JPH03122616A - Driving method for ferroelectric liquid crystal element - Google Patents
Driving method for ferroelectric liquid crystal elementInfo
- Publication number
- JPH03122616A JPH03122616A JP25992589A JP25992589A JPH03122616A JP H03122616 A JPH03122616 A JP H03122616A JP 25992589 A JP25992589 A JP 25992589A JP 25992589 A JP25992589 A JP 25992589A JP H03122616 A JPH03122616 A JP H03122616A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- ferroelectric liquid
- substrates
- state
- crystal element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims description 8
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 239000004990 Smectic liquid crystal Substances 0.000 claims abstract description 5
- 239000012212 insulator Substances 0.000 claims abstract description 4
- 230000008020 evaporation Effects 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 239000002052 molecular layer Substances 0.000 claims description 3
- 230000005621 ferroelectricity Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は強誘電性液晶を液晶層として持つ液晶素子にお
いて、透過光量が連続階調制御可能な液晶素子に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal element having a ferroelectric liquid crystal as a liquid crystal layer, in which the amount of transmitted light can be controlled in continuous gradations.
強誘電性液晶素子はメモリー性やμ秒単位の高速応答を
有することから大容量デイスプレィや高速液晶シャッタ
ーなどに実用化が期待されている。Because ferroelectric liquid crystal elements have memory properties and high-speed response on the microsecond scale, they are expected to be put to practical use in large-capacity displays and high-speed liquid crystal shutters.
ところで、強誘電性液晶素子を実用化する場合、時分割
駆動時における透過光量の連続階調制御に技術的問題点
がある。例えば、特開昭62−160420号公報には
、2つのユニフォーム液晶配列状態とツイスト液晶配列
状態の3状態を利用して、時分割駆動時に階調表示を試
みている例があるが、3階調表示のみである。また、特
開昭59−193427号公報には駆動パルス数を変え
ることにより双安定状態を混在させ多階調表示を試みて
いる例があるが、筆者の実験によると、時分割駆動時に
中間調レベルの経時変化が起こり、安定した中間調表示
が得られなかった。By the way, when putting a ferroelectric liquid crystal element into practical use, there is a technical problem in continuous gradation control of the amount of transmitted light during time-division driving. For example, in Japanese Patent Application Laid-Open No. 62-160420, there is an example in which gradation display is attempted during time-division driving using three states: two uniform liquid crystal alignment states and a twisted liquid crystal alignment state. Only the scale is displayed. Furthermore, Japanese Patent Application Laid-open No. 59-193427 has an example in which multi-gradation display is attempted by mixing bistable states by changing the number of drive pulses, but according to the author's experiments, half-tone display is attempted during time-division driving. The level changed over time, making it impossible to obtain stable halftone display.
従って、本発明は時分割駆動しても連続した階調を精度
よ(再現できる強誘電性液晶素子の駆動方法を提供する
ことを目的とする。Therefore, it is an object of the present invention to provide a method for driving a ferroelectric liquid crystal element that can accurately reproduce continuous gray levels even when driven in a time-division manner.
上記目的を達成するために、強誘電性液晶素子の一対の
基板の対向面に斜方蒸着により各面に対し傾斜し、かつ
互いに傾斜方向が逆である無機絶縁物の配向膜を形成す
るとともに、基板間のカイラルスメクチック強誘電性液
晶の厚さを1.5ミクロンから4ミクロンの間に設定し
、液晶分子が基板に概ね平行で分子層法線から右に傾い
た第1の状態(第1のユニフォーム状態)と、分子層法
線から左に傾いた第2の状態(第2のユニフォーム状態
)と、対向基板上で分子が層法線となす角度が異なった
ねじれ構造をなす第3の状態(ツイスト状態)の3種の
状態が各々十分な安定状態を示して混在するようにし、
強誘電性液晶素子に電圧波高値とパルス幅の積を変調し
た電圧波形を印加し連続階調表示することを特徴とする
。In order to achieve the above object, an alignment film of an inorganic insulator is formed on the opposing surfaces of a pair of substrates of a ferroelectric liquid crystal element by oblique evaporation, the film being inclined with respect to each surface and the directions of inclination being opposite to each other. , the thickness of the chiral smectic ferroelectric liquid crystal between the substrates is set between 1.5 and 4 microns, and a first state (first state) in which the liquid crystal molecules are approximately parallel to the substrates and tilted to the right from the molecular layer normal is established. 1 uniform state), a second state tilted to the left from the molecular layer normal (second uniform state), and a third state in which the molecules form a twisted structure with different angles with the layer normal on the opposing substrate. The three types of states (twisted state) are mixed so that each shows a sufficiently stable state,
It is characterized by applying a voltage waveform that modulates the product of voltage peak value and pulse width to a ferroelectric liquid crystal element to display continuous gradation.
以下本発明の作用を図面に基づいて説明する。 The operation of the present invention will be explained below based on the drawings.
第4図囚は互いに傾斜方向が逆である無機絶縁物の斜方
蒸着配向膜が付着した2枚のガラス基板の間にカイラル
スメクチック強誘電性液晶を挾んだ液晶素子の3つの液
晶配向状態とそれらの各状態を選択する駆動電圧波形、
および各状態、の透過率Tを透過光の波長0)に対応さ
せて表わしており、(a)、(b)はユニフォーム状態
、(C)はツイスト状態である。ここで、配向状態の欄
の分子41.42は第4回正の4L 42の分子状態に
なっている。Figure 4 shows three liquid crystal alignment states of a liquid crystal device in which a chiral smectic ferroelectric liquid crystal is sandwiched between two glass substrates to which obliquely vapor-deposited alignment films of inorganic insulators are attached, the tilt directions being opposite to each other. and the driving voltage waveform that selects each of those states,
The transmittance T of each state is shown in correspondence with the wavelength of transmitted light (0), where (a) and (b) are the uniform state, and (C) is the twisted state. Here, the molecules 41 and 42 in the orientation state column are in the fourth positive 4L 42 molecular state.
一方、中間調表示を得るには少な(とも2つ以上の安定
状態を混在させなければならないが、ユニフォーム2状
態の混在よりも、ツイスト状態と一方ノユニフォーム状
態の混在が起こりやす(、電圧波高値とパルス幅の積に
より規定される値の変化に従って連続的に中間調が変化
する。したがって、中間調表示にはユニフォーム状態と
ツイスト状態が共に安定な強誘電性液晶素子が必要とさ
れる。ところで、第4図の(a)、(b)、(C)の各
状態は液晶層厚によりその安定度合が異なる。すなわち
、液晶層厚4μ以上では(C)状態の安定度のみが増し
、(a)、(b)の2状態は現われに(く、単安定状態
を示す。逆に1.5μ以下の液晶層厚においては、(a
)、(b)状態の選択電圧の非対称性が現われたり、(
C)状態が不安定となったりする。結局、1.5μから
4μの液晶層厚を有する強誘電性液晶素子がユニフォー
ム状態とツイスト状態を共に安定にする良好な3安定状
態を示し、中間調表示可能な液晶素子となる。On the other hand, in order to obtain a half-tone display, it is necessary to mix two or more stable states, but it is more likely to mix a twisted state and a uniform state (voltage waveform) than to mix two uniform states. The intermediate tone changes continuously according to the change in the value defined by the product of the high value and the pulse width.Therefore, for intermediate tone display, a ferroelectric liquid crystal element that is stable in both the uniform state and the twisted state is required. By the way, the stability of states (a), (b), and (C) in Fig. 4 differs depending on the liquid crystal layer thickness.In other words, when the liquid crystal layer thickness is 4μ or more, only the stability of state (C) increases; The two states (a) and (b) rarely appear and show a monostable state.On the contrary, in a liquid crystal layer thickness of 1.5μ or less, (a)
), (b) state selection voltage asymmetry appears, (
C) The state may become unstable. As a result, a ferroelectric liquid crystal device having a liquid crystal layer thickness of 1.5 μm to 4 μm exhibits three stable states in which both the uniform state and the twisted state are stabilized, and becomes a liquid crystal device capable of displaying halftones.
以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は本発明の一実施例を示す強誘電性液晶素子の模
式断面図であり、透明電極13が付着した2枚のガラス
基板11,120対向面にSiOの斜め蒸着配向膜14
が付着し、かつ互いに逆傾斜状態となるように2枚のガ
ラス基板が配置されて、エポキシ樹脂シール16に囲ま
れた24ミクロンの間隙にチッソ社製液晶C8−101
4が挾持され、強誘電性液晶素子が形成されている。前
記液晶素子にクロスニコル状態の偏光板17.18を素
子の上面と下面にそれぞれ配置し、さらに抵抗ヒータ1
9を取り付は素子を一定温度に保った。FIG. 1 is a schematic cross-sectional view of a ferroelectric liquid crystal device showing an embodiment of the present invention, in which two glass substrates 11 and 120 with transparent electrodes 13 attached thereto, and an alignment film 14 deposited obliquely on the opposing surfaces of the glass substrates 120.
Two glass substrates are arranged so that the glass substrates adhere to each other and are tilted oppositely to each other, and a liquid crystal C8-101 manufactured by Chisso Corporation is placed in a gap of 24 microns surrounded by an epoxy resin seal 16.
4 are sandwiched together to form a ferroelectric liquid crystal element. Polarizing plates 17 and 18 in a crossed Nicol state are arranged on the upper and lower surfaces of the liquid crystal element, respectively, and a resistance heater 1 is arranged on the liquid crystal element.
9 was installed to maintain the device at a constant temperature.
なお、素子温度はカイラルスメクチック相転移温度下1
5度前後に設定した。この理由は、第5図(a)に示す
選択電圧±voのテスト用時分割駆動波形を印加したと
きに、±1/3V0の非選択電圧による(b)に示すよ
うな安定状態の揺らぎを(C)に示すように最少にする
駆動温度T―が、相転位温度下lO度から20度の範囲
にあるからである。The element temperature is 1 below the chiral smectic phase transition temperature.
It was set at around 5 degrees. The reason for this is that when the test time-division drive waveform of the selection voltage ±vo shown in Figure 5(a) is applied, fluctuations in the stable state as shown in (b) due to the non-selection voltage of ±1/3V0 occur. This is because, as shown in (C), the minimum driving temperature T- is in the range of 10 degrees to 20 degrees below the phase transition temperature.
以上述べてきた液晶素子構成、並びに駆動温度の下で、
第2図に示す電圧波高直を変調した5パルスの信号電極
波形と走査電極波形の組み合わせで時分割駆動を、Vo
がIOV、パルス幅60μsの条件下で行なった。第3
図は前述の時分割駆動時における前記強誘電性液晶素子
の動作特性を示し、(a)は駆動電圧波形、(1))は
透過光強度を示している。61は選択期間の電圧波形で
、(b)の62〜64は異なる階調の該電圧波形をぬき
出したものである。このような駆動方法により、精度の
よい中間調が黒レベルと白レベルのコントラスト比1〜
120間で得られた。なお、ヘキスト社製強誘電性液晶
FeJix005、pelixo09を用いた液晶素子
を用いても、同様に、精度のよい中間調表示が得られた
。Under the liquid crystal element configuration and driving temperature described above,
Vo
The test was carried out under conditions of IOV and pulse width of 60 μs. Third
The figure shows the operating characteristics of the ferroelectric liquid crystal element during the time-division driving described above, in which (a) shows the drive voltage waveform and (1) shows the intensity of transmitted light. 61 is a voltage waveform during the selection period, and 62 to 64 in (b) are extracted voltage waveforms of different gradations. With this driving method, accurate intermediate tones can be achieved with a contrast ratio of 1 to 1 between the black level and the white level.
Obtained within 120 minutes. Note that even when using a liquid crystal element using ferroelectric liquid crystals FeJix005 and pelixo09 manufactured by Hoechst, accurate halftone display was similarly obtained.
以上の実施例で述べたように、本発明によれば安定した
3つの状態を混在させることにより、連続した中間調を
精度よく表示する強誘電性液晶素子を提供できる。As described in the above embodiments, according to the present invention, by mixing three stable states, it is possible to provide a ferroelectric liquid crystal element that accurately displays continuous halftones.
第1図は本発明の強誘電性液晶素子の模式断面図、第2
図は本発明の時分割駆動波形を示す説明図、第3図は時
分割駆動時における強誘電性液晶素子の光学応答を表わ
す説明図、第4図(A)、(ト)は強誘電性液晶素子の
3つの状態を示す模式説明図、第5図囚〜(Oは時分割
駆動時における強誘電性液晶素子の安定状態の揺らぎを
示す模式波形図である。
1.12・・・・・・ガラス基板、
6・・・・・・透明電極、
4・・・・・・SiO斜方蒸着膜、
5・・・・・・液晶層、
6・・・・・・エポキシ樹脂シール、
7.18・・・・・・偏光板。
第2図
(31
第4図
(A)FIG. 1 is a schematic cross-sectional view of the ferroelectric liquid crystal element of the present invention, and FIG.
The figure is an explanatory diagram showing the time-division driving waveform of the present invention, FIG. 3 is an explanatory diagram showing the optical response of a ferroelectric liquid crystal element during time-division driving, and FIGS. A schematic explanatory diagram showing three states of a liquid crystal element, Figure 5 (O) is a schematic waveform diagram showing fluctuations in the stable state of a ferroelectric liquid crystal element during time-division driving. 1.12... ... Glass substrate, 6 ... Transparent electrode, 4 ... SiO oblique evaporation film, 5 ... Liquid crystal layer, 6 ... Epoxy resin seal, 7 .18...Polarizing plate. Figure 2 (31 Figure 4 (A)
Claims (2)
メクチック強誘電性液晶を挾持し、分子が基板に概ね平
行で分子層法線から右に傾いた第1の安定状態と、基板
に概ね平行で分子層法線から左に傾いた第2の安定状態
と、対向基板上で分子が層法線となす角が異なつたねじ
れ構造をなす第3の安定状態により階調を表わす強誘電
性液晶素子の駆動方法において、前記3つの安定状態を
混在させるとともに、前記強誘電性液晶素子に印加する
電圧波高値とパルス幅の積を変調することにより前記3
つの安定状態の混在の比率をかえ、連続階調表示するこ
とを特徴とする強誘電性液晶素子の駆動方法。(1) A chiral smectic ferroelectric liquid crystal is sandwiched between a pair of substrates having electrodes on opposing surfaces, and a first stable state in which the molecules are approximately parallel to the substrates and tilted to the right from the molecular layer normal; Ferroelectricity exhibits gradation through a second stable state in which the molecules are parallel and tilted to the left from the layer normal, and a third stable state in which the molecules form a twisted structure with different angles with the layer normal on the opposing substrate. In the method for driving a liquid crystal element, the above three stable states are mixed, and the three stable states are mixed, and the product of the voltage peak value and pulse width applied to the ferroelectric liquid crystal element is modulated.
A method for driving a ferroelectric liquid crystal device characterized by changing the ratio of a mixture of two stable states and displaying continuous gradations.
基板の対向面に斜方蒸着により各面に対して傾斜し、か
つ互いに傾斜方向が逆である無機絶縁物の配向膜を形成
するとともに、基板間の液晶層の厚さを1.5μから4
μの間に設定することを特徴とする請求項1記載の強誘
電性液晶素子の駆動方法。(2) A method of coexisting the three stable states is to form alignment films of inorganic insulators on opposing surfaces of the pair of substrates by oblique evaporation, which are inclined with respect to each surface and whose directions of inclination are opposite to each other. At the same time, the thickness of the liquid crystal layer between the substrates was increased from 1.5μ to 4μ.
2. The method of driving a ferroelectric liquid crystal element according to claim 1, wherein the driving method is set between μ.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25992589A JPH03122616A (en) | 1989-10-06 | 1989-10-06 | Driving method for ferroelectric liquid crystal element |
US07/526,879 US5061044A (en) | 1989-05-23 | 1990-05-22 | Ferroelectric liquid crystal display having opposingly inclined alignment films wherein the liquid crystal has one twisted and two aligned states which coexist and a driving method to produce gray scale |
GB9011431A GB2233106B (en) | 1989-05-23 | 1990-05-22 | Ferroelectric liquid crystal element and method of driving the same |
SG7794A SG7794G (en) | 1989-05-23 | 1994-01-17 | Ferroelectric liquid crystal element and method of driving the same |
HK255/94A HK25594A (en) | 1989-05-23 | 1994-03-24 | Ferroelectric liquid crystal element and method of driving the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25992589A JPH03122616A (en) | 1989-10-06 | 1989-10-06 | Driving method for ferroelectric liquid crystal element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03122616A true JPH03122616A (en) | 1991-05-24 |
Family
ID=17340835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25992589A Pending JPH03122616A (en) | 1989-05-23 | 1989-10-06 | Driving method for ferroelectric liquid crystal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03122616A (en) |
-
1989
- 1989-10-06 JP JP25992589A patent/JPH03122616A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940005123B1 (en) | Liquid crystal display device using liquid crystal device | |
US6016133A (en) | Passive matrix addressed LCD pulse modulated drive method with pixel area and/or time integration method to produce coray scale | |
US5062691A (en) | Liquid crystal device with grey scale | |
US5061044A (en) | Ferroelectric liquid crystal display having opposingly inclined alignment films wherein the liquid crystal has one twisted and two aligned states which coexist and a driving method to produce gray scale | |
US6320571B1 (en) | Bistable liquid crystal display device | |
US6094184A (en) | Driving method and driving circuit for ferroelectric liquid crystal display element | |
US5276542A (en) | Ferroelectric liquid crystal apparatus having temperature compensation control circuit | |
US5446570A (en) | Liquid crystal display with projecting portions on the electrodes | |
US7123330B2 (en) | Liquid crystal panel substrate having alignment film and method for forming alignment film by varied evaporation angle | |
US6392624B1 (en) | Method of driving liquid crystal device | |
JPH03122616A (en) | Driving method for ferroelectric liquid crystal element | |
JP2984496B2 (en) | Liquid crystal display device | |
EP0425304A2 (en) | Liquid crystal device with grey scale | |
JPS6031121A (en) | Driving method of optical modulating element | |
JPH06194623A (en) | Driving method of antiferroelectric liquid crystal display element | |
JP2566149B2 (en) | Optical modulator | |
JP2517549B2 (en) | Optical modulator | |
JPS62160420A (en) | Liquid crystal element | |
JPH01121819A (en) | Liquid crystal element | |
JPH0194316A (en) | Liquid crystal display element | |
JP2665331B2 (en) | Driving method of ferroelectric liquid crystal display device | |
JPH0335217A (en) | Driving system for liquid crystal display device | |
JPH0728037A (en) | Liquid crystal display device | |
JPH0772485A (en) | Liquid crystal display element | |
JPH02204721A (en) | Liquid crystal display element |