JPH03122945A - Fluorescent substance missing amount measuring method due to mislanding - Google Patents

Fluorescent substance missing amount measuring method due to mislanding

Info

Publication number
JPH03122945A
JPH03122945A JP25947589A JP25947589A JPH03122945A JP H03122945 A JPH03122945 A JP H03122945A JP 25947589 A JP25947589 A JP 25947589A JP 25947589 A JP25947589 A JP 25947589A JP H03122945 A JPH03122945 A JP H03122945A
Authority
JP
Japan
Prior art keywords
phosphor
mislanding
amount
light
light quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25947589A
Other languages
Japanese (ja)
Inventor
Isao Kondo
功 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25947589A priority Critical patent/JPH03122945A/en
Publication of JPH03122945A publication Critical patent/JPH03122945A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide practicability of measuring the missing amount of fluorescent substance easily and accurately by calculating the light emission area of the fluorescent substance in the mislanding condition of the basis of the ratio of light quantity measured in the mislanding condition to the max. light quantity, subjecting the result from calculation to specified computing processes, and determining the missing amount of fluorescent substance. CONSTITUTION:After the light quantity from a fluorescent substance 8 at the time of mislanding is measured at the tube surface light quantity measuring stage, electron beam 10 is moved forcedly at the landing position shift stage to have just landing, and at the missing amount calculating stage, the missing amount (e) is calculated from the light quantity at the time and the light quantity at the time of mislanding. That is, the light quantity at mislanding and the light quantity at forced just landing are measured using a photo-sensor 11, and the missing amount is calculated from the fact that the area of light emission region determined as the ratio between the two is a function depending upon the missing amount. High precision measurement is thus made using a device of simple constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はシャドウマスク方式カラー陰極線管(以下、
CRTと言う)において、管面の蛍光体に対して電子ビ
ームのミスランデインクが生じた場合の蛍光体の未発光
領域の大きさ、即ち、蛍光体の欠け量を測定するための
ミスランデインクによる蛍光体の欠け量測定方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a shadow mask type color cathode ray tube (hereinafter referred to as
Mislande ink is used to measure the size of the non-emission area of the phosphor when mislande ink of the electron beam occurs on the phosphor on the tube surface, that is, the amount of missing phosphor in CRTs. The present invention relates to a method for measuring the amount of chipping of a phosphor.

〔従来の技術〕[Conventional technology]

一般に、テレビ、モニタ等に使用されるCRTにおいて
は、その管体の製造時の不均一性や電子銃あるいは偏向
ヨーク等の不均一性等により、電子ビームのランディン
グが蛍光面の全面に均一に行われないことが多く、特に
管面のコーナ部において電子ビームのミスランデインク
が生じ易い。
In general, in CRTs used in televisions, monitors, etc., the landing of the electron beam is not uniform over the entire surface of the phosphor screen due to non-uniformity in the manufacturing of the tube body, non-uniformity in the electron gun or deflection yoke, etc. This is often not done, and electron beam mislanding is likely to occur, especially at the corners of the tube surface.

このミスランデインクに関する計測項目の一つとして、
蛍光体の欠け量を測定する必要がある。
As one of the measurement items regarding this Misland ink,
It is necessary to measure the amount of missing phosphor.

第8図(al 、 (blは従来のミスランデインクに
よる蛍光体の欠け量測定方法を示す構成図であり、図に
おいて、1はCRT、2はCRTlのネック部に設けら
れた偏向ヨーク、3はCRTlの管面を拡大して目視す
るCRT用顕微鏡、4はCCDカメラ、5はCCDカメ
ラ4に取付けたレンズ系、6はCCDカメラ4が接続さ
れた画像測定装置である。
FIG. 8 (al, (bl) is a block diagram showing a method for measuring the amount of missing phosphor using a conventional Misland ink. In the figure, 1 is a CRT, 2 is a deflection yoke provided at the neck of the CRT, and 3 1 is a CRT microscope for magnifying and visualizing the tube surface of the CRTl; 4 is a CCD camera; 5 is a lens system attached to the CCD camera 4; 6 is an image measuring device to which the CCD camera 4 is connected.

次に動作について説明する。Next, the operation will be explained.

第1の測定方法(第8図(a))は、CRT用顕微鏡3
によりCRTlの管面の一部を拡大し、蛍光体と電子ビ
ームとのずれによる蛍光体の未発光領域の大きさを、顕
微鏡内スケール又は蛍光体の直径を目安として、目視に
より読取る。
The first measurement method (FIG. 8(a)) uses a CRT microscope 3.
A part of the tube surface of the CRTl is enlarged, and the size of the non-emission region of the phosphor due to the misalignment between the phosphor and the electron beam is visually read using the scale inside the microscope or the diameter of the phosphor as a guide.

第2の測定方法(第8図(b))は、CCDカメラ4に
よりレンズ系5を通じて管面の一部を撮像する。第9図
はCCDカメラ4からの入力画像を示し、カメラ視野7
内には蛍光体8と周囲のブラックマトリクス部9とがあ
り、蛍光体8には電子ビーム10が両者の中心がずれて
照射されており、このため蛍光体8には発光領域8aと
未発光領域8bとが生じている。ここで、未発光領域8
bの最大幅を蛍光体8の欠け量eとする。
In the second measurement method (FIG. 8(b)), a part of the tube surface is imaged by a CCD camera 4 through a lens system 5. FIG. 9 shows an input image from the CCD camera 4, and the camera field of view 7
There is a phosphor 8 and a surrounding black matrix part 9 inside the phosphor 8, and the phosphor 8 is irradiated with an electron beam 10 with the centers of the two deviated from each other. A region 8b is generated. Here, the non-emission area 8
Let the maximum width of b be the missing amount e of the phosphor 8.

上記発光領域8aと未発光領域8bとブラックマトリク
ス部9とには明確な濃淡差があるので、この濃淡差を利
用して、画像測定装置6により、上記3つの部分のエツ
ジを検出し、2値化する等の画像処理を行うことにより
、未発光領域8bの形状を求め、その最大幅を検出する
ことにより、上記欠け量eを求めることができる。
Since there is a clear difference in shading between the light-emitting region 8a, the non-light-emitting region 8b, and the black matrix portion 9, the edges of the three parts are detected by the image measuring device 6 using this difference in shading. By performing image processing such as value conversion, the shape of the non-emission region 8b is obtained, and by detecting its maximum width, the above-mentioned missing amount e can be obtained.

なお、この発明に関する従来技術として、例えば特開昭
62−20222号公報に開示されるものがある。
In addition, as a prior art related to this invention, there is one disclosed in, for example, Japanese Patent Laid-Open No. 62-20222.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のミスランデインクによる蛍光体の欠け量測定方法
は以上のよ5に構成されているので、第2の測定方法の
場合、十分な精度を得るためには、蛍光体8の直径が最
小でもカメラ視野7のl/10程度は必要であり、その
場合カメラ視野7は数mm以下のレベル迄拡大する必要
があり、そのレベル迄拡大すると、レンズ系5による光
量不足や拡大による測定系の振動等の問題が発生し、測
定が困難になるので、高価なレンズと振動防止対策とが
必要となる。このため、第1の方法が一般的に使用され
ているが、第1の測定方法は、目視による測定のため、
人及び顕微鏡3等の器具による測定バラツキが大きく、
また、測定時間も長くかかる等の課題があった。
Since the conventional method for measuring the amount of chipped phosphor using Mislande ink is configured as shown in 5 above, in the case of the second measurement method, in order to obtain sufficient accuracy, even if the diameter of the phosphor 8 is the smallest, Approximately 1/10 of the camera field of view 7 is required, and in that case, the camera field of view 7 needs to be expanded to a level of several mm or less, and if it is expanded to that level, the lens system 5 will cause insufficient light intensity and the measurement system will vibrate due to the expansion. Problems such as these occur, making measurement difficult, requiring expensive lenses and measures to prevent vibrations. For this reason, the first method is generally used, but the first measurement method is a visual measurement, so
There are large measurement variations due to people and instruments such as microscopes.
In addition, there were other problems such as the measurement time being long.

この発明は、上記のような課題を解消するためになされ
たもので、蛍光体の欠け量を容易に精度良く測定できる
ミスランデインクによる蛍光体の欠け量測定方法を得る
ことを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for measuring the amount of phosphor chipping using a misland ink, which allows the amount of phosphor chipping to be easily and accurately measured.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るミスランデインクによる蛍光体の欠け量
測定方法は、管面光量測定工程でミスランデインク時の
蛍光体の光量を測定した後、ランディング位置移動工程
で電子ビームを強性的に移動させてジャストランディン
グさせ、欠け量演算工程でそのときの光量と上記ミスラ
ンデインク時の光量とから欠け量eを演算するようにし
たものである。
In the method for measuring the amount of missing phosphor using misland ink according to the present invention, after measuring the amount of light of the phosphor during misland inking in the tube surface light intensity measuring step, the electron beam is moved intensely in the landing position moving step. Then, in the chipping amount calculation step, the chipping amount e is calculated from the light amount at that time and the light amount at the time of mislanding.

〔作 用〕[For production]

この発明におけるミスランデインクによる蛍光体の欠け
量測定方法の欠け量演算工程は、光センサを用いて、ミ
スランデインク時の光量と、強制的にジャストランディ
ングさせた時の光量とを測定し、両者の比により求まる
発光領域の面積が欠け量の関数であることから欠け量を
演算することができる。
In the chipping amount calculation step of the chipping amount measuring method of the phosphor due to mislanding ink according to the present invention, an optical sensor is used to measure the amount of light during mislanding and the amount of light when forced to just land, Since the area of the light emitting region determined by the ratio of the two is a function of the amount of chipping, the amount of chipping can be calculated.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1はCRT、2はCRTlに設けられ
た偏向ヨーク、11は例えばCOD素子等を用いた管面
光量検出用の光センサ部、12は後述するセンサ測定、
ウオブリング制御及び測定結果の処理等を行う測定装置
である。
In FIG. 1, 1 is a CRT, 2 is a deflection yoke provided on the CRTl, 11 is an optical sensor section for detecting the amount of light on the tube surface using, for example, a COD element, and 12 is a sensor measurement unit to be described later.
This is a measuring device that performs wobbling control and processing of measurement results.

第2図は光センサ部11を示す正面であり、光センサ部
11のセンサ11aの周辺4ケ所に、それぞれ一対の垂
直ウオブリングコイル13と水平ウオブリングコイル1
4とが取付けられている。
FIG. 2 is a front view showing the optical sensor section 11, and a pair of vertical wobbling coils 13 and a pair of horizontal wobbling coils 1 are provided at four locations around the sensor 11a of the optical sensor section 11, respectively.
4 is installed.

次に動作について説明する。Next, the operation will be explained.

今、管面の任意のポイントでの例えば赤色の蛍光体8へ
の電子ビーム1oのランディング状態が第3図(4)の
状態であったとする。このポイントで光センサ部11に
より光量検出した場合、第4図に示すように、ある広が
りを持った検出エリア15内のRで示す赤の蛍光体8の
各発光部分の総和の光量KAが検出される(管面光量測
定工程)。なお、G、Bは未発光の緑、青の蛍光体8を
示す。
Now, assume that the landing state of the electron beam 1o on, for example, the red phosphor 8 at an arbitrary point on the tube surface is the state shown in FIG. 3(4). When the light sensor unit 11 detects the light amount at this point, as shown in FIG. (tube surface light amount measurement process). Note that G and B indicate green and blue phosphors 8 that do not emit light.

次に、水平ウオブリングコイル14に電流−11を流す
ことにより、電子ビーム10を強制的に水平方向に移動
させ、このときの光量KBを測定する。次に、水平ウオ
ブリングコイル14に電流子■1を流すことにより、電
子ビーム10を上記と逆方向の水平方向に強制的に移動
させ、このときの光量Kcを測定する。上記KA 、K
B 、KcKより、第5図に示す光量変化特性カーブが
得られたとする。
Next, by passing a current -11 through the horizontal wobbling coil 14, the electron beam 10 is forcibly moved in the horizontal direction, and the amount of light KB at this time is measured. Next, the electron beam 10 is forcibly moved in the horizontal direction opposite to the above direction by flowing the current element 1 through the horizontal wobbling coil 14, and the amount of light Kc at this time is measured. Above KA, K
Suppose that the light amount change characteristic curve shown in FIG. 5 is obtained from B and KcK.

この特性カーブの場合、Knが最大光量であるので、こ
のとき、水平方向のジャストランディング状態が得られ
たものとする。垂直方向についても、上記と同様にして
垂直ウオブリングコイル13に互いに逆方向の電流を流
すことにより、電子ビーム10を垂直方向に強制的に移
動させて、垂直方向のジャストランディング状態での最
大光量KBを検出する。上記のようにして水平及び垂直
方向のジャストランディング状態が得られたときは、第
3図(Blのように、蛍光体8の中心と電子ビーム10
の中心とが一致したジャストランディング状態となって
いる(ランディング位置移動工程)。
In the case of this characteristic curve, since Kn is the maximum light amount, it is assumed that a just landing state in the horizontal direction is obtained at this time. In the vertical direction, by flowing currents in opposite directions to the vertical wobbling coil 13 in the same manner as described above, the electron beam 10 is forcibly moved in the vertical direction, and the maximum light intensity in the vertical just-landing state is Detect KB. When the just landing state in the horizontal and vertical directions is obtained as described above, the center of the phosphor 8 and the electron beam 10 are
is in a just-landing state in which the center of the plane coincides with the center of the plane (landing position movement process).

なお、同図(clは上記電流子11により光量Kcが得
られた場合のランディング状態である。
Note that in the same figure (cl is the landing state when the light quantity Kc is obtained by the above-mentioned current element 11).

次に、上記ミスランデインク状態での光量KAとジャス
トランディング状態での光量KBとを用いて蛍光体8の
欠け量eを求める欠け量演算工程について説明する。
Next, a description will be given of a chipping amount calculation step for calculating the chipping amount e of the phosphor 8 using the light amount KA in the mislanded ink state and the light amount KB in the just landing state.

第6図において、蛍光体80半径なr、電子ビーム10
0半径をrl、蛍光体8の中心と電子ビーム10の中心
との距離なd、発光領域8aの発光面積をSとする。今
、蛍光体B及び電子ビーム10が完全な円形であるとし
、また、発光面積■検出光量KAという理想的な状態を
考えると、が成立つ。このとき発光面積Sは欠け量eの
関数となり、 S = f (el 但し、 で表わされる。第7図に示す特性カーブaは、上記(2
)式のSとeとの関係を示すものである。
In FIG. 6, the radius r of the phosphor 80, the electron beam 10
The zero radius is rl, the distance between the center of the phosphor 8 and the center of the electron beam 10 is d, and the light emitting area of the light emitting region 8a is S. Now, assuming that the phosphor B and the electron beam 10 are perfectly circular, and considering the ideal state of light emitting area x detected light amount KA, then the following holds true. At this time, the light emitting area S becomes a function of the amount of chipping e, and is expressed as S = f (el).The characteristic curve a shown in FIG.
) shows the relationship between S and e in the equation.

従って、光量KA 、KBを検出し、上記式(11、f
21を用〜・ることにより、欠け量eを演算できること
になる。実際には、蛍光体8及び電子ビーム10の形状
及び半径のバラツキがあり、発光面積Soc光量KAの
関係も電子ビーム10の密度等に影響され、完全とは言
えないので、第7図の特性カーブbのように理想状態の
特性カーブaから外れる。
Therefore, the light amounts KA and KB are detected, and the above formula (11, f
By using . . . 21, the missing amount e can be calculated. In reality, there are variations in the shape and radius of the phosphor 8 and the electron beam 10, and the relationship between the light emitting area Soc and the light amount KA is also affected by the density of the electron beam 10, etc., and cannot be said to be perfect. Therefore, the characteristics shown in FIG. As shown by curve b, the characteristic curve a deviates from the ideal state characteristic curve a.

しかし、特性カーブaからbへの補正量を予めに測定し
て、式(1) 、 (21の補正係数を求めておけば、
ミスランデインク時の蛍光体の欠け量eを光量比により
逆゛演算できることになる。
However, if the amount of correction from characteristic curve a to b is measured in advance and the correction coefficient of equation (1), (21) is obtained,
The missing amount e of the phosphor during misland inking can be calculated inversely by the light amount ratio.

なお、上記実施例では蛍光体8の欠け量eのみを求めた
が、ジャストランディング状態となる水平、垂直ウオブ
リング電流値により欠けの方向も測定できる。
In the above embodiment, only the chipping amount e of the phosphor 8 was determined, but the chipping direction can also be measured based on the horizontal and vertical wobbling current values that result in a just-landing state.

また、上記実施例では、光量検出用の光センサ部11に
CCD素子を用いたが、フォトセンサ等の他の受光素子
を用いてもよく、上記実施例と同様の効果を奏する。
Further, in the above embodiment, a CCD element is used as the light sensor section 11 for detecting the amount of light, but other light receiving elements such as a photosensor may be used, and the same effects as in the above embodiment can be obtained.

また、垂直及び水平ウオブリングコイル13゜14は、
光センサ部11の周囲に取付けた例を示したが、CRT
lのネック部周囲又は管面周囲等に取付けてもよい。
In addition, the vertical and horizontal wobbling coils 13 and 14 are
Although an example is shown in which it is installed around the optical sensor section 11, CRT
It may be attached around the neck part of l or around the tube surface.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、ミスランデインク状態
での光量検出と電子ビームを強制的に移動させて得られ
るジャストランディング状態での光量検出とにより蛍光
体と電子ビームとのミスランデインクによる蛍光体の欠
け量を演算するように構成したので、従来の目視による
測定及び画像処理による測定と比較すると、簡単な構成
の装置を用いて精度の高い測定を行うことができると共
に、コンピュータ等を用いることにより、自動的に測定
を行うことができる効果が得られる。
As described above, according to the present invention, the misland ink between the phosphor and the electron beam is detected by detecting the amount of light in the misland ink state and in the just landing state obtained by forcibly moving the electron beam. Since the structure is configured to calculate the amount of missing phosphor, it is possible to perform highly accurate measurement using a device with a simple configuration compared to conventional measurement by visual inspection and measurement by image processing. By using this method, the effect of automatically performing measurements can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例によるミスランデインク
による蛍光体の欠け量測定方法を示す構成図、第2図は
光センサ部の正面図、第3図は蛍光体と電子ビームとの
ランディング状態を説明する構成図、第4図はセンサ検
出エリア内の蛍光体の配列図、第5図はウオブリング電
流と光量との関係を示す特性図、第6図は蛍光体と電子
ビームとの関係を示す構成図、第7図は発光面積と蛍光
体の欠け量との関係を示す特性図、第8図(a+ 、 
(blは従来のミスランデインクによる蛍光体の欠け量
測定方法を示す構成図、第9図は従来方法におけるカメ
ラ入力画像を示す構成図である。 1はcg’r1Bは蛍光体、10は電子ビーム、11は
光センサ部、12は測定装置、13は垂直ウオブリング
コイル、14は水平ウオブリングコイル、15はセンサ
検出エリア、eは蛍光体の欠け量。 なお、図中、同一符号は同一 又は相当部分を示す。
FIG. 1 is a block diagram showing a method for measuring the amount of missing phosphor using a misland ink according to an embodiment of the present invention, FIG. 2 is a front view of the optical sensor section, and FIG. A configuration diagram explaining the landing state, Fig. 4 is an arrangement diagram of the phosphor in the sensor detection area, Fig. 5 is a characteristic diagram showing the relationship between wobbling current and light intensity, and Fig. 6 is a diagram showing the relationship between the phosphor and the electron beam. A configuration diagram showing the relationship, FIG. 7 is a characteristic diagram showing the relationship between the light emitting area and the amount of chipping of the phosphor, and FIG. 8 (a+,
(bl is a block diagram showing the conventional method for measuring the amount of missing phosphor using Misland ink, and FIG. 9 is a block diagram showing the camera input image in the conventional method. 1 is cg'r1B, and 10 is the electron beam. 11 is the optical sensor unit, 12 is the measuring device, 13 is the vertical wobbling coil, 14 is the horizontal wobbling coil, 15 is the sensor detection area, and e is the amount of missing phosphor. Note that the same symbols in the figures are the same. or a corresponding portion.

Claims (1)

【特許請求の範囲】[Claims] 陰極線管の管面の蛍光体に対して電子ビームのミスラン
デインクが生じている状態において上記管面の所定の検
出エリアで発光する蛍光体の光量を測定する管面光量測
定工程と、上記検出エリアで発光する蛍光体の光量が最
大となるランデイング位置に上記電子ビームを強制的に
移動させるランデイング位置移動工程と、上記ミスラン
デイング状態で測定された光量と上記最大光量との比に
基づいて算出されるミスランデイング状態での蛍光体の
発光面積を用いて所定の演算を行うことにより、蛍光体
の欠け量を求める欠け量演算工程とを備えたミスランデ
イングによる蛍光体の欠け量測定方法。
A tube surface light intensity measurement step of measuring the amount of light emitted by the phosphor emitted in a predetermined detection area of the tube surface in a state where electron beam mislanding occurs on the phosphor on the tube surface of the cathode ray tube; and the above-mentioned detection. Calculated based on the landing position movement step of forcibly moving the electron beam to the landing position where the light intensity of the phosphor emitting light in the area is maximum, and the ratio of the light intensity measured in the mislanding state to the above maximum light intensity. A method for measuring the amount of chipping of a phosphor by mislanding, comprising: calculating the amount of chipping of the phosphor by performing a predetermined calculation using the light emitting area of the phosphor in a mislanding state.
JP25947589A 1989-10-04 1989-10-04 Fluorescent substance missing amount measuring method due to mislanding Pending JPH03122945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25947589A JPH03122945A (en) 1989-10-04 1989-10-04 Fluorescent substance missing amount measuring method due to mislanding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25947589A JPH03122945A (en) 1989-10-04 1989-10-04 Fluorescent substance missing amount measuring method due to mislanding

Publications (1)

Publication Number Publication Date
JPH03122945A true JPH03122945A (en) 1991-05-24

Family

ID=17334594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25947589A Pending JPH03122945A (en) 1989-10-04 1989-10-04 Fluorescent substance missing amount measuring method due to mislanding

Country Status (1)

Country Link
JP (1) JPH03122945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142944A (en) * 2014-06-12 2015-12-23 삼성중공업 주식회사 Crane boom rest apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142944A (en) * 2014-06-12 2015-12-23 삼성중공업 주식회사 Crane boom rest apparatus

Similar Documents

Publication Publication Date Title
US3723801A (en) Measuring the beam landing characteristic of a shadow-mask cathode-ray tube
JPS6246942B2 (en)
JPH03122945A (en) Fluorescent substance missing amount measuring method due to mislanding
GB2064759A (en) Determining beam dimensions at the screen of a shadow mask cathode ray tube
KR20010055163A (en) Convergence measuring apparatus and method thereof
US6333500B2 (en) Method of inspecting a substrate furnished with a phosphor layer
JPS61211935A (en) Convergence amount detective method of color cathode-ray tube
KR200176399Y1 (en) An electron gun grid gap measuring device
JP3283957B2 (en) Bright line width measurement method for color cathode ray tubes
JP3217515B2 (en) Spot size measuring device for color cathode ray tube
US6274990B1 (en) Device and method for correcting landing position in color cathode ray tube
KR100261477B1 (en) Apparatus for measuring convergence using an optical sensor
JPS5887973A (en) Evaluating device for color purity
KR100402396B1 (en) method for 3D magnetic field visulysing and system for performing the same
US6495976B2 (en) Color purity measuring method and color purity measuring apparatus
KR920003967B1 (en) Measuring method of landing for crt
KR950002575B1 (en) Measuring apparatus and method of color purity of a color cathode-ray tube
KR960008072B1 (en) Electron beam scanning position instrumentation circuit for monitor
JP3366374B2 (en) Image quality measuring device
JP3441146B2 (en) Exposure table light source position measurement device
KR100222950B1 (en) The motion measuring method and apparatus of color braun tube
JPH0378935A (en) Method for measuring of electron beam concentration in color cathode-ray tube
JP2004363051A (en) Measuring method of color cathode-ray tube and measuring device of color cathode-ray tube
JPH0815045B2 (en) CRT landing measuring instrument
JPS62243226A (en) Measurement of cathode-ray tube spot size