JPH03123088A - Solid-state actuator - Google Patents

Solid-state actuator

Info

Publication number
JPH03123088A
JPH03123088A JP1260067A JP26006789A JPH03123088A JP H03123088 A JPH03123088 A JP H03123088A JP 1260067 A JP1260067 A JP 1260067A JP 26006789 A JP26006789 A JP 26006789A JP H03123088 A JPH03123088 A JP H03123088A
Authority
JP
Japan
Prior art keywords
solid
laminated
state
actuator
vibrating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1260067A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Tsukada
塚田 光芳
Yoshihiro Watanabe
佳宏 渡辺
Mamoru Tokita
守 鴇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1260067A priority Critical patent/JPH03123088A/en
Publication of JPH03123088A publication Critical patent/JPH03123088A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To decrease not only an electrical field applied to a solid-state element in intensity but also a source voltage and to enable the element to generate a large distortion by a method wherein two or more solid-state elements possessing a piezoelectric longitudinal effect are laminated to form a laminated oscillator, the solid-state elements are connected in series to a power supply, and the laminated oscillator is joined to an elastic plate in a thicknesswise direction. CONSTITUTION:A pair of laminated oscillators 10 are used to constitute a unimorph type solid-state actuator. Inner electrodes are provided for solid-state elements 1, which are laminated, burned, and cut. Conductors 21 and 22 are joined as electrodes to the crosswise end faces of the laminated oscillator 10 as shown by a double dotted chain line. As the conductors 21 and 22 are connected in parallel, the solid-state elements 1 can be enhanced in electrical field intensity with a low drive voltage. The laminated oscillator 10 is joined to an elastic plate 4 with a adhesive agent in a thicknesswise direction. When a voltage is applied, a distortion of expansion or contraction is generated in the solid-state elements 1 corresponding to the directions of the polarization axes of the elements 1 and the electrical field applied to them, and the laminated oscillator 10 is able to produce a large distortion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ディスク、磁気ディスク等を高速、高精度
位置決めするための固体アクチュエータに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a solid-state actuator for positioning optical disks, magnetic disks, etc. at high speed and with high precision.

(従来の技術) 従来、機械的信号と電気的信号を変換する固体素子の一
つとしてチタン酸デルコン酸鉛系セラミックス(PZT
)があり、超音波工学において振動体としての高出力化
、遅延素子としての小型化を目標とした研究が進められ
ている。
(Prior art) Lead titanate derconate ceramics (PZT) have conventionally been used as one of the solid-state elements that convert mechanical signals and electrical signals.
), and research is underway in ultrasonic engineering with the aim of increasing the output as a vibrating body and miniaturizing it as a delay element.

一方、最近の半導体製造装置や光ディスク、磁気ディス
ク等の情報機器の分野、精密加工技術の分野等において
位置決め技術の高精度化の研究が盛んである。この内、
圧電(電歪)効果を利用した固体アクチュエータは、電
圧を制御するだけでサブミクロンオーダの微小位置決め
を行うことが可能である等の特長をもっており最近注目
されている。
On the other hand, in the field of recent semiconductor manufacturing equipment, information equipment such as optical disks and magnetic disks, and the field of precision processing technology, research on improving the precision of positioning technology is active. Of these,
Solid-state actuators that utilize piezoelectric (electrostrictive) effects have recently attracted attention because they have features such as being able to perform minute positioning on the submicron order simply by controlling voltage.

上記固体アクチュエータの駆動源として利用される圧電
体は、圧電縦効果型と圧電横効果型の二つの型式に分け
られる。
The piezoelectric body used as a drive source for the solid-state actuator is divided into two types: a piezoelectric longitudinal effect type and a piezoelectric transverse effect type.

前者の場合、セラミックスの分極軸に平行な方向の歪又
は力が利用される。発生することができる変位量はわず
かであるが、発生力は大きくその応答も高速である。後
者の場合、セラミックスの分極軸に直角な方向の歪又は
力が利用される。この横効果利用を発展させたバイモル
フ型のものは、発生力は小さいが比較的大きな変位が得
られる。
In the former case, strain or force in a direction parallel to the polarization axis of the ceramic is used. Although the amount of displacement that can be generated is small, the generated force is large and its response is fast. In the latter case, strain or force in a direction perpendicular to the polarization axis of the ceramic is used. The bimorph type, which has developed the use of this lateral effect, generates a small force but can obtain a relatively large displacement.

上記圧電体を固体アクチュエータとして利用する場合、
圧電縦効果型のものは圧電定数dや圧電率g、電気機械
結合係数にの値が大きく、最も効果的である。しかし、
圧電縦効果を利用したアクチュエータは、一般に機械的
インピーダンスが相当に高いため応用機器に合わせたイ
ンピーダンスマツチング用メカニズムが必要となり、そ
の分機構が複雑となる。
When using the above piezoelectric body as a solid actuator,
The piezoelectric longitudinal effect type has large piezoelectric constant d, piezoelectric constant g, and electromechanical coupling coefficient, and is the most effective. but,
Actuators that utilize the piezoelectric longitudinal effect generally have fairly high mechanical impedance, and therefore require an impedance matching mechanism tailored to the applied equipment, making the mechanism more complex.

一方、圧電横効果を利用したバイモルフ型アクチュエー
タは、電気機械結合係数にの値はかなり小さくなるが、
上述したようなインピーダンスマツチング用メカニズム
は不要であり、機構も簡素であって利用価値は高い。
On the other hand, bimorph actuators that utilize piezoelectric transverse effects have a considerably smaller electromechanical coupling coefficient;
The impedance matching mechanism as described above is unnecessary, the mechanism is simple, and the value of use is high.

第4図は上記アクチュエータの動作を示す図、第4図(
A)は圧電縦効果を利用したアクチュエータの動作図、
第4図(B)は圧電横効果を利用したアクチュエータの
動作図である。
Figure 4 is a diagram showing the operation of the above actuator, Figure 4 (
A) is an operation diagram of an actuator using piezoelectric longitudinal effect,
FIG. 4(B) is an operation diagram of an actuator using the piezoelectric transverse effect.

第4図(A)において、圧電縦効果の場合、固体素子1
は両面が金、銀等の良導体を使って電極面8とされ、画
電極面8に直角な図中矢印Pで示す方向に分極軸が形成
される。そして、リード線23を介して固体素子1に電
VjJA13から電圧■、が印加されると、矢印Qで示
した方向に力又は変位が生じ、それを利用することがで
きる。
In FIG. 4(A), in the case of the piezoelectric longitudinal effect, the solid-state element 1
Both surfaces are made into electrode surfaces 8 using a good conductor such as gold or silver, and a polarization axis is formed in the direction shown by arrow P in the figure perpendicular to the picture electrode surface 8. Then, when a voltage (2) is applied from the voltage VjJA 13 to the solid-state element 1 via the lead wire 23, a force or displacement is generated in the direction shown by the arrow Q, which can be utilized.

すなわち、固体素子1への入力エネルギは、W、=C,
V、l”/2 固体素子1の単位体積当たりに蓄えられる歪エネルギは
、 W、 −S z”72 S 33 電気容量は、 Cs =ab ε33” / 1 で表わされる。ただし、 ε33T:応力が一定の場合の分極軸方向の誘電率S:
++E:電界強度が一定の場合の分極軸方向の弾性コン
プライアンス S3 :分極軸方向の歪 である。この時効率は、 ζs=Wい/W。
That is, the input energy to the solid-state element 1 is W,=C,
V, l"/2 The strain energy stored per unit volume of the solid element 1 is W, -S z"72 S 33 The electric capacity is expressed as Cs = ab ε33" / 1. However, ε33T: stress is Dielectric constant S in the polarization axis direction for a constant case:
++E: Elastic compliance in the polarization axis direction when the electric field strength is constant S3: Strain in the polarization axis direction. At this time, the efficiency is ζs=W/W.

=S 22/ S zzEC3V 3”=Ss”/ab
ff 333Eεs3” E32ここで、電界強度は、 E3 = V3 /1 である。
=S 22/ S zzEC3V 3”=Ss”/ab
ff 333Eεs3'' E32 Here, the electric field strength is E3 = V3 /1.

一方、第4図(B)において、圧電極横効果の場合、電
源13から電圧V1が印加されると、固体素子1への入
力エネルギは、 Wll=C,V、”/2 固体素子1の単位体積当たりに蓄えられる歪エネルギは
、 W惰−3+”/2s口 電気容量は、 C,1= 616 s、l” / a で表わされる。ただし、 ε33T:応力が一定の場合の分極軸方向の誘電率S1
.E:電界強度が一定の場合の分極軸に直角な方向の弾
性コンプライアンス Sl :分極軸に直角な方向の歪 である。この時効率は、 ζ、=Wい/W。
On the other hand, in the case of the piezoelectric transverse effect in FIG. 4(B), when the voltage V1 is applied from the power source 13, the input energy to the solid-state element 1 is Wll=C,V,''/2 of the solid-state element 1. The strain energy stored per unit volume is: W inertia -3+"/2s The electric capacity is expressed as C,1=616 s, l"/a. However, ε33T: direction of polarization axis when stress is constant dielectric constant S1 of
.. E: Elastic compliance in the direction perpendicular to the polarization axis when the electric field strength is constant Sl: Strain in the direction perpendicular to the polarization axis. At this time, the efficiency is ζ, = W/W.

= S I”/ S 11’ C1V 1”−3+”/
a  bj2  S++’  esy丁 E、!ここで
電界強度は、 E+=V+/a である。
= SI"/ S 11' C1V 1"-3+"/
a bj2 S++' esyding E,! Here, the electric field strength is E+=V+/a.

上記圧電縦効果の効率ζ3と圧電横効果の効率ζ1を比
較すると、 ζ3/ζ、=s、−(S3E、)” /s 33E(31E3 )” となる。
Comparing the efficiency ζ3 of the piezoelectric longitudinal effect and the efficiency ζ1 of the piezoelectric transverse effect, ζ3/ζ,=s,-(S3E,)''/s33E(31E3)''.

ここで、計算を簡略化するために、a=b=l。Here, to simplify the calculation, a=b=l.

E+=E、lとする。固体素子1を上記PZTで構成し
たときの各定数から S 、”= 533):/ (1,2〜1.5)S、≧
(2〜2.5) S 。
Let E+=E, l. From each constant when the solid-state element 1 is composed of the above-mentioned PZT, S, "= 533):/ (1,2 to 1.5) S, ≧
(2-2.5) S.

であるからζ3/ζ1 は、 ζ3/ぐ、= (2〜2.5)2/(1,2〜1.5)
−2,7〜4.2 となり、縦効果を利用する方が横効果を利用するより効
率が数倍良い。計算上、分極軸方向の歪S3が分極軸に
直角な方向の歪SIの2〜2゜5倍であるのは、各方向
に関する圧電歪定数dがdss≧(2〜2.5) d 
31 の関係にあるためである。
Therefore, ζ3/ζ1 is ζ3/gu, = (2~2.5)2/(1,2~1.5)
-2.7 to 4.2, and using the vertical effect is several times more efficient than using the horizontal effect. Calculatedly, the reason why the strain S3 in the direction of the polarization axis is 2 to 2.5 times the strain SI in the direction perpendicular to the polarization axis is because the piezoelectric strain constant d in each direction is dss≧(2 to 2.5) d
This is because there is a relationship of 31.

上記固体素子1の歪を直接外部に取り出してアクチュエ
ータとして利用する場合、固体素子1は1にν/mmを
越える高い電界のもとに置かれるのが普通であり、汎用
的な電源手段を使ってこのような高い電界強度のもとに
置くためには、固体素子1自体の電極間距離を少なくと
も0.2〜0.3 mm程度にしなくてはならない。つ
まり、0.2〜0.3+++m程度に薄く焼成された固
体素子1でない限り、実用上1kv/mmを越える電界
のもとに置くことは不可能である。圧電横効果を利用し
たバイモルフ型のアクチュエータにおいては、構成上は
ぼ0.2〜0.311II11の厚さの固体素子1の長
手方向(分極軸に直角な方向)の歪が利用される。そこ
で、長手方向に長さを大きくとれば、実用上数十ミリの
変位を取り出すことが可能であり、この形式のアクチュ
エータを簡単に製造することができる。
When the strain of the solid-state element 1 is directly taken out to the outside and used as an actuator, the solid-state element 1 is normally placed under a high electric field exceeding ν/mm, and a general-purpose power source is used. In order to be placed under such a high electric field strength, the distance between the electrodes of the solid state element 1 itself must be at least about 0.2 to 0.3 mm. In other words, unless the solid-state device 1 is fired to a thickness of about 0.2 to 0.3+++ m, it is practically impossible to place it under an electric field exceeding 1 kv/mm. In a bimorph type actuator that utilizes a piezoelectric transverse effect, strain in the longitudinal direction (direction perpendicular to the polarization axis) of the solid-state element 1 having a thickness of about 0.2 to 0.311II11 is utilized in its construction. Therefore, by increasing the length in the longitudinal direction, it is possible to obtain a displacement of several tens of millimeters in practice, and this type of actuator can be manufactured easily.

一方、縦効果を利用した場合、横効果を利用した場合よ
りエネルギ効率は良いが上述したように固体素子1を薄
くしなければならない。ところが、固体素子1が薄けれ
ば固体素子1自身が保有できるエネルギ量はその体積に
比例して小さくなるから固体素子lが外部に対して行う
ことができる仕事量も小さく、結局実用に供するアクチ
ュエータを第4図(A)のような単独の構造で得ること
は不可能に近い。
On the other hand, when the longitudinal effect is used, the energy efficiency is better than when the lateral effect is used, but as described above, the solid-state element 1 must be made thinner. However, if the solid-state element 1 is thin, the amount of energy that the solid-state element 1 itself can hold will be smaller in proportion to its volume, so the amount of work that the solid-state element 1 can do to the outside will also be smaller, and in the end it will be difficult to use the actuator for practical use. It is almost impossible to obtain this with a single structure as shown in FIG. 4(A).

そこで、多層配線基板、チップコンデンサ等の製造技術
を応用して製造された積層型のアクチュエータが提供さ
れている。
Therefore, multilayer actuators manufactured by applying manufacturing techniques for multilayer wiring boards, chip capacitors, etc. have been provided.

第5図は上記積層型のアクチュエータの斜視図である。FIG. 5 is a perspective view of the laminated actuator.

図において、薄板状に積層された固体素子1が導体21
.22等を介して電源13に電気的に並列接続され、駆
動電圧が下げられ矢印Qで示す方向において直列的に得
られる機械的変位が利用される。
In the figure, a solid-state element 1 laminated in a thin plate shape is connected to a conductor 21.
.. It is electrically connected in parallel to the power supply 13 via 22, etc., and the driving voltage is lowered to utilize the mechanical displacement obtained in series in the direction indicated by the arrow Q.

個々の固体素子lは0.2〜0.3胴程度の厚さに焼成
されているため、それぞれを低い電源電圧でほぼlkv
の電界強度のもとに置くことが可能であり、50枚程度
積層した場合、100νの電源電圧で5μm程度の変位
を得ることができる。
Since each solid-state element l is fired to a thickness of about 0.2 to 0.3 cylinders, each can be heated to about 1kv with a low power supply voltage.
When about 50 sheets are laminated, a displacement of about 5 μm can be obtained with a power supply voltage of 100 ν.

(発明が解決しようとする課題) しかしながら、上記構成の固体アクチュエータにおいて
、固体素子1が燻焼セラミツツク粉末、バインダー、可
塑剤、溶剤等を混合し、成膜焼成されるため、固体素子
1の内部に無数のボア(空孔)が存在する。したがって
、固体素子1の絶縁耐圧はこのボアの大きさ、数の影響
を受けて空気の絶縁耐圧以上に高くすることは不可能と
なる。
(Problem to be Solved by the Invention) However, in the solid actuator having the above configuration, the solid element 1 is formed by mixing smoky ceramic powder, a binder, a plasticizer, a solvent, etc., and is fired to form a film. There are countless bores. Therefore, the dielectric strength voltage of the solid-state element 1 is influenced by the size and number of the bores, and cannot be made higher than the dielectric strength voltage of air.

そして、該ボアが源となり固体素子1に絶縁破壊が生じ
ると、破壊部分が炭化して両型極面8を短絡させ、アク
チュエータとしての機能を果たさなくなる。
When dielectric breakdown occurs in the solid-state element 1 due to the bore, the broken part becomes carbonized and short-circuits the pole faces 8 of both types, so that it no longer functions as an actuator.

本発明は、上記従来の固体アクチュエータの問題点を解
決して、固体素子に印加される電界の強度を下げるとと
もに電源電圧も下げ、しかも大きな歪を発生することの
できる固体アクチュエータを提供することを目的とする
The present invention solves the problems of the conventional solid-state actuators described above, and provides a solid-state actuator that can lower the strength of the electric field applied to the solid-state element, lower the power supply voltage, and generate large strain. purpose.

(課題を解決するための手段) そのために、本発明の固体アクチュ土−夕においては、
圧電縦効果を利用した固体素子を複数個積層して積層振
動体を形成し、各固体素子を電源に並列に接続し、上記
積層振動体をその厚み方向において弾性板に接合しであ
る。
(Means for solving the problem) For this purpose, in the solid actuator of the present invention,
A laminated vibrating body is formed by laminating a plurality of solid elements that utilize the piezoelectric longitudinal effect, each solid element is connected in parallel to a power source, and the laminated vibrating body is bonded to an elastic plate in its thickness direction.

また、該積層振動体をその厚み方向に延びる結合面で2
組結合し、一方の積層振動体に正の歪が、他方の積層振
動体に負の歪が発生するように各固体素子を電源に接続
するようにしてもよい。
In addition, the laminated vibrating body has two bonding surfaces extending in the thickness direction.
The solid-state elements may be coupled to a power source so that positive strain is generated in one laminated vibrating body and negative strain is generated in the other laminated vibrating body.

(作用) 本発明によれば、上記のように圧電縦効果を利用し7た
固体素子を複数個積層して積層振動体を形成し、各固体
素子を電源に並列に接続し、上記積層振動体をその厚み
方向において弾性板に接合し0 ているので、各固体素子に発生した歪みを弾性板に加え
て大きい変位を得ることができる。
(Function) According to the present invention, a laminated vibrating body is formed by laminating a plurality of solid elements using the piezoelectric longitudinal effect as described above, each solid element is connected in parallel to a power source, and the laminated vibrating body is Since the body is joined to the elastic plate in the thickness direction, the strain generated in each solid element can be applied to the elastic plate to obtain a large displacement.

また、該積層振動体をその厚み方向に延びる結合面で2
組結合し、一方の積層振動体に正の歪が、他方の積層振
動体に負の歪が発生するように各固体素子を電源に接続
すると、それぞれの積層振動体による歪みを増幅するこ
とができる。
In addition, the laminated vibrating body has two bonding surfaces extending in the thickness direction.
If each solid-state element is connected to a power source in such a way that positive strain is generated in one laminated vibrating body and negative strain is generated in the other laminated vibrating body, the strain caused by each laminated vibrating body can be amplified. can.

(実施例) 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の固体アクチュエータの実施例を示す図
、第1図(A)は同斜視図、第1図(B)は同断面図、
第1図(C)は同屈曲状態図ある。
FIG. 1 is a diagram showing an embodiment of the solid actuator of the present invention, FIG. 1(A) is a perspective view thereof, FIG. 1(B) is a sectional view thereof,
FIG. 1(C) is a diagram of the same bending state.

図において、積層振動体10を一組使用してユニモルフ
型の固体アクチュエータが形成される。上述したように
、燗焼セラミック粉末、バインダー可塑剤、溶剤等が混
合されて成膜されて固体素子1が形成される。そして、
固体素子1は内部電極が印刷された後に積層、焼成され
、カッティングされる。該積層振動体10は、2点鎖線
で示す幅方向の両側面において導体21.22によって
電極接合される。上述したように導体2L22は並列に
接続されているので、低い駆動電圧で各固体素子1の電
界強度を高めることが可能である。
In the figure, a unimorph solid actuator is formed using a set of laminated vibrating bodies 10. As described above, the solid element 1 is formed by mixing the roasted ceramic powder, binder plasticizer, solvent, etc. and forming a film. and,
After the internal electrodes are printed, the solid-state device 1 is laminated, fired, and cut. The laminated vibrating body 10 is electrode-bonded by conductors 21 and 22 on both sides in the width direction indicated by two-dot chain lines. As described above, since the conductors 2L22 are connected in parallel, it is possible to increase the electric field strength of each solid-state element 1 with a low driving voltage.

上記構成の積層振動体10はその厚み方向において接着
剤3によって弾性板4に接合され、ユニモルフ型の固体
アクチュエータを形成している。そして、電圧が印加さ
れると各固体素子1の分極軸方向とその電界の方向によ
って伸縮歪が発生し、積層振動体10としては、低い駆
動電圧で大きな歪を発生ずることができる。
The laminated vibrating body 10 having the above structure is bonded to an elastic plate 4 with an adhesive 3 in its thickness direction to form a unimorph solid actuator. When a voltage is applied, expansion/contraction strain occurs depending on the direction of the polarization axis of each solid-state element 1 and the direction of its electric field, and the laminated vibrating body 10 can generate large strain with a low driving voltage.

上記積層振動体10と弾性板4を接合している接着剤3
の厚さが積層振動体10や弾性板4の厚さに比べて小さ
ければ、接着剤層3の剪断変形は無視することができ、
固体素子1、弾性板4内に発生する歪は固体アクチュエ
ータの厚み方向に連続して一時的に分布するため、第1
図(C)に示すように固体アクチュエータはある曲率で
屈曲する。
Adhesive 3 bonding the laminated vibrating body 10 and the elastic plate 4
If the thickness of the adhesive layer 3 is smaller than that of the laminated vibrating body 10 and the elastic plate 4, the shear deformation of the adhesive layer 3 can be ignored.
The strain generated in the solid element 1 and the elastic plate 4 is continuously and temporarily distributed in the thickness direction of the solid actuator.
As shown in Figure (C), the solid actuator bends with a certain curvature.

第2図は本発明の固体アクチュエータの第2の実施例を
示す図、第2図(A)は同斜視図、第2図(1 B)は同断面図、第2図(C)は同屈曲状態図である。
FIG. 2 is a diagram showing a second embodiment of the solid actuator of the present invention, FIG. 2(A) is a perspective view thereof, FIG. It is a bending state diagram.

図において、積層振動体10L102を二組使用してバ
イモルフ型固体アクチュエータが形成される。
In the figure, a bimorph solid actuator is formed using two sets of laminated vibrating bodies 10L102.

この場合、各積層振動体101,102はそれぞれ固体
素子1を積層して構成され、その厚み方向に延びる結合
面5で結合されている。そして、一方の積層振動体10
1の各固体素子1と他方の積層振動体102の各固体素
子1は電極面が相互に半ピツチずれている。
In this case, each of the laminated vibrating bodies 101 and 102 is constructed by laminating solid elements 1, and is coupled by a coupling surface 5 extending in the thickness direction. Then, one laminated vibrating body 10
The electrode surfaces of each of the solid-state elements 1 of one layered vibrating body 102 and each of the solid-state elements 1 of the other layered vibrating body 102 are shifted by half a pitch from each other.

すなわち、電極面をa−a、b−bとし、各固体素子1
の分極軸方向Pを電極面b−bから電極面a−a方向に
とると、上述したように個々の固体素子1は半ピツチず
れているため、各固体素子1間で電極面a−a、b−b
が電気的に短絡していることになる。外観上では図の2
点鎖線で囲まれた部分で導体21.22により電極接合
されている。
That is, the electrode surfaces are a-a and bb, and each solid-state element 1
If the polarization axis direction P is taken from the electrode plane b-b to the electrode plane a-a direction, since the individual solid-state elements 1 are shifted by half a pitch as described above, the electrode plane a-a between each solid-state element 1 is , b-b
This means that there is an electrical short circuit. The appearance is 2 in the diagram.
The electrodes are connected to each other by conductors 21 and 22 in the area surrounded by the dashed dotted line.

上記固体アクチュエータは、電圧が印加されると、両積
層振動体101.102の歪は逆符号になるので第2図
(C)に示すような屈曲運動を励起するこ2 とができる。
When a voltage is applied to the solid-state actuator, the strains of both the laminated vibrating bodies 101 and 102 have opposite signs, so that it is possible to excite the bending motion as shown in FIG. 2(C).

第3図は本発明の固体アクチュエータの第3の実施例を
示す図、第3図(A)は同斜視図、第3図(B)は同断
面図、第3図(C)は同屈曲状態図である。
FIG. 3 is a diagram showing a third embodiment of the solid state actuator of the present invention, FIG. 3(A) is a perspective view thereof, FIG. 3(B) is a sectional view thereof, and FIG. 3(C) is a bent view thereof. FIG.

図において、2つの積層振動体101,102の各固体
素子1間は、第2図の例と異なり固体素子1を半ピツチ
ずつずらして電気的に短絡させるのではなく、接続手段
23で電気的に短絡させている。動作上は第2図の例と
同じく固体アクチュエータに電圧が印加されると両積層
振動体101,102の歪は逆符号になるので、アクチ
ュエータは第3図(C)に示すような屈曲運動を励起す
る。
In the figure, unlike the example in FIG. 2, the solid elements 1 of the two laminated vibrators 101 and 102 are not electrically short-circuited by shifting the solid elements 1 by half a pitch, but are electrically connected by connecting means 23. short-circuited. In terms of operation, as in the example shown in Fig. 2, when a voltage is applied to the solid actuator, the strains in both the laminated vibrators 101 and 102 have opposite signs, so the actuator makes a bending motion as shown in Fig. 3 (C). excite.

なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上、詳細に説明したように本発明によれば、圧電縦効
果を利用した団体素子を複数個積層して3 4 積層振動体を形成し、各固体素子を電源に並列に接続し
、上記積層振動体をその厚み方向において弾性板に接合
し、又は該積層振動体をその厚み方向に延びる結合面で
2組結合し、一方の積層振動体に正の歪が、他方の積層
振動体に負の歪が発生するように各固体素子を電源に接
続するようにしている。
(Effects of the Invention) As described above in detail, according to the present invention, a plurality of collective elements using the piezoelectric longitudinal effect are stacked to form a 34-layered vibrating body, and each solid-state element is connected in parallel to the power source. The laminated vibrating body is connected to an elastic plate in its thickness direction, or two sets of laminated vibrating bodies are connected by a bonding surface extending in the thickness direction, so that a positive strain is applied to one laminated vibrating body, and a positive strain is applied to the other laminated vibrating body. Each solid-state element is connected to a power source so that negative strain is generated in the laminated vibrating body.

したがって、圧電横効果を利用した従来のユニモルフ型
又はバイモルフ型の固体アクチュエータに比較して数倍
高いエネルギ効率を持つアクチュエータを提供すること
が可能となり、大きな変位を出力することができるだけ
でなく、低い電圧での駆動が可能となり、汎用電源を使
用することができる。
Therefore, it is possible to provide an actuator with energy efficiency several times higher than that of conventional unimorph or bimorph solid state actuators that utilize piezoelectric transverse effects. It is possible to drive with voltage, and a general-purpose power source can be used.

また、圧電縦効果を利用した従来のアクチュエータでは
、機械的インピーダンスが相当に高く、応用機器に対応
したインピーダンスマツチング用メカニズムを準備する
必要があり、そのために機構も複雑となるが、本発明の
固体アクチュエータにおいては、インピーダンスマツチ
ング用メカニズムは不要であり、機構も簡素である。
Furthermore, in conventional actuators that utilize piezoelectric longitudinal effects, the mechanical impedance is quite high, and it is necessary to prepare an impedance matching mechanism compatible with the applied equipment, which makes the mechanism complicated. In solid state actuators, an impedance matching mechanism is not required and the mechanism is simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の固体アクチュエータの実施例を示す図
、第1図(A)は同斜視図、第1図(B)は同断面図、
第1図(C)は同屈曲状態図、第2図は本発明の固体ア
クチュエータの第2の実施例を示す図、第2図(八)は
同斜視図、第2図(B)は同断面図、第2図(C)は同
屈曲状態図、第3図は本発明の固体アクチュエータの第
3の実施例を示す図、第3図(A)は同斜視図、第3図
(B)は同断面図、第3図(C)は同屈曲状態図、第4
図はアクチュエータの動作を示す図、第4図(A)は圧
電縦効果を利用したアクチュエータの動作図、第4図(
B)は圧電横効果を利用したアクチュエータの動作図、
第5図は積層型のアクチュエータの斜視図である。 1・・・固体素子、8・・・電極面、13・・・電源、
2L22・・・導体、23・・・リード線、101,1
02・・・積層振動体。
FIG. 1 is a diagram showing an embodiment of the solid actuator of the present invention, FIG. 1(A) is a perspective view thereof, FIG. 1(B) is a sectional view thereof,
FIG. 1(C) is a bending state diagram of the same, FIG. 2 is a diagram showing a second embodiment of the solid state actuator of the present invention, FIG. 2(8) is a perspective view of the same, and FIG. 2(B) is a diagram of the same. A sectional view, FIG. 2(C) is a bending state diagram of the same, FIG. 3 is a diagram showing a third embodiment of the solid actuator of the present invention, FIG. 3(A) is a perspective view of the same, and FIG. ) is the same sectional view, Figure 3 (C) is the same bending state diagram, Figure 4
The figure shows the operation of the actuator, Figure 4 (A) shows the operation of the actuator using the piezoelectric longitudinal effect, and Figure 4 (A) shows the operation of the actuator using the piezoelectric longitudinal effect.
B) is an operation diagram of an actuator using piezoelectric transverse effect;
FIG. 5 is a perspective view of a laminated actuator. DESCRIPTION OF SYMBOLS 1... Solid-state element, 8... Electrode surface, 13... Power supply,
2L22...Conductor, 23...Lead wire, 101,1
02...Laminated vibrating body.

Claims (2)

【特許請求の範囲】[Claims] (1)(a)圧電縦効果を利用した固体素子を複数個積
層して積層振動体を形成し、 (b)各固体素子を電源に並列に接続し、 (c)上記積層振動体をその厚み方向において弾性板に
接合したことを特徴とする固体アクチュエータ。
(1) (a) Form a laminated vibrating body by laminating a plurality of solid-state elements that utilize the piezoelectric longitudinal effect, (b) Connect each solid-state element in parallel to a power source, (c) Connect the laminated vibrating body to its A solid actuator characterized by being joined to an elastic plate in the thickness direction.
(2)(a)該積層振動体をその厚み方向に延びる結合
面で2組結合し、 (b)一方の積層振動体に正の歪が、他方の積層振動体
に負の歪が発生するように各固体素子を電源に接続した
ことを特徴とする請求項1記載の固体アクチュエータ。
(2) (a) Two sets of the laminated vibrating bodies are connected by a coupling surface extending in the thickness direction, and (b) positive strain is generated in one laminated vibrating body and negative strain is generated in the other laminated vibrating body. 2. The solid state actuator according to claim 1, wherein each solid state element is connected to a power source in such a manner.
JP1260067A 1989-10-06 1989-10-06 Solid-state actuator Pending JPH03123088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1260067A JPH03123088A (en) 1989-10-06 1989-10-06 Solid-state actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1260067A JPH03123088A (en) 1989-10-06 1989-10-06 Solid-state actuator

Publications (1)

Publication Number Publication Date
JPH03123088A true JPH03123088A (en) 1991-05-24

Family

ID=17342851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260067A Pending JPH03123088A (en) 1989-10-06 1989-10-06 Solid-state actuator

Country Status (1)

Country Link
JP (1) JPH03123088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903498B2 (en) 2001-08-28 2005-06-07 Murata Manufacturing Co., Ltd. Piezoelectric device, ladder type filter, and method of producing the piezoelectric device
JP2011199206A (en) * 2010-03-23 2011-10-06 Canon Inc Piezoelectric element to be used for vibration device, vibration device, and dust removal device having vibration device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903498B2 (en) 2001-08-28 2005-06-07 Murata Manufacturing Co., Ltd. Piezoelectric device, ladder type filter, and method of producing the piezoelectric device
JP2011199206A (en) * 2010-03-23 2011-10-06 Canon Inc Piezoelectric element to be used for vibration device, vibration device, and dust removal device having vibration device

Similar Documents

Publication Publication Date Title
US5471721A (en) Method for making monolithic prestressed ceramic devices
US5276657A (en) Metal-electroactive ceramic composite actuators
US6534898B1 (en) Piezoelectric/electrostrictive device having mutually opposing thin plate section
JPS6066882A (en) Piezoelectric displacement element and polarizing method thereof
US5892318A (en) Piezoelectric transformer with multiple output
JPH08242025A (en) Piezoelectric actuator
JP2001352768A (en) Multilayer electromechanical energy conversion element and oscillation wave driver
JP2019009414A (en) Multilayer piezoelectric element, piezoelectric vibration apparatus, and electronic device
JP2005507323A5 (en)
JP2007512703A (en) Transverse displacement actuator array
WO2020152905A1 (en) Stacked piezoelectric element and piezoelectric actuator
JPH03123088A (en) Solid-state actuator
JP2001211668A (en) Fine positioning actuator, thin film magnetic head device positioning actuator and head suspension assembly having the same
JPH10284763A (en) Piezoelectric actuator
JPS6412111B2 (en)
JPH04167580A (en) Laminated piezoelectric actuator element
JP3326735B2 (en) Piezo actuator
JP2893765B2 (en) Method for manufacturing multimorph element
JPS63260085A (en) Piezoelectric actuator
JP4818853B2 (en) Ultrasonic motor element
JP3266122B2 (en) Piezoelectric transformer
JPH01226187A (en) Method of driving laminated piezoelectric element
JPS6041272A (en) Piezoelectric displacement element
JP2706083B2 (en) Piezo actuator
JP3017784B2 (en) Stacked displacement element