JP3441146B2 - Exposure table light source position measurement device - Google Patents

Exposure table light source position measurement device

Info

Publication number
JP3441146B2
JP3441146B2 JP04460494A JP4460494A JP3441146B2 JP 3441146 B2 JP3441146 B2 JP 3441146B2 JP 04460494 A JP04460494 A JP 04460494A JP 4460494 A JP4460494 A JP 4460494A JP 3441146 B2 JP3441146 B2 JP 3441146B2
Authority
JP
Japan
Prior art keywords
light source
exposure
image receiving
receiving unit
exposure table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04460494A
Other languages
Japanese (ja)
Other versions
JPH07254363A (en
Inventor
浩道 新井
公良 西澤
寛 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP04460494A priority Critical patent/JP3441146B2/en
Publication of JPH07254363A publication Critical patent/JPH07254363A/en
Application granted granted Critical
Publication of JP3441146B2 publication Critical patent/JP3441146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、陰極線管のパネル内
面に複数の蛍光体を選択塗布する工程に係わる露光台光
源位置測定装置に関する。 【0002】 【従来の技術】カラー陰極線管は図3に示すように、前
面パネルガラス5の内面には、例えばストライプ状の赤
発光蛍光体5R、緑発光蛍光体5G、青発光蛍光体5Bが順次
規則的に配列された蛍光面が配設されている。さらに、
多数の規則的に配設された電子ビーム開孔4aを有するシ
ャドウマスク4がこの蛍光面に近接対向して配設されて
いる。また、1個の電子ビーム開孔4aは蛍光面の赤発光
蛍光体5R、緑発光蛍光体5G、青発光蛍光体5Bを1組とし
て対応している。 【0003】そして、蛍光面に対向して配設された3本
の電子ビームGr、Gg、Gbは、管外に配設された偏向装置
により水平方向および垂直方向への偏向を受けながら、
パララックスの原理により、シャドウマスク4の電子ビ
ーム開孔4aを通過してそれぞれの蛍光体を射突発光せし
めてカラー映像を映出する。 【0004】このようなカラー陰極線管の基本動作から
すれば、例えば赤用の電子ビームGrは赤発光蛍光体5Rを
正しく射突発光させ、他の緑発光蛍光体5Gおよび青発光
蛍光体5Bには射突しないようにすることが絶対的に必要
である。 【0005】従って、パネル内面に3色発光蛍光体を選
択塗布する工程は組み合わせるパネルとシャドウマスク
を特定して露光−現像処理により形成される。即ち、電
子銃から射出された各電子ビームを想定した仮想電子ビ
ーム源に光源を配置し、この光源からの光がシャドウマ
スクの電子ビーム開孔4aを通過してパネル内面各部に到
達する電子ビームの軌跡とできるだけ一致するように露
光レンズで補正するようにして蛍光面に塗布したフォト
レジスト膜を露光するようにしている。また、このよう
なパネルの露光−現像処理は赤用、緑用および青用の少
なくとも3回を必要とし、各蛍光体間に光吸収体を配設
する場合は合計4回の露光−現像処理が必要となる。 【0006】さらに、カラー陰極線管の量産工程におい
ては、何台もの露光装置を置いて同時に露光−現像処理
を行わないと生産性が極めて低下する。このためには、
特定サイズのパネルに対して全て同じ条件で露光処理が
できるように基準露光台を準備し、全ての露光装置をこ
の基準露光台により光源の位置を調整しておくことが必
要である。 【0007】図4にこのような基準露光台の光源位置の
調整測定装置の概略構成を示す。即ち、基準露光台1の
上部には陰極線管のパネル取付部が設けられ、このパネ
ル取付部にシャドウマスク4を取り付けたパネルガラス
5が載置される。また、露光台1の内部には露光光源2
が配設され、この露光光源2とパネルガラス5の間には
露光レンズ3が配設されている。 【0008】このような状態で、露光光源2からの光は
露光レンズ3によって光路を補正されながらシャドウマ
スク4の電子ビーム開孔4aを通過してパネルガラス5の
内面各部に到達する。一方、パネルガラス5の外面では
携帯型の低倍率の顕微鏡6により光のパネルガラス5の
内面到達像と位置を測定し、露光光源2や露光レンズ3
の位置を適切に調整する。 【0009】次に、調整すべき他の露光台にこのパネル
を移し、同様の方法でパネルの内面到達像と位置を測定
し、この位置が基準露光台と一致するように露光台の調
整を行う。 【0010】基本的にはこのような調整作業は、例えば
特公昭63-66020号公報に示されるように、電子的に半自
動化された装置で行っている。即ち、図5に示すよう
に、露光台1のパネル取付面上には露光光源2と対向し
て、半導体ラインセンサやCCDカメラなどからなる光
学センサを有する受像部8が取付けられる。そして、こ
の受像部8と露光レンズ3の間のシャドウマスクの電子
ビーム開孔に相当する位置には小孔を有するピンホール
板7が配置されている。 【0011】即ち、露光光源2からの光は露光レンズ3
でその光路が補正され、ピンホール板7の小孔を通過
し、ピンホールカメラの原理で受像部8の光学センサ上
に光源の像を結び電気信号に変換される。そしてこの電
気信号は、画像処理部(図示せず)のマイクロコンピュ
ータにより、例えば光量ピーク値とその位置がディジタ
ル処理され表示される。 【0012】このような方式で光源位置のズレ量を測定
する場合、図6に示すような関係となる。即ち、露光光
源2とピンホール板7の小孔との距離をL、ピンホール
板7の小孔と受像部8の光学センサとの距離をrとした
時、露光光源2の位置が2aから2bへとR1だけずれ、これ
に伴い光学センサ上の受像光学像が8aから8bへとR2だけ
移動した場合、L:r=R1:R2の比例式から露光光源2
のズレ量は容易に演算することができる。 【0013】 【発明が解決しようとする課題】上記の方式で露光光源
の位置のズレ量を測定する場合、その測定精度は同一解
像度の光学センサを用いたとして、上記Lとrの比によ
って左右されることになる。即ち、光源のズレ量はr/
L倍で受像部にズレ量として得られる。 【0014】ここで、露光光源2とピンホール板7の小
孔との距離Lはパネルのサイズで決まるほぼ一定の値で
あるから、ピンホール板7の小孔と受像部8の光学セン
サとの距離rを長く取るほどその測定精度は向上する。 【0015】しかしながら、カラー陰極線管は大型化が
進むとともに、解像度の向上、即ち、蛍光体ドットのピ
ッチが小さくなる方向にあり、上記の露光光源の位置の
ズレ量の測定精度もより高いものが必要となっている。
また、露光台は生産性とスペース効率を上げるために、
小形から大型のパネルまで1台の露光台で処理できるよ
うに設計されている。 【0016】従って、ピンホール板7の小孔と受像部8
の光学センサとの距離rを長く取るためには測定装置も
大型化することになるが、取り扱いやスペース効率など
の問題からその大きさには限界を生じていた。 【0017】本発明は以上の問題点に鑑みてなされたも
ので、大型や高精細のカラー陰極線管であっても露光光
源の位置のズレ量の測定に際し、測定装置を大型化する
ことなくピンホール板の小孔と受像部の光学センサとの
距離を実質的に長く取ることのできる露光台光源位置測
定装置を提供することを目的とする。 【0018】 【課題を解決するための手段】この発明は、上部に陰極
線管のパネル取付部が設けられ内部に光源および露光レ
ンズが少なくとも配設された露光台と、前記パネル取付
部上部に配置され小孔を有するピンホール板と、前記小
孔を通して前記光源からの光源像を受像し電気信号に変
換する受像部と、この受像部からの電気信号を処理する
画像処理部とを少なくとも備えた露光台光源位置測定装
置において、前記ピンホール板と受像部との間の光路に
少なくとも1個のミラーを配置し、このミラーからの反
射光を前記受像部で検出する露光台光源位置測定装置と
することによって上記目的を達成するものである。 【0019】 【作用】小形の陰極線管用露光台から大型の陰極線管用
露光台まで、1台の露光台で受像部での光源位置ズレを
一定精度で測定する場合、まず露光光源2とピンホール
板7の小孔との距離Lは大型化するほど長くなる。これ
に伴い、ピンホール板の小孔と受像部の光学センサとの
距離rも長くなる。従って、ピンホール板の小孔と受像
部の光学センサとの距離rを直線的に取れば測定装置の
大型化は避けられない。 【0020】ここで、受像部の光学センサは露光光源か
らの光を正確に受像すればよいのであるから、受像部の
光学センサの配置位置は必ずしも露光レンズとピンホー
ル板の小孔とを結ぶ直線の延長線上にある必要はない。
従って、ピンホール板の小孔と受像部の光学センサとの
直線距離とは関係なく、ピンホール板の小孔と受像部の
光学センサとを結ぶ光路長を実質的に長く取れればよ
い。 【0021】即ち、ピンホール板の小孔と受像部の光学
センサとを結ぶ光路上に少なくとも1個のミラーを配置
し、このミラーで露光光源からの光を反射させれば、ピ
ンホール板の小孔と受像部の光学センサとを結ぶ光路長
を実質的に長くできると同時に、ミラーの反射角度の設
定次第によって受像部の光学センサは任意の位置に自由
に配置することが可能となる。 【0022】 【実施例】以下に本発明の実施例について詳細に説明す
る。図1に本発明の実施例の露光台光源位置測定装置の
概略構成を示す。尚、図1において、図5と同様の構成
要素は同一の番号を付してある。 【0023】図1において、ピンホール板7の小孔と受
像部8の光学センサとの間の光路上にはミラー9が配置
されている。従って、露光光源2から露光レンズ3を介
してピンホール板7の小孔を通る光はミラー9で反射さ
れる。そして、このミラー9の反射光の延長線上に光学
センサを有する受像部8が配置されている。 【0024】図2は図1の光路を示すもので、露光光源
2とピンホール板7の小孔との距離Lに対して、ピンホ
ール板7の小孔と受像部8の光学センサとの距離rはピ
ンホール板7の小孔とミラー9との距離r1と、ミラー9
と受像部8の光学センサとの距離r2との和となる。 【0025】即ち、受像部8の光学センサの配置位置は
点線で示す仮想位置から実線で示す位置に移動させるこ
とができる。従って、ピンホール板7の小孔と受像部8
の光学センサとの距離rを測定精度の必要とするだけ充
分長く取ってもミラー9の反射角度を適宜設定すること
により、受像部8の光学センサの配置位置を任意に移動
させることができる。 【0026】このように、ピンホール板7の小孔と受像
部8の光学センサとの距離rを測定精度の必要とするだ
け充分長く確保し一定の測定精度を保った上で、受像部
8の光学センサの配置位置を露光台のスペースに合わせ
て設定することができるので測定装置の小形化を図るこ
とができる。 【0027】以上の実施例ではピンホール板7の小孔と
受像部8の光学センサとの間の光路上に1個のミラーを
配置する例について説明したが、本発明はこれに限るこ
となく、露光台のスペース配分に合わせて2個以上のミ
ラーを配置してもよい。 【0028】 【発明の効果】以上のように本発明によれば、ピンホー
ル板の小孔と受像部の光学センサとの間の光路上に少な
くとも1個のミラーを配置することにより、ピンホール
板の小孔と受像部の光学センサとの距離を測定精度の必
要とするだけ充分長く確保した上で、受像部の光学セン
サは位置位置を露光台のスペースに合わせて設定するこ
とができるので、測定装置の小形化を図ることができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure table light source position measuring apparatus for selectively coating a plurality of phosphors on the inner surface of a panel of a cathode ray tube. 2. Description of the Related Art As shown in FIG. 3, a color cathode ray tube has, for example, a stripe-shaped red light-emitting phosphor 5R, a green light-emitting phosphor 5G, and a blue light-emitting phosphor 5B on the inner surface of a front panel glass 5. Phosphor screens are arranged in a regular order. further,
A shadow mask 4 having a large number of regularly arranged electron beam apertures 4a is disposed in close proximity to the phosphor screen. One electron beam aperture 4a corresponds to a pair of a red light emitting phosphor 5R, a green light emitting phosphor 5G, and a blue light emitting phosphor 5B on the phosphor screen. [0003] The three electron beams Gr, Gg, Gb disposed opposite to the phosphor screen are deflected in the horizontal and vertical directions by a deflector disposed outside the tube.
According to the parallax principle, each phosphor is projected and emitted through the electron beam aperture 4a of the shadow mask 4, thereby displaying a color image. According to the basic operation of such a color cathode ray tube, for example, the electron beam Gr for red causes the red light-emitting phosphor 5R to properly strike and emit light, and the green light-emitting phosphor 5G and the blue light-emitting phosphor 5B to emit light. It is absolutely necessary to avoid shooting. Accordingly, the step of selectively applying the three-color light-emitting phosphors to the inner surface of the panel is performed by exposing and developing the panel and the shadow mask to be combined. That is, a light source is arranged in a virtual electron beam source that assumes each electron beam emitted from the electron gun, and light from this light source passes through the electron beam aperture 4a of the shadow mask and reaches each part of the inner surface of the panel. The photoresist film applied to the phosphor screen is exposed so as to be corrected by an exposure lens so as to match the locus of the light as much as possible. Further, the exposure-development processing of such a panel requires at least three times for red, green and blue, and a total of four exposure-development processings are required when a light absorber is provided between each phosphor. Is required. Further, in a mass production process of a color cathode ray tube, productivity is extremely reduced unless a number of exposure devices are placed and exposure and development processes are performed simultaneously. To do this,
It is necessary to prepare a reference exposure table so that all the panels of a specific size can be subjected to exposure processing under the same conditions, and to adjust the positions of the light sources in all the exposure apparatuses using the reference exposure table. FIG. 4 shows a schematic configuration of an apparatus for adjusting and measuring the light source position of the reference exposure table. That is, a panel mounting portion for a cathode ray tube is provided above the reference exposure table 1, and a panel glass 5 on which a shadow mask 4 is mounted is placed on the panel mounting portion. An exposure light source 2 is provided inside the exposure table 1.
The exposure lens 3 is disposed between the exposure light source 2 and the panel glass 5. In such a state, the light from the exposure light source 2 passes through the electron beam aperture 4a of the shadow mask 4 and reaches each part of the inner surface of the panel glass 5 while the optical path is corrected by the exposure lens 3. On the other hand, on the outer surface of the panel glass 5, an image and position of light reaching the inner surface of the panel glass 5 are measured by a portable low-magnification microscope 6, and the exposure light source 2 and the exposure lens 3 are measured.
Adjust the position of. Next, this panel is moved to another exposure table to be adjusted, and the image and the position of the inner surface of the panel are measured in the same manner, and the exposure table is adjusted so that this position coincides with the reference exposure table. Do. Basically, such an adjusting operation is performed by an electronically semi-automatic apparatus as shown in, for example, Japanese Patent Publication No. 63-66020. That is, as shown in FIG. 5, an image receiving unit 8 having an optical sensor such as a semiconductor line sensor or a CCD camera is mounted on the panel mounting surface of the exposure table 1 so as to face the exposure light source 2. A pinhole plate 7 having a small hole is arranged at a position corresponding to the electron beam opening of the shadow mask between the image receiving section 8 and the exposure lens 3. That is, the light from the exposure light source 2 is
Then, the optical path is corrected, passes through the small hole of the pinhole plate 7, and the image of the light source is connected to the optical sensor of the image receiving unit 8 by the principle of the pinhole camera and converted into an electric signal. The electric signal is digitally processed and displayed, for example, by a light amount peak value and its position by a microcomputer of an image processing unit (not shown). When the displacement of the light source position is measured by such a method, the relationship is as shown in FIG. That is, when the distance between the exposure light source 2 and the small hole of the pinhole plate 7 is L, and the distance between the small hole of the pinhole plate 7 and the optical sensor of the image receiving unit 8 is r, the position of the exposure light source 2 is from 2a. 2b, the received light image on the optical sensor moves from 8a to 8b by R2, the exposure light source 2 is calculated from the proportional expression of L: r = R1: R2.
Can be easily calculated. When the displacement of the position of the exposure light source is measured by the above method, the measurement accuracy is determined by the ratio of L and r, assuming that an optical sensor having the same resolution is used. Will be done. That is, the displacement of the light source is r /
It is obtained as a shift amount in the image receiving portion at L times. Since the distance L between the exposure light source 2 and the small hole of the pinhole plate 7 is a substantially constant value determined by the size of the panel, the distance L between the small hole of the pinhole plate 7 and the optical sensor The longer the distance r is, the higher the measurement accuracy is. However, as the color cathode ray tube becomes larger in size, the resolution is improved, that is, the pitch of the phosphor dots is reduced, and the accuracy of measuring the displacement of the exposure light source is higher. Is needed.
Also, the exposure table is designed to increase productivity and space efficiency.
It is designed to be able to process small to large panels with one exposure table. Therefore, the small hole of the pinhole plate 7 and the image receiving portion 8
In order to increase the distance r from the optical sensor, the size of the measuring device must be increased. However, the size of the measuring device is limited due to problems such as handling and space efficiency. The present invention has been made in view of the above-mentioned problems, and it is possible to measure the displacement of the exposure light source without increasing the size of the measuring apparatus even in a large or high-definition color cathode ray tube. It is an object of the present invention to provide an exposure table light source position measuring device capable of substantially increasing the distance between a small hole of a hole plate and an optical sensor of an image receiving unit. According to the present invention, there is provided an exposure table in which a panel mounting portion of a cathode ray tube is provided at an upper portion and at least a light source and an exposure lens are provided inside, and an exposure table is provided above the panel mounting portion. A pinhole plate having a small hole, an image receiving unit that receives a light source image from the light source through the small hole and converts the light source image into an electric signal, and an image processing unit that processes the electric signal from the image receiving unit. In an exposure table light source position measuring device, at least one mirror is arranged in an optical path between the pinhole plate and the image receiving unit, and an exposure table light source position measuring device that detects reflected light from the mirror at the image receiving unit. By doing so, the above object is achieved. In order to measure the light source position deviation at the image receiving portion with a single exposure table from a small cathode ray tube exposure table to a large cathode ray tube exposure table, the exposure light source 2 and the pinhole plate are used. The distance L from the small hole 7 increases as the size increases. Along with this, the distance r between the small hole of the pinhole plate and the optical sensor of the image receiving section also increases. Therefore, if the distance r between the small hole of the pinhole plate and the optical sensor of the image receiving unit is linearly increased, it is inevitable that the measuring device becomes large. Here, since the optical sensor of the image receiving section only needs to accurately receive the light from the exposure light source, the arrangement position of the optical sensor of the image receiving section is not limited to connecting the exposure lens to the small hole of the pinhole plate. It does not need to be on a straight line extension.
Therefore, regardless of the linear distance between the small hole of the pinhole plate and the optical sensor of the image receiving unit, it is sufficient that the optical path connecting the small hole of the pinhole plate and the optical sensor of the image receiving unit is substantially long. That is, if at least one mirror is arranged on the optical path connecting the small hole of the pinhole plate and the optical sensor of the image receiving section, and light from the exposure light source is reflected by this mirror, The optical path length between the small hole and the optical sensor of the image receiving section can be substantially lengthened, and the optical sensor of the image receiving section can be freely arranged at an arbitrary position depending on the setting of the reflection angle of the mirror. Embodiments of the present invention will be described below in detail. FIG. 1 shows a schematic configuration of an exposure table light source position measuring apparatus according to an embodiment of the present invention. In FIG. 1, the same components as those in FIG. 5 are denoted by the same reference numerals. In FIG. 1, a mirror 9 is arranged on the optical path between the small hole of the pinhole plate 7 and the optical sensor of the image receiving section 8. Therefore, light passing through the small hole of the pinhole plate 7 from the exposure light source 2 via the exposure lens 3 is reflected by the mirror 9. An image receiving unit 8 having an optical sensor is arranged on an extension of the light reflected by the mirror 9. FIG. 2 shows the optical path of FIG. 1. The distance L between the exposure light source 2 and the small hole of the pinhole plate 7 corresponds to the distance between the small hole of the pinhole plate 7 and the optical sensor of the image receiving unit 8. The distance r is the distance r1 between the small hole of the pinhole plate 7 and the mirror 9 and the distance of the mirror 9
And the distance r2 between the image receiving unit 8 and the optical sensor. That is, the arrangement position of the optical sensor of the image receiving section 8 can be moved from a virtual position indicated by a dotted line to a position indicated by a solid line. Therefore, the small hole of the pinhole plate 7 and the image receiving portion 8
By setting the reflection angle of the mirror 9 appropriately even if the distance r from the optical sensor to the optical sensor is set to be sufficiently long as required for the measurement accuracy, the arrangement position of the optical sensor of the image receiving unit 8 can be arbitrarily moved. As described above, the distance r between the small hole of the pinhole plate 7 and the optical sensor of the image receiving section 8 is sufficiently long as required for measuring accuracy, and a certain measuring precision is maintained. Since the arrangement position of the optical sensor can be set in accordance with the space of the exposure table, the size of the measuring device can be reduced. In the above embodiment, an example has been described in which one mirror is arranged on the optical path between the small hole of the pinhole plate 7 and the optical sensor of the image receiving section 8, but the present invention is not limited to this. Alternatively, two or more mirrors may be arranged in accordance with the space distribution of the exposure table. As described above, according to the present invention, by disposing at least one mirror on the optical path between the small hole of the pinhole plate and the optical sensor of the image receiving section, the pinhole Since the distance between the small hole of the plate and the optical sensor of the image receiving unit is long enough to require the measurement accuracy, the position of the optical sensor of the image receiving unit can be set according to the space of the exposure table. In addition, the size of the measuring device can be reduced.

【図面の簡単な説明】 【図1】本発明の実施例の露光台光源位置測定装置を示
す概略構成図。 【図2】図1の光の光路を説明するための模式図。 【図3】カラー陰極線管の動作を説明するための模式
図。 【図4】従来の露光台光源位置測定装置を示す概略構成
図。 【図5】従来の露光台光源位置測定装置を示す概略構成
図。 【図6】図5の光の光路を説明するための模式図。 【符号の説明】 1…露光台 2…露光光源 3…露光レンズ 4…シャドウマスク 5…パネルガラス 7…ピンホール板 8…受像部 9…ミラー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing an exposure table light source position measuring device according to an embodiment of the present invention. FIG. 2 is a schematic diagram for explaining an optical path of light in FIG. FIG. 3 is a schematic diagram for explaining the operation of the color cathode ray tube. FIG. 4 is a schematic configuration diagram showing a conventional exposure table light source position measuring device. FIG. 5 is a schematic configuration diagram showing a conventional exposure table light source position measuring device. FIG. 6 is a schematic diagram for explaining an optical path of the light in FIG. 5; [Description of Signs] 1 ... Exposure table 2 ... Exposure light source 3 ... Exposure lens 4 ... Shadow mask 5 ... Panel glass 7 ... Pin hole plate 8 ... Image receiving unit 9 ... Mirror

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−214246(JP,A) 特開 昭55−159539(JP,A) 特開 昭58−223701(JP,A) 特開 平6−251700(JP,A) 特開 昭52−63661(JP,A) 特開 昭62−271326(JP,A) 特開 昭62−154526(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 9/227 H01J 9/42 G01B 11/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-214246 (JP, A) JP-A-55-159539 (JP, A) JP-A-58-223701 (JP, A) 251700 (JP, A) JP-A-52-63661 (JP, A) JP-A-62-271326 (JP, A) JP-A-62-154526 (JP, A) (58) Fields investigated (Int. 7 , DB name) H01J 9/227 H01J 9/42 G01B 11/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 上部に陰極線管のパネル取付部が設けら
れ内部に光源および露光レンズが少なくとも配設された
露光台と、前記パネル取付部上部に配置され小孔を有す
るピンホール板と、前記小孔を通して前記光源からの光
源像を受像し電気信号に変換する受像部と、この受像部
からの電気信号を処理する画像処理部とを少なくとも備
えた露光台光源位置測定装置において、前記ピンホール
板と受像部との間の光路に少なくとも1個のミラーを配
置し、このミラーからの反射光を前記受像部で検出する
ことを特徴とする露光台光源位置測定装置。
(57) [Claim 1] An exposure table in which a panel mounting part of a cathode ray tube is provided at an upper part and at least a light source and an exposure lens are provided therein, and a small light source disposed above the panel mounting part. An exposure table including at least a pinhole plate having a hole, an image receiving unit that receives a light source image from the light source through the small hole and converts the light source image into an electric signal, and an image processing unit that processes the electric signal from the image receiving unit In the light source position measuring device, at least one mirror is arranged in an optical path between the pinhole plate and the image receiving unit, and reflected light from the mirror is detected by the image receiving unit. measuring device.
JP04460494A 1994-03-16 1994-03-16 Exposure table light source position measurement device Expired - Fee Related JP3441146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04460494A JP3441146B2 (en) 1994-03-16 1994-03-16 Exposure table light source position measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04460494A JP3441146B2 (en) 1994-03-16 1994-03-16 Exposure table light source position measurement device

Publications (2)

Publication Number Publication Date
JPH07254363A JPH07254363A (en) 1995-10-03
JP3441146B2 true JP3441146B2 (en) 2003-08-25

Family

ID=12696059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04460494A Expired - Fee Related JP3441146B2 (en) 1994-03-16 1994-03-16 Exposure table light source position measurement device

Country Status (1)

Country Link
JP (1) JP3441146B2 (en)

Also Published As

Publication number Publication date
JPH07254363A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
US3587417A (en) Exposure device for manufacturing picture screens for cathode-ray tubes intended for the display of color scenes
JP3441146B2 (en) Exposure table light source position measurement device
US2936682A (en) Device for use in processing discrete screen patterns for cathode ray tubes
US2936683A (en) Cathode ray tube structure and process
US5001026A (en) CRT screen exposure device and method
GB2188723A (en) Streak camera device
KR200176399Y1 (en) An electron gun grid gap measuring device
US20010045519A1 (en) Method of inspectiong a substrate furnished with a phosphor layer
JPS6345741A (en) Making of color crt shadow mask, front assembly of color crt, roughly flat face plate of super high resolution color crt
US4220919A (en) Cathode ray tube display error measurement apparatus and method
JP3366374B2 (en) Image quality measuring device
KR200145251Y1 (en) Exposure luminous source positioning device
US4020494A (en) CRT screen exposure device having improved optical alignment
JPH08264122A (en) Alignment measuring device, and its usage
US4841315A (en) Exposure apparatus
JPH08153467A (en) Exposure device and method for exposing fluorescent surface
KR200151020Y1 (en) A setting device of inserting position of electron gun for a crt
KR910007732B1 (en) A shadowmask for color picture tube and exposure method using the same
JPH11339655A (en) Exposing method for color cathode-ray tube and exposing device
JPH06251700A (en) Exposure base light source position adjusting device and evaluating device for exposure base light source position measuring device
KR19990074504A (en) CRT Mask Structure
JP2001297694A (en) Fluorescent screen forming method for color cathode-ray tube and exposure apparatus
JPH08129954A (en) Exposing device using color cathode-ray tube
JPH0630447A (en) Convergence measuring instrument for color crt
JPH10188804A (en) Fluorescent screen forming method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees