JPH03122250A - Iron-base alloy having high vibration-absorbing property and its production - Google Patents

Iron-base alloy having high vibration-absorbing property and its production

Info

Publication number
JPH03122250A
JPH03122250A JP26140389A JP26140389A JPH03122250A JP H03122250 A JPH03122250 A JP H03122250A JP 26140389 A JP26140389 A JP 26140389A JP 26140389 A JP26140389 A JP 26140389A JP H03122250 A JPH03122250 A JP H03122250A
Authority
JP
Japan
Prior art keywords
graphite
iron
plastic working
cast iron
matrix structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26140389A
Other languages
Japanese (ja)
Inventor
Makoto Suenaga
末永 允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP26140389A priority Critical patent/JPH03122250A/en
Publication of JPH03122250A publication Critical patent/JPH03122250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide an iron-base alloy having superior vibration-absorbing property and excellent in toughness and machinability by specifying the shape of graphite in a cast iron consisting of a two-phase mixed structure of bainite and austenite. CONSTITUTION:This iron-base alloy contains bell-shaped (discoid, in three dimensions) and/or fibrous (thick tape-shaped, in three dimensions) graphite prepared by applying plastic working to spheroidal graphite or malleable cast iron and has a matrix structure consisting of the above two-phase mixed structure. In order to obtain this alloy, a stock for plastic working which is composed of a material consisting of matrix structure free from or containing primary cementite and spheroidal graphite or a material consisting of primary cementite and matrix structure is as cast state is cast. This stock is heated up to a temp. capable of plastic working, and heating which doubles as the decomposition of primary cemntite in the case of a stock containing primary cementite and decomposition are performed. This heated stock is subjected to temporary cooling, to reheating, and to rolling and/or forging or is directly subjected to rolling and/or forging without temporary cooling. The resulting plastic-worked stock is subjected to austempering treatment after temporary cooling or is directly subjected to austempering treatment without temporary cooling.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸振性が高く且つ強靭にして切削性に侵れた鉄
基合金及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an iron-based alloy that has high vibration absorption properties, is tough and has good machinability, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

鋳鉄は構造部材として広〈産業界に使用されている。例
えば、自動車においては、エンジンブロックに片状黒鉛
鋳鉄、駆動部品およびサスペンション部品に球状黒鉛鋳
鉄が多量に使用されている。
Cast iron is widely used in industry as a structural member. For example, in automobiles, large amounts of flaky graphite cast iron are used for engine blocks, and spheroidal graphite cast iron is used for drive parts and suspension parts.

これらの用途分野の材料に要求される機能としては、よ
り高級化指向のための振動吸収性能、安全性と軽量化を
追求するための強靭性、生産性向上のための切削性があ
る。
The functions required of materials for these application fields include vibration absorption performance for higher-grade products, toughness for safety and weight reduction, and machinability for improved productivity.

そのうち、鋳鉄の振動吸収性能は、黒鉛組織中面積率(
三次元的には体積率)とその形態の影響が大である。
Among these, the vibration absorption performance of cast iron is determined by the graphite structure area ratio (
In terms of three dimensions, the influence of volume ratio) and its form are significant.

即ち、黒鉛の面積率は大きいほど振動吸収性能は優れ、
黒鉛の形態においては、片状が最も優れ、次いでバーミ
キュラ、塊状、球状と続いている。
In other words, the larger the area ratio of graphite, the better the vibration absorption performance.
Regarding the shape of graphite, flaky is the most preferable, followed by vermicular, lumpy, and spherical.

近年、鋳鉄をオーステンパー処理して基地組織をベイナ
イトおよびオーステナイトの2相混合組織にすることに
より、特に球状黒鉛鋳鉄の強靭性を向上せしめる技術が
開発され、 Austemper Ductile C
a5t Iron  (略してADIと称す)として知
られている。
In recent years, a technology has been developed that improves the toughness of spheroidal graphite cast iron by austempering cast iron to make the matrix structure a two-phase mixed structure of bainite and austenite.
It is known as a5t Iron (abbreviated as ADI).

このベイナイトおよびオーステナイトの2相混合組織を
有する鋳鉄は、同一黒鉛形態のパーライト及び/又はフ
ェライト基地鋳鉄よりも振動吸収性能に優れているとし
て、既に特願昭54−60888号公報および特公昭0
1−60140号公報として開示されている。
Cast iron having this two-phase mixed structure of bainite and austenite has already been reported in Japanese Patent Application No. 54-60888 and in Japanese Patent Publication No. 1987-1988 as having better vibration absorption performance than pearlite and/or ferrite base cast iron with the same graphite form.
It is disclosed as Publication No. 1-60140.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記開示された材質は何れも黒鉛形状が
片状またはセミ球状であり、駆動部品またはサスペンシ
ョン部品として使用するのには、強度特に疲労強度にお
いて劣り適用することができない。
However, all of the above-disclosed graphite materials have flaky or semi-spherical graphite shapes, and cannot be used as drive parts or suspension parts because of poor strength, especially fatigue strength.

ADIは強靭性において著しく優れ、振動吸収性能も同
一黒鉛形態の球状黒鉛鋳鉄よりも優れてはいるが、切削
性において著しく劣るため、予め部品形状に機械加工し
た後にオーステンパー処理を施す等、寸法精度、製品コ
ストに問題がある。
Although ADI has significantly superior toughness and vibration absorption performance compared to spheroidal graphite cast iron, which has the same graphite form, ADI is significantly inferior in machinability, so it has to be machined into the shape of the part in advance and then subjected to austempering treatment. There are problems with accuracy and product cost.

本発明は、振動吸収性能に著しく優れ、しかも強靭性、
切削性に優れた鉄系基合金およびその製造方法を提供す
ることを目的とする。
The present invention has extremely excellent vibration absorption performance, and also has strong toughness and
The purpose of the present invention is to provide an iron-based alloy with excellent machinability and a method for producing the same.

〔課題を解決するため手段〕[Means to solve the problem]

本発明者は、振動吸収性能、強靭性および切削性に優れ
た、組織中に黒鉛の存在する鉄基合金およびその製造方
法を種々検討した結果、組織中に紡鍾形(立体的には円
板状)及び/又は繊維状(立体的には厚みをもったテー
プ拭)の黒鉛を有し、しかも基地組織がベイナイトまた
はベイナイト及びオーステナイトの2相混合組織からな
る鉄基合金が、これらの要求を満足する材質であるとの
知見を得、かつその鋳造素材から塑性加工、最終熱処理
に至る一連の製造方法を確立した。
As a result of various studies on iron-based alloys with excellent vibration absorption performance, toughness, and machinability in which graphite exists in the structure, and methods for manufacturing the same, the present inventors discovered that the structure has a spindle shape (three-dimensionally circular). Iron-based alloys that have graphite in the form of plates (plate-like) and/or fibers (three-dimensionally thick tape) and whose base structure is bainite or a two-phase mixed structure of bainite and austenite meet these requirements. We found that the material satisfies the above requirements, and established a series of manufacturing methods from casting materials to plastic working and final heat treatment.

即ち、本願第1の発明は、球状黒鉛鋳鉄又は可鍛鋳鉄に
、塑性加工を施したことによる紡鐘形及び/又は繊維状
の黒鉛を有し、基地組織がベイナイト及びオーステナイ
トの2相混合組織からなることを特徴とする。
That is, the first invention of the present application has bell-shaped and/or fibrous graphite obtained by plastically working spheroidal graphite cast iron or malleable cast iron, and the matrix structure is a two-phase mixed structure of bainite and austenite. It is characterized by consisting of.

次に、本願第2の発明は、 (イ)鋳造状態に於いて、一次セメンタイトを含まない
基地組織と球状黒鉛からなる材質、又は一次セメンタイ
トを含み基地組織と球状黒鉛からなる材質、又は一次セ
メンタイトと基地組織よりなる材質の塑性加工用素材を
製造する鋳造工程、 (ロ) 該鋳造素材を塑性加工可能な温度まで加熱し、
一次セメンタイトを含む素材においては一次セメンタイ
トの分解を兼ねさせる加熱及び分解工程、 (ハ) 該加熱材を一旦冷却し再加熱して圧延及び/又
は鍛造するか又は一旦冷却せずに直ちに圧延及び/又は
鍛造する塑性加工工程、(ニ) 該m性加工材を一旦冷
却し再加熱してオーステンパー処理を行うか、又は一旦
冷却せずに直ちにオーステンパー処理を行うオーステン
パー処理工程、 以上(イ)から(ニ)の工程からなることを特徴とする
強靭にして切削性に優れた高吸振性鉄基合金の製造方法
である。
Next, the second invention of the present application is as follows: (a) In the cast state, a material consisting of a matrix structure that does not contain primary cementite and spheroidal graphite, or a material that contains primary cementite and consists of a matrix structure and spheroidal graphite, or a material that contains primary cementite and consists of a matrix structure and spheroidal graphite; a casting process for producing a material for plastic working consisting of a matrix structure, (b) heating the casting material to a temperature at which plastic working is possible;
For materials containing primary cementite, a heating and decomposition step that also decomposes the primary cementite; (c) The heating material is once cooled and reheated to be rolled and/or forged, or immediately rolled and/or forged without being cooled. or a plastic working process of forging; (d) an austempering process in which the material is cooled once and then reheated to perform austempering treatment, or an austempering process is performed immediately without cooling; This is a method for producing a highly vibration-absorbing iron-based alloy that is strong and has excellent machinability, and is characterized by comprising the steps from ) to (d).

本発明になる鉄基合金の組織上の特徴はm性加工を施す
ことによって得られた紡鐘形及び/又は繊維状の黒鉛を
有し、且つ基地組織がペイナイト又はオーステナイトの
二相混合組織によって構成されていることである。
The structural characteristics of the iron-based alloy of the present invention include bell-shaped and/or fibrous graphite obtained by m-type processing, and the base structure is a two-phase mixed structure of paynite or austenite. It is configured.

鋳鉄に塑性加工を施すことが可能なことは、以前から知
られており(例えば、IE、Piwowarsky u
ndA、 Wittmoser:Gevarztes/
 Gusseisen、Verlag W。
It has long been known that cast iron can be plastically worked (e.g. IE, Piwowarsky U.
ndA, Wittmoser: Gevarztes/
Gusseisen, Verlag W.

Girardet、 1949) 、この塑性加工を施
された鋳鉄の吸振性が優れていることもまた知られてい
る(例えば、弁用、田中二日本金属学会報、 16,1
977.71)。発明者は塑性加工を施された鋳鉄の黒
鉛形状と吸振性能の関係を検討した結果、塑性加工によ
り変形した黒鉛の長袖/短軸の平均値が4以上で効果的
な吸振性能の向上が認められる知見を得た。この結果を
第1図に示す。更に、黒鉛の長袖/短軸の平均値が同一
レベルの場合、黒鉛粒数が多い程吸娠性能が優れている
との結果を得た。
Girardet, 1949), and it is also known that this plastically worked cast iron has excellent vibration absorption properties (for example, for valves, Nippon Tanaka, Bulletin of the Japan Institute of Metals, 16, 1).
977.71). As a result of examining the relationship between the shape of graphite in cast iron subjected to plastic working and vibration absorption performance, the inventor found that effective vibration absorption performance improved when the average value of the long sleeve/short axis of graphite deformed by plastic working was 4 or more. I gained some knowledge. The results are shown in FIG. Furthermore, when the average values of the long sleeve/short axis of graphite were at the same level, the results showed that the greater the number of graphite particles, the better the suction performance.

この結果を第2図に示す。The results are shown in FIG.

塑性加工を施す鋳鉄の場合、変形抵抗の低減および耳割
れ等の不良発生の低減の目的のため、Si含有量を低く
設定する方が好ましい。低St鋳鉄の場合、晶出する黒
鉛粒数は少なく、通常150個/ m m ”以下であ
り、期待される吸振性能を満足しない場合が生ずる。ま
た、切削性に対してはSi含有量が低いことは有利に作
用するが、黒鉛粒激が少ないことは不利に作用する。こ
れに対しては、鋳造工程において白銑化促進元素及び/
又は急冷鋳型の使用により一旦球状及び/又は塊状の黒
鉛を含む斑鋳鉄または白鋳鉄の組織とし、これを次の加
熱分解工程で黒鉛化することにより、通常250個/ 
m m ”以上の黒鉛を得ることができる。なお、一次
セメンタイトは急冷されたもの程、分解速度が速く、し
かも分解生成する黒鉛粒数も多いことから、鋳型には可
能な限り金型または冷し金等を用いることが望ましい。
In the case of cast iron subjected to plastic working, it is preferable to set the Si content low for the purpose of reducing deformation resistance and reducing defects such as edge cracks. In the case of low-St cast iron, the number of crystallized graphite particles is small, usually less than 150 particles/mm'', and there are cases where the expected vibration absorption performance is not satisfied.Also, the Si content affects machinability. A low concentration of graphite grains has an advantageous effect, but a low graphite particle concentration has a disadvantageous effect.
Alternatively, by using a quenching mold to create a structure of spotted iron or white cast iron containing spheroidal and/or lumpy graphite, this is graphitized in the next thermal decomposition process, usually 250 pieces/
It is possible to obtain graphite with a particle size of 100 mm or more.The faster the primary cementite is cooled, the faster the decomposition rate and the more graphite grains are produced. It is preferable to use financial aid, etc.

鋳造工程で晶出した一次セメンタイトは、加熱温度85
0℃前後より分解し始め、950°CからlO°00℃
の加熱温度範囲で急速に黒鉛とオーステナイトに分解す
る。このとき、黒鉛の形状は、前工程である溶解鋳造工
程でMg等の球状化元素処理を行ったものは、より球状
に近い形となり、該処理を行わないものは可鍛鋳鉄にみ
られる塊状となるが、両者ともに塑性加工は勿論可能で
ある。
Primary cementite crystallized during the casting process is heated at a heating temperature of 85
It starts to decompose around 0°C, and from 950°C to 10°00°C.
It rapidly decomposes into graphite and austenite in the heating temperature range of . At this time, the shape of graphite that has been treated with a spheroidizing element such as Mg in the previous process of melting and casting becomes more spherical, and the shape of graphite that is not subjected to this treatment is a block-like shape similar to that seen in malleable cast iron. However, plastic working is of course possible for both.

本発明合金の塑性加工温度は900−1000℃の範囲
が適当である。従って、前工程から直ちに塑性加工工程
に入ることにより、エネルギーコストの面で有利になる
。しかし、部品形状によっては、一旦冷却して、塑性加
工成形し易い形状に機械加工した後に再加熱して塑性加
工工程に入る方が総合的に有利な場合もある。
The suitable plastic working temperature for the alloy of the present invention is in the range of 900-1000°C. Therefore, starting the plastic working process immediately from the previous process is advantageous in terms of energy costs. However, depending on the shape of the part, it may be overall advantageous to cool the part once, machine it into a shape that is easy to plastically process, and then reheat and enter the plastic forming process.

本発明合金のオーステンパー焼入れ加熱温度は、850
〜900℃の範囲が適当である。従って、塑性加工工程
から直ちにオーステンパー温度に焼入れすることにより
、エネルギー消費を低減することができる。なお、複雑
形状部品の場合は塑性加工中に部分的に温度むらが生じ
ることがある。
The austempering quenching temperature of the alloy of the present invention is 850
A range of 900°C is suitable. Therefore, energy consumption can be reduced by quenching to the austempering temperature immediately after the plastic working step. Note that in the case of parts with complex shapes, temperature unevenness may occur locally during plastic working.

その場合は、一旦均熱炉にて温度むらをなくした後焼入
れすればよく、消費エネルギーも少なくて済む。また、
再加熱してオーステンパー処理をしてもよい。
In that case, it is sufficient to quench the material after once eliminating temperature unevenness in a soaking furnace, and the energy consumption can be reduced. Also,
It may be reheated and austempered.

オーステンパー温度がADIの機械的性質および残留オ
ーステナイト(γ11 )量に大きく影響を及ぼすこと
は既に知られている。
It is already known that the austempering temperature greatly affects the mechanical properties of ADI and the amount of retained austenite (γ11).

本発明合金においても、オーステンパー温度が基地組織
に及ぼす影響はADIと全く同様であるため、機械的性
質についての傾向もまたADIと同様である。
In the alloy of the present invention, the influence of the austempering temperature on the matrix structure is exactly the same as that of ADI, and therefore the tendency of mechanical properties is also similar to that of ADI.

従って、適用部品の要求機能に応じたオーステンパー処
理を行う必要がある。即ち、高い抗張力と伸びおよび衝
撃値、比較的低い硬度が要求される強度部品には、35
0〜400°Cのオーステンパー温度が適用される。な
お、350〜400℃のオーステンパー温度で処理され
た材料はベイナイト組織中のTII量も多く、吸振性能
も高いが、切削性がやや低下する。オーステンパー処理
温度を400〜450℃にするとγR量が著しく低下し
、切削性が一段と向上する。オーステンパー処理温度が
350℃より低くなるに従って、基地組織は下部ベイナ
イトが支配的となり、硬度が上昇し靭性が低下するため
、特に耐摩耗性を要求される場合に適用する。極度に耐
摩耗性を要求される場合は、190℃以下に冷却し、基
地をマルテンサイト化することによって対応することも
可能である。以上のオーステンパー処理に要する時間は
1〜2時間である。
Therefore, it is necessary to perform austempering treatment according to the required functions of the applied parts. That is, 35
Austempering temperatures of 0-400°C are applied. Note that the material treated at an austempering temperature of 350 to 400° C. has a large amount of TII in the bainite structure and has high vibration absorption performance, but the machinability is slightly reduced. When the austempering temperature is set to 400 to 450°C, the γR amount is significantly reduced, and the machinability is further improved. As the austempering temperature becomes lower than 350°C, the base structure becomes dominated by lower bainite, the hardness increases and the toughness decreases, so this is particularly applicable when wear resistance is required. If extreme wear resistance is required, it is possible to meet this requirement by cooling the base to 190° C. or lower and making the base martensite. The time required for the above austempering treatment is 1 to 2 hours.

〔作用〕[Effect]

塑性加工材は、組織中の変形した黒鉛の展伸方向が揃っ
ているため、同一吸振性能を有する片状黒鉛鋳鉄材と比
較すると抗張力において3倍以上、伸びにおいて5倍以
上の機械的性質を持っており、強靭部材としての特性を
備えている。
Because the deformed graphite in the structure of the plastically processed material is aligned in the same direction, it has mechanical properties that are more than 3 times as high in tensile strength and 5 times as high in elongation compared to flaky graphite cast iron materials that have the same vibration absorption performance. It has the characteristics of a strong material.

ADIの切削性が著しく劣ることは既に述べたが、本発
明合金は黒鉛形態が紡鐘形及び/又は繊維状であるため
機械加工時の切り粉の離れが極めてよく、またADIに
みられる鋳造時の合金元素の偏析が原因の残留オーステ
ナイトのプールが、鋳造素材が斑鋳鉄又は白鋳鉄の場合
は合金元素の偏析が発生し難いこと、また塑性加工によ
って偏析が分散されることにより、本発明合金には生成
しないため、通常の球状黒鉛鋳鉄と同等以上の切削性を
持ち、加工の生産性を低下せしめない。
It has already been mentioned that the machinability of ADI is significantly inferior, but since the graphite of the present invention is bell-shaped and/or fibrous, chips are separated very easily during machining, and the casting properties seen in ADI are also excellent. The pool of residual austenite caused by the segregation of alloying elements during casting is difficult to generate when the casting material is cast iron or white cast iron, and the segregation is dispersed by plastic working, so the present invention Since it does not form in alloys, it has machinability equal to or better than ordinary spheroidal graphite cast iron, and does not reduce machining productivity.

〔実施例〕〔Example〕

(実施例1) 鋳造素材は銑鉄、鋼屑を原料とし、化学成分を調剤にて
調整し、高周波電気炉にて溶解した。溶解温度は148
0℃である。黒鉛の球状化処理は取鍋中サンドウィッチ
法で行い、球状化剤はFe−3i −Mg (5)を使
用し、Mg量で0・045%を添加した。接種はFe−
8i(75)を使用し、5iffiで0.15%を場面
添加した。
(Example 1) The casting material was made from pig iron and steel scraps, the chemical components were adjusted by preparation, and the material was melted in a high frequency electric furnace. Melting temperature is 148
It is 0°C. The graphite was spheroidized by a sandwich method in a ladle, and Fe-3i-Mg (5) was used as the spheroidizing agent, and 0.045% of Mg was added. Inoculation is Fe-
8i (75) was used and 0.15% was added locally at 5iffi.

溶湯は3種類の鋳型に1380°Cにて鋳込んだ。The molten metal was poured into three types of molds at 1380°C.

得られた鋳造素材の化学成分を第1表に、また鋳型の種
類と鋳造素材組織を第2表に示す。
The chemical composition of the obtained casting material is shown in Table 1, and the type of mold and the structure of the casting material are shown in Table 2.

一次セメンタイトの分解を兼ねての塑性加工まえ加熱温
度は各試料グループともに980℃とした。試料の中心
部が980℃に昇温した後の保持時間は一次セメンタイ
トがある試料については、これが完全に分解する時間保
持する必要があるが、第2表に示すBグループの試料は
4時間、Cグループの試料は2時間で充分であった。一
次セメンタイトのないAグループの試料は昇温後ただち
に塑性加工を行った。
The heating temperature before plastic working, which also serves as decomposition of primary cementite, was 980°C for each sample group. After the temperature of the center of the sample is raised to 980°C, for samples with primary cementite, it is necessary to hold the sample for a period of time for this to completely decompose, but for the samples of Group B shown in Table 2, the holding time is 4 hours. For Group C samples, 2 hours was sufficient. Samples in group A without primary cementite were subjected to plastic working immediately after heating.

塑性加工は鍛造又は圧延によって実施した。Plastic working was performed by forging or rolling.

鍛造はAグループ、Bグループ及びCグループともに圧
下率50%及び75%の2水準にて、圧延はAグループ
及びCグループにて圧下率75%にて行った。
Forging was performed at two levels of reduction ratios of 50% and 75% in Group A, Group B, and Group C, and rolling was performed at a reduction ratio of 75% in Group A and Group C.

塑性加工後各試料とも375℃の塩浴中に投入し、オー
ステンパー処理を行った。投入温度は890℃から91
0°Cの間である。塩浴中の保持時間は各試料ともに2
時間と几た。オーステンパー処理後各試料とも水中にて
冷却し、各特性測定用素材とした。
After plastic working, each sample was placed in a salt bath at 375°C and subjected to austempering treatment. Input temperature is 890℃ to 91℃
It is between 0°C. The retention time in the salt bath was 2 for each sample.
It took time and thought. After austempering, each sample was cooled in water and used as a material for measuring each characteristic.

素材より振動吸収性能、引張り特性、残留オーステナイ
ト量及び組織観察用試片を切り出し、測定に供した。
Specimens for vibration absorption performance, tensile properties, amount of retained austenite, and structure observation were cut from the material and used for measurements.

切削性の評価は直径10mmのハイスドリルを用い、切
削速度14m/min、送り0.3mm/ r e v
にて加工したときに発生するトルクを測定することによ
って行った。発明者は既に同一の条件における試験によ
り、FCD60相当材のトルクが60kgf−cmであ
るのに対し、375℃でオーステンパー処理を行ったA
DI材のトルクは100kgf−cmと大きく、ドリル
の寿命は約1/4と短い結果を得ている。
Cutting performance was evaluated using a high-speed steel drill with a diameter of 10 mm, cutting speed of 14 m/min, and feed rate of 0.3 mm/rev.
This was done by measuring the torque generated during machining. The inventor has already conducted a test under the same conditions and found that the torque of FCD60 equivalent material is 60 kgf-cm, whereas A which was austempered at 375°C
The torque of DI material is as large as 100 kgf-cm, and the life of the drill is shortened to about 1/4.

以上一連の結果を第3表に示す。The above series of results are shown in Table 3.

第3表より、Al−A3、B1、B2、C1〜C3で示
す本発明の対数減衰率は、片状黒鉛鋳鉄(FCIO)の
対数減衰率と同等またはそれ以上あり、優れた吸振性能
を有していることがわかる。
From Table 3, the logarithmic damping ratios of the present invention shown by Al-A3, B1, B2, C1 to C3 are equal to or higher than the logarithmic damping ratio of flake graphite cast iron (FCIO), and have excellent vibration absorption performance. I know what you're doing.

また、引張り強さ9(3〜108kgf/mm”伸びに
おいては6.5〜9.0%と優れた強靭部材としての特
性を備えている。そして、ドリル加工時のトルクは45
〜59kgf−cmと通常の球状黒鉛鋳鉄と同等以下で
あり、前述したADI材加材加工小トルク00kgf−
cmに較べて極端に少なく、加工能率を上げるとともに
ドリルの工具寿命を延長することができる。
In addition, the tensile strength is 9 (3 to 108 kgf/mm" elongation is 6.5 to 9.0%), making it an excellent strong member. And the torque during drilling is 45%.
~59kgf-cm, which is the same or lower than normal spheroidal graphite cast iron, and the small torque of 00kgf-cm when machining the ADI material mentioned above.
It is extremely small compared to cm, making it possible to increase machining efficiency and extend the tool life of the drill.

(実施例2) 鋳造素材は銑鉄、鋼屑を原料とし、化学成分を調剤にて
調整し、高周波電気炉にて溶解した。溶解温度は147
0℃である。黒鉛の球状化処理は取鍋中サンドウィッチ
法で行い、球状化剤はFe−8i −Mg (5)を使
用し、Mg量で0・050%を添加した。接種はFe 
 5i(75)を使用し、Si量で0.20%を場面添
加した。
(Example 2) The casting material was made from pig iron and steel scraps, the chemical components were adjusted using a preparation, and the material was melted in a high-frequency electric furnace. Melting temperature is 147
It is 0°C. The graphite was spheroidized by a sandwich method in a ladle, and Fe-8i-Mg (5) was used as the spheroidizing agent, and 0.050% of Mg was added. Inoculation is Fe
5i (75) was used, and 0.20% Si was added locally.

溶湯は2種類の鋳型に1370℃にて鋳込んだ。The molten metal was poured into two types of molds at 1370°C.

得られた鋳造素材の化学成分を第4表に、また鋳型の種
類及び鋳造素材組織を第5表に示す。
The chemical composition of the obtained casting material is shown in Table 4, and the type of mold and the structure of the casting material are shown in Table 5.

塑性加工前の加熱温度は各試料グループともに980℃
とした。Dグループの試料は中心部が980℃に昇温後
ただちに塑性加工を行った。Eグループは一次セメンタ
イトの分解を兼ねるため、2時間保持した後塑性加工を
行った。
The heating temperature before plastic working was 980℃ for each sample group.
And so. For the samples of group D, plastic working was performed immediately after the center part was heated to 980°C. In group E, in order to also decompose the primary cementite, plastic working was performed after holding for 2 hours.

塑性加工は鍛造又は圧延によって実施した。Plastic working was performed by forging or rolling.

鍛造はDグループおよびEグループともに圧下率40%
及び70%の2水準にて行い、圧延はDグループおよび
Eグループともに圧下率75%にて行った。
For forging, the reduction rate is 40% for both Group D and Group E.
The rolling was carried out at two levels: and 70%, and rolling was carried out at a rolling reduction rate of 75% for both Group D and Group E.

塑性加工後各試料とも375℃の塩浴中に投入し、オー
ステンパー処理を行った。投入温度は890℃から91
0℃の間である。塩浴中の保持時間は各試料ともに2時
間とした。オーステンパー処理後各試料とも水中にて冷
却し、各特性測定用素材とした。
After plastic working, each sample was placed in a salt bath at 375°C and subjected to austempering treatment. Input temperature is 890℃ to 91℃
It is between 0°C. The retention time in the salt bath was 2 hours for each sample. After austempering, each sample was cooled in water and used as a material for measuring each characteristic.

測定項目及び沖■定方法は実施例1と同様である。The measurement items and the offshore determination method were the same as in Example 1.

これら一連の結果を第6表に示す。A series of these results are shown in Table 6.

第6表より、DI−B3、El−B3で示す本発明の対
数減衰率は、片状黒鉛鋳鉄(FCIO)の対数減衰率と
同等またはそれ以上あり、優れた吸振性能を有している
ことがわかる。また、引張り強さ97〜106 kg 
17mm” 、伸びにおいては6.9〜11.0%と優
れた強靭部材としての特性を備えている。そして、ドリ
ル加工時のトルクは42〜60kgf−cmと通常の球
状黒鉛鋳鉄と同等以下であり、前述したADI材加材加
工用トルク00kgf−cmに較べて極端に少なく、加
工能率を上げドリルの工具寿命を延長することができる
From Table 6, the logarithmic damping rate of the present invention shown by DI-B3 and El-B3 is equal to or higher than that of flake graphite cast iron (FCIO), and has excellent vibration absorption performance. I understand. In addition, the tensile strength is 97-106 kg
17mm” and elongation of 6.9 to 11.0%, making it an excellent strong material.The torque during drilling is 42 to 60 kgf-cm, which is equal to or lower than ordinary spheroidal graphite cast iron. This torque is extremely small compared to the 00 kgf-cm torque for machining ADI materials mentioned above, and it is possible to increase machining efficiency and extend the tool life of the drill.

(実施例3) 鋳造素材は銑鉄、鋼屑を原料とし、化学成分を調剤にて
調整し、高周波電気炉にて溶解した。出湯時取鍋中にB
iを0.01%添加した。溶湯は幅20mm、長さ25
0mmの生砂型に1420°Cにて鋳込んた。得られた
鋳造素材の組織は白鋳鉄であり、化学成分は第7表の通
りである。
(Example 3) The casting material was made from pig iron and steel scraps, the chemical components were adjusted by preparation, and the material was melted in a high frequency electric furnace. B in the ladle when pouring hot water
0.01% of i was added. The molten metal is 20mm wide and 25mm long.
It was cast into a 0 mm green sand mold at 1420°C. The structure of the obtained casting material is white cast iron, and the chemical composition is as shown in Table 7.

一次セメンタイトの分解を兼ねての塑性加工前加熱は加
熱温度を980°C1保持時間を6時間とした。
The heating temperature was 980° C. and the holding time was 6 hours for heating before plastic working, which also serves as decomposition of primary cementite.

塑性加工は鍛造又は圧延によって実施した。圧下率はい
ずれも70%とした。
Plastic working was performed by forging or rolling. The rolling reduction ratio was 70% in both cases.

塑性加工後各試料とも375℃の塩浴中に投入し、オー
ステンパー処理を行った。投入温度は890°Cから9
10℃の間である。塩浴中の保持時間は各試料ともに2
時間°とした。オーステンパー処理後各試料とも水中に
て冷却し、各特性測定用素材とした。
After plastic working, each sample was placed in a salt bath at 375°C and subjected to austempering treatment. The charging temperature is 890°C to 9
It is between 10°C. The retention time in the salt bath was 2 for each sample.
The time was set as °. After austempering, each sample was cooled in water and used as a material for measuring each characteristic.

測定項目及び測定方法は実施例1及び実施例2と同様で
ある。 これら一連の結果を第8表に示す。
The measurement items and measurement method are the same as in Examples 1 and 2. A series of these results are shown in Table 8.

第8表より、Fl、F2で示す本発明の対数減衰率は、
片状黒鉛鋳鉄(FCIO)の対数減衰率と同等またはそ
れ以上あり、優れた吸振性能を有していることがわかる
。また、引張り強さ101〜1’03 kg 17mm
” 、伸びにおいては7.5〜7.7%と優れた強靭部
材としての特性を備えている。そして、ドリル加工時の
トルクは46〜48kgf−cmと通常の球状黒鉛鋳鉄
と同等以下であり、前述したADI材加材加工用トルク
OOkgr−cmに較べて極端に少なく、加工能率を上
げドリルの工具寿命を延長することができる。
From Table 8, the logarithmic attenuation rate of the present invention indicated by Fl and F2 is:
It can be seen that the logarithmic damping rate is equal to or higher than that of flake graphite cast iron (FCIO), and has excellent vibration absorption performance. Also, tensile strength 101~1'03 kg 17mm
”, has an elongation of 7.5 to 7.7%, which makes it an excellent strong material.The torque during drilling is 46 to 48 kgf-cm, which is equal to or lower than ordinary spheroidal graphite cast iron. The torque is extremely small compared to the aforementioned ADI material machining torque OO kgr-cm, which increases machining efficiency and extends the tool life of the drill.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り、本発明合金は黒鉛形態が紡鐘形及び
/又は繊維状のため振動吸収性能に優れ、組織中の変形
した黒鉛の展伸方向が揃っているため、同−吸振性能を
有する片状黒鉛鋳鉄材と比較すると抗張力において極め
て優れた強靭部材としての特性を備えており、かつ機械
加工時の切り粉の離れが極めてよいため通常の球状黒鉛
鋳鉄と同等以上の切削性を持ち加工の生産性がよ〈産業
上極めて有用な合金である。
As detailed above, the alloy of the present invention has excellent vibration absorption performance because the graphite morphology is bell-shaped and/or fibrous, and the deformed graphite in the structure has the same stretching direction, so it has excellent vibration absorption performance. Compared to flaky graphite cast iron, it has extremely superior properties as a strong member in terms of tensile strength, and it also has excellent machinability that is equivalent to or better than normal spheroidal graphite cast iron, as chips are separated very easily during machining. It has high processing productivity and is an extremely useful alloy in industry.

軸に対数減衰率、横軸に黒鉛形状(顕微鏡にて観察され
る紡鐘形及び/又は繊維状黒鉛の長軸/短軸の比の平均
値で示す)をとって示した。なお、図中の斜線は片状黒
鉛鋳鉄(FCIO)の対数減衰率を示す。
The logarithmic attenuation rate is plotted on the axis, and the graphite shape is plotted on the horizontal axis (indicated by the average value of the ratio of the long axis/short axis of the spindle shape and/or fibrous graphite observed under a microscope). Note that the diagonal line in the figure indicates the logarithmic attenuation rate of flake graphite cast iron (FCIO).

第2図は本発明鉄基合金における吸振性能を縦軸に対数
減衰率、横軸に顕微鏡にて観察される単位面積中の黒鉛
数をとって示した。なお、黒鉛形状は長軸/短軸の比が
約8である。
FIG. 2 shows the vibration absorption performance of the iron-based alloy of the present invention, with the vertical axis representing the logarithmic damping rate and the horizontal axis representing the number of graphites per unit area observed under a microscope. Note that the graphite shape has a long axis/short axis ratio of about 8.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (2)

【特許請求の範囲】[Claims] (1)球状黒鉛鋳鉄又は可鍛鋳鉄に、塑性加工を施した
ことによる紡鐘形及び/又は繊維状の黒鉛を有し、基地
組織がベイナイト及びオーステナイトの2相混合組織か
らなることを特徴とする強靭にして切削性に優れた高吸
振性鉄基合金。
(1) Spheroidal graphite cast iron or malleable cast iron has bell-shaped and/or fibrous graphite formed by plastic working, and the matrix structure is composed of a two-phase mixed structure of bainite and austenite. A highly vibration-absorbing iron-based alloy that is strong and has excellent machinability.
(2) (イ)鋳造状態に於いて、一次セメンタイトを含まない
基地組織と球状黒鉛からなる材質、又は一次セメンタイ
トを含み基地組織と球状黒鉛からなる材質、又は一次セ
メンタイトと基地組織よりなる材質の塑性加工素材を製
造する鋳造工程、 (ロ)該鋳造素材を塑性加工可能な温度まで加熱し、一
次セメンタイトを含む素材においては一次セメンタイト
の分解を兼ねさせる加熱及び分解工程、 (ハ)該加熱材を一旦冷却し再加熱して圧延及び/又は
鍛造するか又は一旦冷却せずに直ちに圧延及び/又は鍛
造する塑性加工工程、 (ニ)該塑性加工材を一旦冷却し再加熱してオーステン
パー処理を行うか、又は一旦冷却せずに直ちにオーステ
ンパー処理を行うオーステンパー処理工程、 以上(イ)から(ニ)の工程からなることを特徴とする
強靭にして切削性に優れた高吸振性鉄基合金の製造方法
(2) (a) In the cast state, a material consisting of a matrix structure and spheroidal graphite that does not contain primary cementite, a material that contains primary cementite and a matrix structure and spheroidal graphite, or a material that consists of primary cementite and a matrix structure. a casting process for producing a plastically processed material; (b) a heating and decomposition process in which the casting material is heated to a temperature that allows plastic processing, and in the case of a material containing primary cementite, the primary cementite is also decomposed; (c) the heated material A plastic working step in which the material is once cooled and then reheated and then rolled and/or forged, or immediately rolled and/or forged without being cooled, (d) the plastic worked material is once cooled and reheated to undergo austempering treatment. or an austempering process in which the austempering process is performed immediately without cooling. Method for manufacturing base alloys.
JP26140389A 1989-10-06 1989-10-06 Iron-base alloy having high vibration-absorbing property and its production Pending JPH03122250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26140389A JPH03122250A (en) 1989-10-06 1989-10-06 Iron-base alloy having high vibration-absorbing property and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26140389A JPH03122250A (en) 1989-10-06 1989-10-06 Iron-base alloy having high vibration-absorbing property and its production

Publications (1)

Publication Number Publication Date
JPH03122250A true JPH03122250A (en) 1991-05-24

Family

ID=17361386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26140389A Pending JPH03122250A (en) 1989-10-06 1989-10-06 Iron-base alloy having high vibration-absorbing property and its production

Country Status (1)

Country Link
JP (1) JPH03122250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060818A (en) * 2003-02-12 2005-03-10 Nippon Steel Corp Cast iron, cast iron slab and their production methods
JP2009256801A (en) * 2003-02-12 2009-11-05 Nippon Steel Corp Cast iron, cast iron billet, and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060818A (en) * 2003-02-12 2005-03-10 Nippon Steel Corp Cast iron, cast iron slab and their production methods
JP2009256801A (en) * 2003-02-12 2009-11-05 Nippon Steel Corp Cast iron, cast iron billet, and process for producing the same

Similar Documents

Publication Publication Date Title
US5252153A (en) Process for producing steel bar wire rod for cold working
JPH06322482A (en) High toughness high-speed steel member and its production
EP0668365B1 (en) Graphitic steel compositions
JP4361686B2 (en) Steel material and manufacturing method thereof
JPS6358881B2 (en)
Jenkins et al. Ductile Iron
JPH03122250A (en) Iron-base alloy having high vibration-absorbing property and its production
JPH0549722B2 (en)
CN111235467B (en) Iron-based composite intermediate alloy based on oxide and preparation method and application thereof
US6024804A (en) Method of preparing high nodule malleable iron and its named product
JP3855418B2 (en) Method of manufacturing nitrocarburizing steel material and nitrocarburized component using the steel material
JP3870631B2 (en) Method for short-time spheroidizing annealing of steel and steel by the same method
JPS5867844A (en) Spherical graphite cast iron excellent in tenacity and preparation thereof
JPS6196054A (en) Spheroidal graphite cast iron and manufacture thereof
CN116200647B (en) Ferritic spheroidal graphite cast iron, casting and preparation method thereof
CN115839399B (en) Harmonic reducer rigid gear and preparation method and application thereof
JP3769918B2 (en) Coarse grain-resistant case-hardened steel, surface-hardened parts excellent in strength and toughness, and manufacturing method thereof
JPH11335773A (en) Bearing steel excellent in cold workability
JP2000282184A (en) High hardness steel for induction hardening excellent in machinability and corrosion resistance
CN105886884B (en) A kind of nano rare earth evanohm cast grinding ball and its production method
JP3282491B2 (en) Steel for mechanical structure excellent in cold workability and method for producing the same
JPS61166944A (en) Spheroidal graphite cast iron casting and its manufacture
Shaha et al. Effect of austempering time on the structure and properties of Fe-C-Al alloy system ductile cast iron
JPH01149925A (en) Manufacture of steel bar having superior warm forgeability
JPH05105984A (en) Austempered spheroidal graphite cast iron and its production