JPH03122044A - Refractory for low carbon or ultra-low carbon steel - Google Patents
Refractory for low carbon or ultra-low carbon steelInfo
- Publication number
- JPH03122044A JPH03122044A JP1255183A JP25518389A JPH03122044A JP H03122044 A JPH03122044 A JP H03122044A JP 1255183 A JP1255183 A JP 1255183A JP 25518389 A JP25518389 A JP 25518389A JP H03122044 A JPH03122044 A JP H03122044A
- Authority
- JP
- Japan
- Prior art keywords
- refractory
- low carbon
- ultra
- carbon
- mgo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 229910052799 carbon Inorganic materials 0.000 title claims description 25
- 229910001209 Low-carbon steel Inorganic materials 0.000 title claims description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 10
- 239000010439 graphite Substances 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims abstract description 8
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000011230 binding agent Substances 0.000 claims abstract description 3
- 239000005011 phenolic resin Substances 0.000 claims abstract description 3
- 229920001568 phenolic resin Polymers 0.000 claims abstract description 3
- 239000002184 metal Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 2
- 238000013329 compounding Methods 0.000 abstract 2
- 239000011449 brick Substances 0.000 description 8
- 239000002893 slag Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 238000004901 spalling Methods 0.000 description 6
- 229910052845 zircon Inorganic materials 0.000 description 6
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011452 unfired brick Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000005028 tinplate Substances 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は低炭素鋼または極低炭素鋼の溶製に使用する取
鍋の内張り用耐火物に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refractory for lining a ladle used in melting low carbon steel or ultra-low carbon steel.
[従来の技術]
取MM火物として一般に使用されているジルコン、ろう
石れんがは多量の5i02を含有しており、S i 0
2の溶出、還元によって溶鋼を汚染するという問題があ
り、溶鋼清浄化のための取鍋耐火物中の5i02量を低
減するために、低5i02含有炉材としてアルミナ系耐
火物の開発が課題であった。[Prior art] Zircon and waxite bricks, which are generally used as MM refractories, contain a large amount of 5i02, and S i 0
There is a problem of contamination of molten steel due to the elution and reduction of 2, and in order to reduce the amount of 5i02 in ladle refractories for cleaning molten steel, the development of alumina-based refractories as furnace materials with low 5i02 content is an issue. there were.
低炭素鋼または極低炭素鋼の溶製に使用する取鍋の内張
り用耐火物としては、例えば、日本鉄鋼協会講演編文集
= 「材料とプロセスJ (134,216゜11、
.98811 に示されるように、アルミナれんがのス
ラグ浸潤防止のためカーボンを6〜8%添加した上で、
MgOを7〜17%添加しスピネル生成による膨張性付
与、表面被覆を行い耐蝕性を付与していた。As a refractory for lining ladle used for melting low carbon steel or ultra-low carbon steel, for example, there are some
.. 98811, after adding 6 to 8% carbon to prevent slag infiltration of alumina bricks,
MgO was added in an amount of 7 to 17% to impart expandability through spinel formation and surface coating to impart corrosion resistance.
しかしこの技術には次の未解決の問題がある。However, this technology has the following unresolved problems.
■極低炭素鋼溶製の際のれんが中のカーボンの溶出によ
り、カーボンのピックアップを生ずる。■ Carbon pick-up occurs due to the elution of carbon from bricks during the melting of ultra-low carbon steel.
■カーボン量が6〜8%と高いため、取鍋の稼動及び待
機のサイクルにおいて、カーボンが酸化を受は易いため
、損耗が大きい。(2) Since the carbon content is as high as 6 to 8%, the carbon is easily oxidized during the operation and standby cycles of the ladle, resulting in large wear and tear.
0MgOiが7〜17%と高く、膨張量が多いため使用
取鍋の容量によっては、スポーリング損傷を引き起こす
。0MgOi is high at 7 to 17% and the amount of expansion is large, causing spalling damage depending on the capacity of the ladle used.
〔発明が解決しようとする課題1
本発明は上記アルミナれんがの問題点を解決した改善さ
れた低炭素・極低炭素鋼用取鍋耐火物を開発し、これを
提供することを目的とする。すなわち、極低炭素鋼の溶
製を可能にするために、カーボン量を少なくする。ただ
し、れんがの特性上、スラグの浸潤を防止し、耐スポー
リング性を維持するためにカーボン量、MgO量を適正
化する。[Problems to be Solved by the Invention 1] The object of the present invention is to develop and provide an improved ladle refractory for low carbon and ultra-low carbon steel that solves the problems of the above-mentioned alumina bricks. That is, the amount of carbon is reduced in order to enable the production of ultra-low carbon steel. However, due to the characteristics of bricks, the amount of carbon and MgO should be optimized to prevent slag infiltration and maintain spalling resistance.
[課題を解決するための手段]
本発明は、アルミナを主成分とし、純度95%以上の黒
鉛=3〜5重量%、粒度1〜0.3 m mのMgO:
3〜5重量%を配合して構成した極低炭素鋼用耐火物
であり、フェノール樹脂バインダを用い、金属Si又は
/及び金属A℃を添加することによってさらに好適なも
のとなる。[Means for Solving the Problems] The present invention uses MgO containing alumina as a main component, graphite with a purity of 95% or more = 3 to 5% by weight, and a particle size of 1 to 0.3 mm:
It is a refractory for ultra-low carbon steel composed of 3 to 5% by weight, and is made more suitable by using a phenolic resin binder and adding metal Si or/and metal A°C.
[作用]
耐火物中の5i02からの溶鋼中への0、Siのピック
アップ防止のためジルコン、ろう石れんかに比べて5i
02含有量の少ないアルミナ耐火物を選定する。アルミ
ナ耐火物はスラグ中のCaO,5i02と反応し、スラ
グの浸潤による構造スポールの多発により寿命が低下す
る。これを防止するため、アルミナにカーボンを添加し
てスラグの浸潤防止し、一方、MgOを添加して膨張性
を付与し、目地開きを抑制する。カーボンの添加量が多
いとカーボンのピックアップのため極低炭素鋼の溶製が
できない。[Function] Compared to zircon and waxite bricks, 5i
Select an alumina refractory with low 02 content. The alumina refractory reacts with CaO, 5i02 in the slag, and its life is shortened due to frequent structural spalls due to infiltration of the slag. To prevent this, carbon is added to alumina to prevent slag infiltration, and MgO is added to impart expandability and suppress joint opening. If the amount of carbon added is large, ultra-low carbon steel cannot be produced due to carbon pickup.
そこで、カーボンは3〜5重量%に限定する。Therefore, carbon content is limited to 3 to 5% by weight.
この場合、黒鉛を高純度化すれば黒鉛の粒度は細かくな
り重量比を減少しても1体積比でカバーすることができ
る。さらに、高純度化した黒鉛は黒鉛内の不純物(Si
O2)が減少することにより、耐食性が向上する。In this case, if the graphite is highly purified, the particle size of the graphite becomes fine, and even if the weight ratio is reduced, it can be covered by one volume ratio. Furthermore, highly purified graphite contains impurities (Si) within the graphite.
Corrosion resistance is improved by reducing O2).
次に、MgO量を限定する。MgO配合量は3重量%未
満では膨張性が不十分であり、5重量%を越えるとスポ
ーリングを生ずるので、3〜5重量%に限定する。Next, limit the amount of MgO. If the MgO content is less than 3% by weight, the expandability will be insufficient, and if it exceeds 5% by weight, spalling will occur, so it is limited to 3 to 5% by weight.
MgOの粒度が粗粒配合(1〜3 m m )では低膨
張になるが耐食性が低下する。一方微粒配合(0,3m
m未満)では高膨張すぎてスポール性に劣る。したがっ
て、中粒配合(0,3mm以上1mm未満)とし、量を
最適化する。When the particle size of MgO is coarse (1 to 3 mm), the expansion becomes low, but the corrosion resistance decreases. On the other hand, fine particle formulation (0.3m
m), the expansion is too high and the spalling properties are poor. Therefore, the amount should be optimized by mixing medium particles (0.3 mm or more and less than 1 mm).
[実施例]
カーボンボンドの高アルミナ質不焼成れんかについてM
gO及びCの最適含有量を見出すことを目的に試作実験
を行った。そのMgO及びカーボンの特性は次の通りと
した。[Example] Regarding carbon bond high alumina unfired brick M
A prototype experiment was conducted with the aim of finding the optimal content of gO and C. The properties of MgO and carbon were as follows.
MgO:
■ 原料粒度として微粒(0,3mm以下)、中粒(0
,3〜1mm)、粗粒(1〜3mm)の3種を用いた。MgO: ■ The raw material particle size is fine (0.3 mm or less), medium (0.3 mm or less),
, 3 to 1 mm) and coarse particles (1 to 3 mm) were used.
■ 添加量としてそれぞれ2.5.1O115重量%と
じた。(2) The amount added was 2.5.1O and 115% by weight, respectively.
カーボン:
■ 原料のカーボン純度として高純度(C:95重量%
)と低純度(C:85重量
%)の2種をそれぞれ用いた。Carbon: ■ High purity carbon as raw material (C: 95% by weight)
) and low purity (C: 85% by weight) were used.
■ 添加量としてそれぞれ3.5.6.8重量%とした
。(2) The amounts added were 3, 5, and 6.8% by weight, respectively.
次に、試験項目として下記の試験を行った。Next, the following tests were conducted as test items.
残存膨張収縮率: 1500℃X2HrX5回 スラグ侵食テスト。Residual expansion/contraction rate: 1500℃ x 2 hours x 5 times Slag erosion test.
1650°CX2HrX3回(空冷)
転炉スラグ+普通鋼(1: 1)
溶損指数について第1図、第2図に、残存膨張収縮率に
ついて第3図、第4図に示した。1650°C x 2 hours x 3 times (air cooling) Converter slag + ordinary steel (1: 1) The erosion index is shown in Figures 1 and 2, and the residual expansion/contraction rate is shown in Figures 3 and 4.
純度95%以上の高純度黒鉛3〜5重量%を配合した場
合、第2図、第4図に示すように溶t(j指数、残存膨
張収縮率とも良好な成績を示し、一方粒度1〜0.3
m mのMgO粒を3〜5重量%〒合した場合、第1図
、第3図に示すように優れた特性を示す。When 3 to 5% by weight of high-purity graphite with a purity of 95% or more is blended, as shown in Figs. 0.3
When 3 to 5% by weight of MgO grains of mm are combined, excellent properties are exhibited as shown in FIGS. 1 and 3.
次に、カーボンポンドの高アルミナ質不焼成れんがで純
度95%の黒鉛3重量%、粒度0,3〜1mmのMgO
5重量%を配合したれんがを255トン取鍋の内張りに
使用し、
■ 低炭アルミナ、ギルド鋼(ブリキ用素材)の溶製
■ 極低炭素鋼の溶製
を行った。Next, high alumina unfired bricks from Carbon Pond were used, containing 3% by weight of graphite with a purity of 95% and MgO with a particle size of 0.3 to 1 mm.
Bricks containing 5% by weight were used for lining a 255-ton ladle, and ■ Smelting of low carbon alumina and guild steel (material for tinplate) ■ Smelting of ultra-low carbon steel was carried out.
前記れんがはスラグの浸透がなく、構造スポーリングに
よる剥離も見られなかった。また損耗速度も優れており
、今後の高アルミナ系材質として極めて有望であること
が明らかとなった。The bricks were free from slag penetration and no peeling due to structural spalling was observed. It also has an excellent wear rate, making it extremely promising as a future high alumina material.
次に本発明の耐火物と従来のジルコン質耐火物との比較
を第5図〜第7図に示した。Next, a comparison between the refractory of the present invention and a conventional zircon refractory is shown in FIGS. 5 to 7.
本発明品は
■ ジルコン材質を使用している取鍋に比べて第5図、
第6図に示すようにSi、Oのピックアップが少ない。The product of the present invention is shown in Fig. 5 compared to the ladle using zircon material.
As shown in FIG. 6, there are few pickups of Si and O.
■ 極低炭でのカーボンピックアップは第7図に示すよ
うに同等と認められる6
■ なお、従来材(ジルコン)の寿命を100とした場
合の寿命指数は151〜170となり、従来材(ジルコ
ン)と比べて1.5〜1.7倍となっている。■ Carbon pick-up with ultra-low carbon is recognized to be equivalent as shown in Figure 7.6 ■ Furthermore, when the life of the conventional material (zircon) is set as 100, the life index is 151 to 170, which means that the conventional material (zircon) It is 1.5 to 1.7 times higher than that of the previous year.
[発明の効果1
本発明のアルミナを主成分とする耐火物は、カーボンの
ピックアップを生じることなく、ま。[Effect of the invention 1] The refractory whose main component is alumina of the present invention does not pick up carbon.
た、スポーリング損傷が少ないので、低炭素・極低炭素
鋼取鍋用耐火物として優れた性能を有し、長寿命である
。In addition, because it suffers little spalling damage, it has excellent performance as a refractory for low-carbon and ultra-low-carbon steel ladles, and has a long life.
第1図はMgO添加量と溶損指数との関係を示すグラフ
、第2図はC添加量と溶損指数との関係を示すグラフ、
第3図はMgO添加量と残存膨張収縮率を示すグラフ、
第4図はC添加量と残存膨張収縮率を示すグラフ、第5
図はSiのピックアツプ量を示すヒストグラム、第6図
はOのピックアツプ量を示すヒストグラム、第7図はC
のピックアツプ量を示すヒストグラムである。Fig. 1 is a graph showing the relationship between the amount of MgO added and the dissolution index, and Fig. 2 is a graph showing the relationship between the amount of C added and the dissolution index.
Figure 3 is a graph showing the amount of MgO added and the residual expansion/contraction rate.
Figure 4 is a graph showing the amount of C added and the residual expansion/contraction rate.
The figure is a histogram showing the pick-up amount of Si, Figure 6 is a histogram showing the pick-up amount of O, and Figure 7 is a histogram showing the pick-up amount of O.
This is a histogram showing the amount of pick-up.
Claims (1)
5重量%、粒度1mm未満0.3mm以上のMgO3〜
5重量%を配合してなる低炭素・極低炭素鋼用耐火物。 2 フェノール樹脂バインダーを用い、金属Si又は/
及び金属Alを添加してなる請求項1記載の低炭素・極
低炭素鋼用耐火物。[Claims] 1. Graphite containing alumina as a main component and having a purity of 95% or more.
5% by weight, MgO3 with particle size of less than 1 mm and 0.3 mm or more
A refractory for low carbon and ultra-low carbon steel containing 5% by weight. 2 Using a phenolic resin binder, metal Si or/
The refractory for low carbon/ultra low carbon steel according to claim 1, further comprising: and metal Al.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1255183A JPH03122044A (en) | 1989-10-02 | 1989-10-02 | Refractory for low carbon or ultra-low carbon steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1255183A JPH03122044A (en) | 1989-10-02 | 1989-10-02 | Refractory for low carbon or ultra-low carbon steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03122044A true JPH03122044A (en) | 1991-05-24 |
Family
ID=17275190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1255183A Pending JPH03122044A (en) | 1989-10-02 | 1989-10-02 | Refractory for low carbon or ultra-low carbon steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03122044A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012031026A (en) * | 2010-08-02 | 2012-02-16 | Shinagawa Refractories Co Ltd | Alumina-magnesia-based refractory brick and method for producing the same |
-
1989
- 1989-10-02 JP JP1255183A patent/JPH03122044A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012031026A (en) * | 2010-08-02 | 2012-02-16 | Shinagawa Refractories Co Ltd | Alumina-magnesia-based refractory brick and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03122044A (en) | Refractory for low carbon or ultra-low carbon steel | |
US3272490A (en) | Steelmaking furnace | |
JP3908562B2 (en) | Irregular refractory | |
JP3009084B2 (en) | Magnesia-alumina spray material | |
JPS593068A (en) | Magnesia-carbon-silicon carbide refractories | |
JP3124799B2 (en) | Refractory brick containing low silica fused magnesia clinker | |
JP6694541B1 (en) | Castable refractory for blast furnace gutter metal part | |
JP3579231B2 (en) | Zirconia / graphite refractories containing boron nitride | |
JPS58115073A (en) | Alumina-spinel-carbon refractories | |
US3262794A (en) | Basic fused refractories | |
JP3336187B2 (en) | MgO-CaO carbon-containing refractory | |
JPH11278918A (en) | Basic refractory raw material and basic refractory, its production and metal smelting furnace and baking furnace using the same | |
JPH0733282B2 (en) | Carbon-containing refractory | |
JPH04104965A (en) | Amorphous refractory | |
JPH07242470A (en) | Aluminous-magnesian casting material | |
JP3400494B2 (en) | Basic refractories for molten metal | |
JP3176836B2 (en) | Irregular refractories | |
JP2501155B2 (en) | Magnesia chrome brick | |
JP2001010870A (en) | Basic amorphous refractory using magnesia.calcia clinker | |
JPH06116049A (en) | Spinel monolithic refractory | |
JPH10236884A (en) | Magnesia-carbon castable refractory | |
JPH0952759A (en) | Refractory superior in corrosion resistance to melted metal | |
JP2004196578A (en) | Magnesia-graphite brick | |
JPH03232761A (en) | Magnesia-containing refractory material, production thereof and refractory | |
JPH02283656A (en) | Carbon-containing refractory |