated, resulting in uneven orientation.

さらに高分子化合物の単分子層(L Bllりを基板上
に複数層堆積させ、基板の引き上げ方向と平行に液晶分
子を配向さ仕る方法では、十分な配向規制力が得られず
、またプレチルト角を得ることはできない。上記LB膜
の累積膜からなる配向膜をラビングする方法において、
LB膜は極めて薄く基板との密着力が弱いため、ラビン
グ時の繊維の接触により膜が破壊されてしまうことがあ
る。
Furthermore, with the method of depositing multiple monomolecular layers of a polymer compound (L Bll) on a substrate and aligning the liquid crystal molecules parallel to the direction in which the substrate is pulled up, sufficient alignment regulating force cannot be obtained, and pre-tilt It is not possible to obtain a corner.In the method of rubbing an alignment film made of a cumulative film of LB films,
Since the LB film is extremely thin and has weak adhesion to the substrate, the film may be destroyed by contact with fibers during rubbing.

またさらに前記LB膜の累積膜から形成される配向膜に
磁界を印加する方法でも液晶表示装置として十分な配向
力が得られない。
Furthermore, even with a method of applying a magnetic field to an alignment film formed from the cumulative film of the LB films, sufficient alignment force cannot be obtained for a liquid crystal display device.

この発明はかかる状況に鑑み為されたものであり、均一
な厚みでかつ汚染が無くさらに静電気等が蓄積されない
配向膜の形成が可能な液晶表示装置の製造方法を提供し
ようとするらのである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing a liquid crystal display device that can form an alignment film that has a uniform thickness, is free from contamination, and does not accumulate static electricity.

(ニ)課題を解決するための手段 かくしてこの発明によれば、液晶を所定方向に配向する
配向膜が形成された基板の1対を該配向膜形成面を対向
させて配置し、この間に液晶を挟持すると共に該基板間
に所定の電圧印加が可能に構成された液晶表示装置の製
造方法において、上記配向膜が、基板に高分子化合物の
単分子層を1層以上に積層して累積膜を形成しこの累積
膜を必要に応じて重合させた後、得られる累積膜の少な
くとも一部に加速された粒子を上記重合膜面の特定方向
から照射することにより配向処理して形成されることを
特徴とする液晶表示装置の製造方法が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, a pair of substrates on which alignment films for aligning liquid crystals in a predetermined direction are formed are arranged with their alignment film-formed surfaces facing each other, and between them, liquid crystals are In the manufacturing method of a liquid crystal display device configured to sandwich a substrate and to apply a predetermined voltage between the substrates, the alignment film is a cumulative film formed by laminating one or more monomolecular layers of a polymer compound on the substrates. is formed, and this cumulative film is polymerized as necessary, and then at least a portion of the resulting cumulative film is irradiated with accelerated particles from a specific direction on the surface of the polymerized film to undergo orientation treatment. A method for manufacturing a liquid crystal display device is provided.

この発明の方法において、基板は当該分野で通常用いら
れろものをそのまま用いることができ、透明なガラス基
板が好ましい。上記基板には所定の表示パターンに対応
するi!極が形成されろ。
In the method of this invention, substrates commonly used in the field can be used as they are, and transparent glass substrates are preferred. The above board has i! corresponding to a predetermined display pattern. A pole is formed.

この発明の方法において、上記基板には配向膜が形成さ
れる。該配向膜は高分子化合物の単分子FfJ(以下L
B膜という)の累積膜から構成される。
In the method of this invention, an alignment film is formed on the substrate. The alignment film is a single molecule FfJ (hereinafter L) of a polymer compound.
It is composed of a cumulative film of B film).

上記高分子化合物としては、LB膜を生成するものでか
つ当該分野で通常用いられるものであればいずれのもの
であってもよく、例えばポリアミック酸と疎水性を有す
る長鎖アルキルアミン化合物とから得られるポリアミッ
ク酸誘導体が好ましい。
The above-mentioned polymer compound may be any compound that produces an LB film and is commonly used in the field; for example, it can be obtained from polyamic acid and a long-chain alkylamine compound having hydrophobicity. Polyamic acid derivatives are preferred.

上記累IN膜は上記LB膜を腹数層堆積して得られるも
のである。上記LB膜は当該分野で公知のLB膜形成装
置により形成することができる。上記装置によりLBW
Aを形成する場合、水面上に展開される膜の面積と表面
圧との関係から成膜条件が選択される。例えば表面圧と
しては4〜35m+1/mの範囲が好ましいものとして
挙げられる。すなわち4zN/mより小さいと分子間に
隙間が生じ、35xN/mより大きい場合は膜が破壊さ
れる虞れがあり好ましくない。又成膜は液晶配向膜とし
て用いる場合は液体膜の範囲で、水面に対して垂直に基
板を引き上げる方法により行われろ。こうして基板上に
LB膜が得られることとなるが、このような引き上げ操
作を数回重ねて堆積することにより、所定の累積膜が得
られることとなる。ただし、累積膜の形成においては1
層目のLB膜は形成後乾燥させることが必要となる。
The above-mentioned cumulative IN film is obtained by depositing the above-mentioned LB film in several layers. The above-mentioned LB film can be formed using an LB film forming apparatus known in the art. With the above device, LBW
When forming A, film forming conditions are selected based on the relationship between the area of the film developed on the water surface and the surface pressure. For example, the surface pressure is preferably in the range of 4 to 35 m+1/m. That is, if it is smaller than 4zN/m, gaps will occur between molecules, and if it is larger than 35xN/m, there is a risk that the membrane will be destroyed, which is not preferable. When the film is used as a liquid crystal aligning film, the film is formed by lifting the substrate perpendicularly to the water surface within the range of the liquid film. In this way, an LB film is obtained on the substrate, and by repeating such lifting operations several times and depositing, a predetermined cumulative film is obtained. However, in the formation of a cumulative film, 1
It is necessary to dry the LB film of the second layer after formation.

この発明の方法において、上記で得られる累積膜からな
る配向膜は必要に応じて重合に付される。
In the method of the present invention, the alignment film made of the cumulative film obtained above is subjected to polymerization, if necessary.

すなわち上記で得られる累積膜が一部重合前の萌駆体で
得られている場合は重合を完結させる必要がある。例え
ば前記単分子層がポリアミック酸誘導体を構成単位とす
るものである場合、重合させてイミド体にする必要があ
る。
That is, when the cumulative film obtained above is partially obtained from the precursor before polymerization, it is necessary to complete the polymerization. For example, when the monomolecular layer has a polyamic acid derivative as a constituent unit, it is necessary to polymerize it to form an imide.

この発明の方法において、上記で得られる累積膜には、
その表面の少なくとも一部に加速された粒子が照射され
る。この照射は特定方向からなされる。上記特定方向と
は上記膜形成時の引き上げ方向に対して平行方向の斜方
が、配向均一性の点から好ましい方向として挙げられろ
。具体的には後述する実施例の記載が参照される。上記
加速された粒子は帯電されている粒子であっても電気的
に中性の粒子であっても良い。帯電されている粒子とし
てはイオンが挙げられる。上記粒子の照射には当該分野
で公知の装置が用いられる。この発明において上記加速
された粒子としてイオンを用いる場合、イオンビーム照
射装置を用いることができる。さらに上記イオン照射に
おいて累積膜がポリイミドのような絶縁膜の場合、イオ
ンの照射による帯電が発生するためこれを電気的に中和
することはこの発明の好ましい態様である。この具体例
についても後述する実施例の記載が参照される。
In the method of this invention, the cumulative film obtained above includes:
At least a portion of its surface is irradiated with accelerated particles. This irradiation is done from a specific direction. The specific direction is preferably an oblique direction parallel to the pulling direction during film formation from the viewpoint of alignment uniformity. Specifically, reference is made to the description of Examples described later. The accelerated particles may be charged particles or electrically neutral particles. Examples of charged particles include ions. Equipment known in the art is used to irradiate the particles. When using ions as the accelerated particles in the present invention, an ion beam irradiation device can be used. Further, in the case where the cumulative film is an insulating film such as polyimide in the above ion irradiation, charging occurs due to ion irradiation, so it is a preferred embodiment of the present invention to electrically neutralize this. For this specific example as well, reference is made to the description of the embodiment described later.

(ホ)作用 この発明によれば、基板上に薄くかつ全体にわたって均
一な累積膜からなる配向膜が形成される。
(E) Function According to the present invention, an alignment film consisting of a thin and uniform cumulative film is formed on the substrate.

この配向膜に対して特定方向から加速された粒子の照射
という非接触な方法で配向膜表面が汚染されることなく
配向処理されることとなる。
By a non-contact method of irradiating the alignment film with accelerated particles from a specific direction, the alignment process can be performed without contaminating the surface of the alignment film.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されろものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 市販の液晶配向用ポリアミック酸であるサンエバー11
0  (商品名;日産化学工業株式会社製)を、N−メ
チルピロリドンとベンゼン(1:l)の混合溶媒を用い
てポリアミック酸の繰返し単位当り fsnol/(2
に希釈する。同一濃度同一溶媒のN、N−ジメチル−n
−ヘキサデシルアミン溶液をポリアミック酸の繰返し単
位に対して2倍当量となるように加えて、ポリアミック
酸アルキルアミン塩溶液を調製する。
(f) Example Sunever 11, a commercially available polyamic acid for liquid crystal alignment
fsnol/(2) per repeating unit of polyamic acid using a mixed solvent of N-methylpyrrolidone and benzene (1:l)
dilute to N,N-dimethyl-n at the same concentration and in the same solvent
- A hexadecylamine solution is added in an amount twice equivalent to the repeating unit of polyamic acid to prepare a polyamic acid alkylamine salt solution.

この溶液を使用し、第1図に示した構造を持つLBI[
形成を用いて基板上にポリアミック酸アルキルアミン塩
溶液のLB膜を形成した。なお同図において、lは水槽
、2は仕切り板、3は基板、4は引き上げ機、5はヴイ
ルヘルミプレート、6は膜圧計、7はイオン交換水、8
はLB膜、9は基板上に付着したLB膜である。
Using this solution, LBI [
An LB film of a polyamic acid alkylamine salt solution was formed on a substrate using formation. In the same figure, l is a water tank, 2 is a partition plate, 3 is a substrate, 4 is a pulling machine, 5 is a Vilhelmi plate, 6 is a membrane pressure gauge, 7 is ion exchange water, 8
is an LB film, and 9 is an LB film attached on the substrate.

ポリアミック酸アルキルアミン塩溶液のLBI8を20
℃に保ったイオン交換水上7に滴下して広げ、水tit
中に設けられた仕切り[2により圧力をかけていき、こ
のときイオン交換水7の水面上に展開したL膜8の面積
(A)と表面圧(π)との相関を調べた。この結果を第
2図に示す。該図から結果は良好なπ−A曲線が得られ
、表面圧が4〜20xN/aの範囲で液体膜が得られる
ことが分かった。また高分子の繰返し単位当りの占有面
積は1.1nm″であった。更に表面圧が351!I/
I11を越えると膜が破壊され、表面圧が4zN/la
より小さいと分子間に隙間ができるため、膜形成の為に
は好ましくない状態であることがわかった。また液晶配
向膜として用いる場合、第2図のπ−A曲線において、
20〜35ffiN/sの範囲の固体膜ではLB模膜中
分子が密に詰まった状態にあり、基板引き上げ時に引き
上げ方向に平行な配向を起こしにくく液晶分子の配向規
制力が小さくなる。従ってLBIIを形成する条件とし
ては、液体膜の範囲で形成することが好ましく、この場
合、15iN/*の表面圧を保ちながら水面に垂直に基
板を引き上げLB膜を得た。これを5回繰返し基板上に
5層の累積膜を形成した(但し、初回のLB膜形成後は
、基板とLB膜の密着性を高めろため膜を形成し終えて
から30分放置して乾燥させた。2回目以降はこの作業
を行わなかった)。
LBI8 of polyamic acid alkylamine salt solution is 20
Drop onto ion-exchanged water kept at ℃ and spread it.
Pressure was applied through a partition [2 provided therein, and at this time, the correlation between the area (A) of the L membrane 8 developed on the surface of the ion-exchanged water 7 and the surface pressure (π) was investigated. The results are shown in FIG. From the figure, it was found that a good π-A curve was obtained and a liquid film was obtained when the surface pressure was in the range of 4 to 20×N/a. In addition, the area occupied per repeating unit of the polymer was 1.1 nm''. Furthermore, the surface pressure was 351!I/
If it exceeds I11, the membrane will be destroyed and the surface pressure will be 4zN/la.
It was found that if the size is smaller, gaps are created between molecules, which is not a favorable condition for film formation. In addition, when used as a liquid crystal alignment film, in the π-A curve in Fig. 2,
In a solid film in the range of 20 to 35 ffiN/s, the molecules in the LB simulated film are in a densely packed state, and when the substrate is pulled up, alignment parallel to the pulling direction is difficult to occur, and the alignment regulating force of the liquid crystal molecules becomes small. Therefore, as the conditions for forming LBII, it is preferable to form it within the range of a liquid film, and in this case, the LB film was obtained by pulling the substrate perpendicular to the water surface while maintaining a surface pressure of 15 iN/*. This was repeated 5 times to form a cumulative film of 5 layers on the substrate (however, after forming the LB film for the first time, leave it for 30 minutes after forming the film to increase the adhesion between the substrate and the LB film. (This step was not performed from the second time onwards.)

基板としては透明なガラス基板上に表示用電極としてI
TO(インジウム−錫酸化物)を部分的に形成したもの
を用いた。また基板の引き上げ速度は1oaIl/wi
nとした。なお引き上げ速度を10cm/winまで上
げても形成される膜の膜厚や配向性に大きな変化はなか
った。但し、 5a+m/min以下の引き上げ速度で
は引き上げ時の配向規制力が非常に弱くなるものであっ
た。
The substrate is a transparent glass substrate with I as a display electrode.
Partially formed TO (indium-tin oxide) was used. Also, the pulling speed of the substrate is 1oaIl/wi
It was set as n. Note that even when the pulling speed was increased to 10 cm/win, there was no significant change in the thickness or orientation of the formed film. However, at a pulling speed of 5a+m/min or less, the orientation regulating force during pulling becomes very weak.

次に累積膜の形成された基板を無水酢酸−ビリジン−ベ
ンゼン(1:l:3)の混合液に20℃、12時間浸漬
し、長鎖アルキル基を脱着させると共にイミド化を完結
さ仕た後、 IX 10−’Torrの真空下で12時
間放置しイミド化促進剤を除去した。こうして得られた
ポリイミドの膜厚は20人と極めて薄くかつ均一なもの
であった。
Next, the substrate on which the cumulative film was formed was immersed in a mixed solution of acetic anhydride-pyridine-benzene (1:l:3) at 20°C for 12 hours to desorb the long-chain alkyl groups and complete imidization. Thereafter, the imidization accelerator was removed by allowing the mixture to stand under a vacuum of IX 10-'Torr for 12 hours. The thickness of the polyimide thus obtained was extremely thin and uniform.

次に、上記過程でのポリイミド配向膜が形成された基板
上に、第3図に示した構造を有するイオンビーム照射装
置を用いて斜方から基板に加速粒子を照射した。なお同
図において、11は交流電源、12はプラズマ発生装置
、13は加速電極、14は引き出し電極、15はアース
電極、16はペルジャー、17は基板固定装置、18は
基板、19はマスク、2oは中和用フィラメント、2【
はガス流量制御装置、22は導入用ガスボンベ、23は
コック、24は真空ポンプをそれぞれ示す。
Next, the substrate on which the polyimide alignment film was formed in the above process was irradiated with accelerated particles from an oblique direction using an ion beam irradiation device having the structure shown in FIG. In the figure, 11 is an AC power supply, 12 is a plasma generator, 13 is an acceleration electrode, 14 is an extraction electrode, 15 is a ground electrode, 16 is a Pelger, 17 is a substrate fixing device, 18 is a substrate, 19 is a mask, and 2o is a neutralizing filament, 2 [
22 is a gas cylinder for introduction, 23 is a cock, and 24 is a vacuum pump.

基板18は基板固定装置17に取り付けられ加速粒子の
照射方向に対し適当な角度をもって固定された。真空ポ
ンプ24を用いてペルジャー16内を1〜2XIO−’
Torrの真空度に到達させた後、アルゴン、クリプト
ン、キセノン、酸素等のガスをガス流量制御装置21を
通してペルジャー16内に導入し、1〜IOX 10−
’Torrの圧力としてプラズマ発生装置12によって
導入されたガスをプラズマ状態にし、100〜500v
程度の電圧を加速電極13に印加し、発生したイオンに
連動エネルギーを与え配向膜上に照射した。このときL
B膜形成時の基板の引き上げ方向に対して平行方向の斜
方から照射したものと垂直方向の斜方より照射したもの
とでは、平行方向の斜方から照射したものの方が配向均
一性として良い結果を示した。また、ポリイミドのよう
な絶縁膜ではイオンの照射による帯電が発生するため、
中和用フィラメント20から熱電子を放出しイオンの中
和を行った。
The substrate 18 was attached to the substrate fixing device 17 and fixed at an appropriate angle with respect to the irradiation direction of the accelerated particles. 1 to 2XIO-' inside the Pelger 16 using the vacuum pump 24
After reaching a vacuum level of Torr, a gas such as argon, krypton, xenon, oxygen, etc. is introduced into the Pel jar 16 through the gas flow rate control device 21, and 1 to IOX 10-
'Turr the gas introduced by the plasma generator 12 into a plasma state with a pressure of 100~500V
A certain voltage was applied to the accelerating electrode 13, and the generated ions were given interlocking energy and irradiated onto the alignment film. At this time L
B: When forming a film, irradiation from an oblique direction parallel to the substrate pulling direction and irradiation from an oblique direction perpendicular to the direction in which the substrate is lifted are better. The results were shown. In addition, insulating films such as polyimide are charged due to ion irradiation, so
Ions were neutralized by emitting thermoelectrons from the neutralizing filament 20.

このようにして形成された基板を用いて第4図に示した
ようなセル厚5μlのTNセルを作製した。
Using the substrate thus formed, a TN cell with a cell thickness of 5 μl as shown in FIG. 4 was fabricated.

なお同図において、31及び32はガラス基板、33及
び34は透明電極、35及び36は配向膜、37及び3
8は封止樹脂、39及び40はスペーサ、41は液晶を
それぞれ示す。
In the figure, 31 and 32 are glass substrates, 33 and 34 are transparent electrodes, 35 and 36 are alignment films, and 37 and 3 are glass substrates.
8 is a sealing resin, 39 and 40 are spacers, and 41 is a liquid crystal.

上記得られた液晶セルの緒特性を下記〔表1〕に示した
。ここでは導入するガスとしてアルゴンを用い、照射条
件のパラメータとして照射角度及び照射時間を用い、評
価項目としては配向均一性、プレチルト角、電圧保持率
、直流電圧印加時のメモリ電圧について示した。配向均
一性については均一な水平配向が得られた面積で規定し
た(これについては同表において、◎が完全な均一配向
を示し、以下O1Δと配向している面積が減少し、×は
配向していないことを示す)。
The characteristics of the liquid crystal cell obtained above are shown in Table 1 below. Here, argon was used as the introduced gas, the irradiation angle and irradiation time were used as the irradiation condition parameters, and the evaluation items were orientation uniformity, pretilt angle, voltage holding rate, and memory voltage when DC voltage was applied. Orientation uniformity was defined by the area where uniform horizontal orientation was obtained (in the same table, ◎ indicates completely uniform orientation, hereinafter O1Δ indicates a decrease in the oriented area, and × indicates no orientation). ).

プレチルト角は少なくとも0.5層以上必要であり、小
さすぎた場合電圧印加時に液晶分子の立ち上がりが一方
向で起こらずディスクリネーションが発生する。
The pretilt angle must be at least 0.5 layers, and if it is too small, the liquid crystal molecules will not rise in one direction when a voltage is applied, resulting in disclination.

電圧保持率は時分割駆動時の表示コントラストと関係し
、大きな値である程大きなコントラストが得られるが、
95%程度の値があれば十分に実用的なコントラストと
なる。
The voltage holding rate is related to the display contrast during time-division driving, and the larger the value, the greater the contrast obtained.
A value of about 95% provides sufficient practical contrast.

また直流電圧印加時のメモリ電圧は主に非線形素子アレ
イを有するアクティブマトリックス型液晶表示素子での
表示品位に対する指標であり、液晶分子に対し非対象な
波形の電圧が印加された場合のチラッキ現象の発生し易
さを示しており、より小さな値程表示品位は高くなる。
In addition, the memory voltage when a DC voltage is applied is mainly an indicator of the display quality of an active matrix liquid crystal display element having a nonlinear element array, and it is a measure of the flickering phenomenon when a voltage with an asymmetrical waveform is applied to liquid crystal molecules. It indicates the ease of occurrence, and the smaller the value, the higher the display quality.

またこの値は配向膜の膜厚と相関があり、膜厚が薄いも
の程小さな値を示す。ここでは±3V3GHzの矩形波
仲2■の直流電圧を30分印加した後のチラッキを消去
するための印加電圧を規定した。この値はポリイミドを
スピンナ法、ディッピング法、オフセット印刷法等で配
向膜を形成し、ラビング法により配向処理したもので、
0.7〜0.8V 、酸化シリコンをラビング処理した
もので2V程度であり、酸化シリコンを斜方蒸着したも
のでも2V程度である。
Further, this value has a correlation with the thickness of the alignment film, and the thinner the film, the smaller the value. Here, the applied voltage for erasing flicker after applying a DC voltage of ±3V3GHz rectangular wave medium 2 for 30 minutes was specified. This value is obtained by forming an alignment film on polyimide using a spinner method, dipping method, offset printing method, etc., and then aligning it using a rubbing method.
The voltage is 0.7 to 0.8V, and it is about 2V when silicon oxide is rubbed, and it is about 2V when silicon oxide is obliquely deposited.

上記〔表1〕に示したように、上記実施例の基板上にポ
リアミック酸アルキルアミン塩溶液のしBllを付着し
、イミド化することによりポリイミド膜を形成させ、こ
れにさらに加速させた粒子を基板の法線方向に対し40
〜80°の範囲で照射することにより液晶分子を一方向
に水平配向さ仕る配向法を用いることにより、単純マト
リックス型、アクティブマトリックス型のいずれの場合
でも極めて表示品位の高い液晶素子を得ることができる
As shown in Table 1 above, a polyamic acid alkylamine salt solution Bll was deposited on the substrate of the above example and imidized to form a polyimide film, and further accelerated particles were added to the polyimide film. 40 to the normal direction of the board
By using an alignment method that horizontally aligns liquid crystal molecules in one direction by irradiating in the range of ~80°, it is possible to obtain a liquid crystal element with extremely high display quality in both simple matrix type and active matrix type. I can do it.

またこの発明の液晶分子配向法をTPTを有するアクテ
ィブマトリックス型の液晶表示装置に適用したところ、
照射の前後でのTPT特性の変化やパスラインの断線や
短絡は認められず、段差による配向ムラも見られなかっ
た。
Furthermore, when the liquid crystal molecule alignment method of the present invention was applied to an active matrix type liquid crystal display device having TPT,
No change in TPT properties before or after irradiation, no breakage or short circuit of the pass line, and no uneven orientation due to steps were observed.

(ト)発明の効果 この発明によれば、基板の厚さ、表面の凹凸の影響なく
、均一な厚みでかつ汚染がなくさらに静電気等が蓄積さ
れない配向膜が形成できるので、液晶分子の配向が安定
した液晶表示装置を得ることができる。そして単純マト
リックス型やアクティブマトリックス型のいずれの場合
でも、極めて表示品位の高い液晶表示装置を得ることが
できる。
(G) Effects of the Invention According to the present invention, an alignment film can be formed that has a uniform thickness, is free from contamination, and does not accumulate static electricity, etc., without being affected by the thickness of the substrate or the unevenness of the surface, so that the alignment of liquid crystal molecules can be improved. A stable liquid crystal display device can be obtained. In either case of a simple matrix type or an active matrix type, a liquid crystal display device with extremely high display quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法の一例における配向膜の形成に
用いるLB膜形成装置の構成説明図、第2図は第1図の
装置において水面上に展開される膜の面積と表面圧との
関係を示すグラフ図、第3図はこの発明の方法の一例に
おけろ配向膜形成時に用いるイオンビーム照射装置の構
成説明図、第4図はこの発明の方法により得られた液晶
セルの一例の構成説明図である。 l・・・・・・水槽、      2・・・・・・仕切
り板、3.18・・・・・・基板、    4・・・・
・・引き上げ機、5・・・・・・ヴイルヘルミプレート
、6・・・・・・膜圧計、     8.9・・・・・
・LB膜、xi・・・・・・交流電源、 12・・・・・・プラズマ発生装置、 13・・・・・・加速電極、   17・・・・・・基
板固定装置、19・・・・・・マスク、 20・・・・・・中和用フィラメント、21・・・・・
・ガス流量制御装置、 24・・・・・・真空ポンプ、31.32・・・・・・
ガラス基板、33.34・・・・・・透明電極、  3
5.36・・・・・・配向膜、37.38・・・・・・
封止樹脂 41・・・・・・液晶。 39.40・・・・・・スペーサ、 第 1 図 笥 図 面構 (nm外H) 第 閃 垣 図 4 2 0
FIG. 1 is an explanatory diagram of the configuration of an LB film forming apparatus used for forming an alignment film in an example of the method of the present invention, and FIG. 2 shows the area and surface pressure of the film developed on the water surface in the apparatus of FIG. A graph showing the relationship, FIG. 3 is an explanatory diagram of the configuration of an ion beam irradiation device used in forming an alignment film in an example of the method of the present invention, and FIG. 4 is an illustration of an example of a liquid crystal cell obtained by the method of the present invention. It is a configuration explanatory diagram. l...water tank, 2...partition plate, 3.18...substrate, 4...
...Lifting machine, 5...Willhelmi plate, 6...Membrane pressure gauge, 8.9...
・LB film, xi... AC power supply, 12... Plasma generator, 13... Accelerating electrode, 17... Substrate fixing device, 19... ... Mask, 20 ... Neutralizing filament, 21 ...
・Gas flow control device, 24... Vacuum pump, 31.32...
Glass substrate, 33.34...Transparent electrode, 3
5.36...Alignment film, 37.38...
Sealing resin 41...Liquid crystal. 39.40...Spacer, 1st figure drawing structure (H outside nm) 4th Sengaki figure 4 2 0

Claims (1)

【特許請求の範囲】 1、液晶を所定方向に配向する配向膜が形成された基板
の1対を該配向膜形成面を対向させて配置し、この間に
液晶を挟持すると共に該基板間に所定の電圧印加が可能
に構成された液晶表示装置の製造方法において、 上記配向膜が、基板に高分子化合物の単分子層を1層以
上に積層して累積膜を形成しこの累積膜を必要に応じて
重合させた後、得られる累積膜の少なくとも一部に加速
された粒子を上記重合膜面の特定方向から照射すること
により配向処理して形成されることを特徴とする液晶表
示装置の製造方法。
[Claims] 1. A pair of substrates on which an alignment film for aligning liquid crystal in a predetermined direction is arranged with the faces on which the alignment film is formed facing each other, and the liquid crystal is sandwiched between the substrates. In the method of manufacturing a liquid crystal display device configured to be able to apply a voltage of Production of a liquid crystal display device, characterized in that the liquid crystal display device is formed by polymerizing according to the method, and then performing alignment treatment by irradiating at least a part of the resulting cumulative film with accelerated particles from a specific direction on the surface of the polymerized film. Method.
JP1262788A 1989-10-06 1989-10-06 Manufacturing method of liquid crystal display device Expired - Lifetime JP2799005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262788A JP2799005B2 (en) 1989-10-06 1989-10-06 Manufacturing method of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262788A JP2799005B2 (en) 1989-10-06 1989-10-06 Manufacturing method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH03123318A true JPH03123318A (en) 1991-05-27
JP2799005B2 JP2799005B2 (en) 1998-09-17

Family

ID=17380613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262788A Expired - Lifetime JP2799005B2 (en) 1989-10-06 1989-10-06 Manufacturing method of liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2799005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460657A2 (en) * 1990-06-07 1991-12-11 Canon Kabushiki Kaisha Liquid crystal device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477022A (en) * 1987-09-18 1989-03-23 Canon Kk Ferroelectric liquid crystal element
JPH01161314A (en) * 1987-12-18 1989-06-26 Sony Corp Liquid crystal oriented film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477022A (en) * 1987-09-18 1989-03-23 Canon Kk Ferroelectric liquid crystal element
JPH01161314A (en) * 1987-12-18 1989-06-26 Sony Corp Liquid crystal oriented film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460657A2 (en) * 1990-06-07 1991-12-11 Canon Kabushiki Kaisha Liquid crystal device
EP0460657A3 (en) * 1990-06-07 1992-08-12 Canon Kabushiki Kaisha Liquid crystal device
US5347379A (en) * 1990-06-07 1994-09-13 Canon Kabushiki Kaisha Liquid crystal device with MIM insulator formed as a continuous monomolecular film

Also Published As

Publication number Publication date
JP2799005B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
JPH0383017A (en) Production of liquid crystal display device
DE68921319T2 (en) Process and apparatus for producing thin polyimide films.
EP0518333A1 (en) Method for inducing tilted perpendicular alignment in liquid crystals
KR100225234B1 (en) Cholesteric lc material and pdlc element
DE69837912T2 (en) DEVICE AND METHOD FOR APPLYING A THIN LAYER AND METHOD FOR PRODUCING AN LCD ELEMENT
CA1120887A (en) Method for producing uniform parallel alignment in liquid crystal cells
DE2449652A1 (en) LIQUID CRYSTAL DEVICE AND METHOD FOR MANUFACTURING IT
US4105298A (en) Electro-optic devices
JP3738990B2 (en) Liquid crystal alignment film, method for manufacturing the liquid crystal alignment film, liquid crystal panel, and liquid crystal display device
JPH03123318A (en) Production of liquid crystal display device
WO2019196152A1 (en) Method for manufacturing liquid crystal display panel and liquid crystal medium composition
KR20050017593A (en) A liquid crystal display
JPH0618898A (en) Liquid crystal element
JP3355592B2 (en) Transparent conductive film substrate
RU2073902C1 (en) Method for unidirectional parallel orientation of liquid crystals
JPH0348817A (en) Liquid crystal electro-optical element
JPH02269318A (en) Production of oriented film for ferroelectric liquid crystal element
JPH10253962A (en) Manufacture of liquid crystal device
JPH0413115A (en) Production of liquid crystal oriented film
JPS62215925A (en) Preparation of liquid crystal display device
JPH03134627A (en) Liquid crystal eletrooptical element
JPH03138621A (en) Liquid crystal element and production thereof
JPH04125520A (en) Liquid crystal orienting film
JPH04338925A (en) Liquid crystal display element
JPH09127489A (en) Production of liquid crystal electrooptical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070703

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100703

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100703

Year of fee payment: 12