JPH03122021A - Oxide powder for piezoelectric porcelain and production of piezoelectric porcelain - Google Patents

Oxide powder for piezoelectric porcelain and production of piezoelectric porcelain

Info

Publication number
JPH03122021A
JPH03122021A JP1256556A JP25655689A JPH03122021A JP H03122021 A JPH03122021 A JP H03122021A JP 1256556 A JP1256556 A JP 1256556A JP 25655689 A JP25655689 A JP 25655689A JP H03122021 A JPH03122021 A JP H03122021A
Authority
JP
Japan
Prior art keywords
powder
specific surface
surface area
binder
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1256556A
Other languages
Japanese (ja)
Inventor
Munetoshi Watanabe
宗敏 渡辺
Yasuhiro Shimizu
保弘 清水
Hiroyuki Hata
畑 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Co Ltd
Original Assignee
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Co Ltd filed Critical Osaka Titanium Co Ltd
Priority to JP1256556A priority Critical patent/JPH03122021A/en
Publication of JPH03122021A publication Critical patent/JPH03122021A/en
Priority to US07/827,537 priority patent/US5204031A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provided oxide powder for piezoelectric porcelain supplying a dense sintered material free from cracks by making specific surface area of perovskite type lead-containing compound oxide powder produced by hydrothermal reaction <=a specific value. CONSTITUTION:A perovskite type lead-containing compound oxide powder produced by hydrothermal reaction is heat-trated at 500-1,000 deg.C to give <=20m<2>/g specific surface area thereof. The powder is blended with a binder, compression molded, and the binder is removed to give a molded article having >=50% theo retical density, which is calcined. Shrinkage percentage of molded article during calcining is reduced with decrease in specific surface area of powder. When specific surface ara is <=20m<2>/g, shrinkage percentage is <=20%, a piezoelectric porcelain having a few cracks is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ペロブスカイト型鉛含有複合酸化物からなる
圧電磁器の原料となる酸化物粉末、およびその粉末を使
用する圧電磁器の製造方法に関し、特に、水熱反応を利
用して製造した微細粉末原料を使用して、焼成時の変形
や割れの発生を抑えて密度の高い圧電磁器を製造する方
法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an oxide powder that is a raw material for piezoelectric ceramics made of a perovskite-type lead-containing composite oxide, and a method for manufacturing piezoelectric ceramics using the powder. In particular, the present invention relates to a method for producing high-density piezoelectric ceramics using fine powder raw materials produced using hydrothermal reactions while suppressing deformation and cracking during firing.

(従来の技術) ジルコン酸チタン酸鉛[Pb(Zr、 Ti)Oz )
を代表とするペロブスカイト型鉛含有複合酸化物を焼成
して作られるLit器組成物は、圧電)AギーIとして
広く実用化されつつある。
(Conventional technology) Lead zirconate titanate [Pb(Zr, Ti)Oz)
Lit device compositions made by firing perovskite-type lead-containing composite oxides, typified by , are being widely put into practical use as piezoelectric Agie I.

かかるペロブスカイト型鉛含有複合酸化物の圧、g磁器
の原料となる粉末の製造方法は種々あるが、その中で、
例えば特開昭63−85014号公報に開示されるよう
な、水熱反応を利用する製造方法が均一で微細な粉末が
得られるという点で最も好ましい。本発明者らも、この
水熱反応を利用し、組成が均一で圧粉特性に優れたペロ
ブスカイト型鉛含有複合酸化物の$5)末を製造する方
法を開発して先に特願平1−30844号として特許出
願した。かかる水熱反応によって合成された圧WJi器
の原料粉末(以下「水熱合成′j5)末」という)は、
組成が均一であるのみならず、粒子が微細であるため、
同和反応によって合成された原料粉末などに比較して、
焼成温度を低くすることができるというil1点がある
There are various methods for producing powder of such perovskite-type lead-containing composite oxide, which is the raw material for porcelain.
For example, a manufacturing method using a hydrothermal reaction as disclosed in JP-A No. 63-85014 is most preferred in that a uniform and fine powder can be obtained. The present inventors also utilized this hydrothermal reaction to develop a method for producing $5) powder of a perovskite-type lead-containing composite oxide with a uniform composition and excellent powder properties. A patent application was filed as No.-30844. The raw material powder for the pressure WJi device (hereinafter referred to as "hydrothermal synthesis 'j5) powder" synthesized by such hydrothermal reaction is:
Not only is the composition uniform, but the particles are fine, so
Compared to raw material powder etc. synthesized by dowa reaction,
One advantage is that the firing temperature can be lowered.

しかしながら、水熱合成粉末をバインダーと混合し、金
型プレスで成型して焼成した場合、焼成前の成形体の密
度が低く、従って焼成時の収縮率が大きくなり、変形し
たりクラックが発生ずることが多い。
However, when hydrothermal synthetic powder is mixed with a binder, molded using a mold press, and fired, the density of the molded product before firing is low, and therefore the shrinkage rate during firing becomes large, resulting in deformation and cracking. There are many things.

(発明が解決しようとする課題) 本発明のyA題は、ペロブスカイト型鉛含有複合酸化物
の水熱合成粉末を原料とする圧電磁器の製造において、
クラックのない緻密な焼成体を製造することにあり、上
記粉末自体の改良とこのわ)末を使用する圧電も1器の
製造方法を提供することを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to solve the following problems in the production of piezoelectric ceramics using a hydrothermally synthesized powder of perovskite-type lead-containing complex oxide.
The object of the present invention is to produce a dense fired body without cracks, and to improve the powder itself and to provide a method for producing a piezoelectric device using the powder.

(課題を解決するための手段) 水熱合成粉末の成形体を焼成したときに変形やクラック
が発生するのは、成形体の密度が低く、焼成の際の収縮
が大きいことが主原因である。そして、成形体の密度が
低いのは水熱合成わ〕末が微細で、その比表面積がきわ
めて大きいためであると推定される。そこで本発明者ら
は、焼成前の粉末の比表面積と焼成時の成形体の収縮率
との関係を調査した。第1図はその調査結果をまとめた
グラフである。図示のとおり、I5)末の比表面積が小
さくなるにつれて収縮率も小さくなる。比表面積が20
m2/g以下であれば収縮率は20%以下となり、クラ
ックの少ない緻密な焼成体が得られる。
(Means for solving the problem) The main reason why deformation and cracks occur when a molded body of hydrothermally synthesized powder is fired is that the density of the molded body is low and shrinkage during firing is large. . It is presumed that the reason why the density of the compact is low is that the hydrothermally synthesized powder is fine and its specific surface area is extremely large. Therefore, the present inventors investigated the relationship between the specific surface area of the powder before firing and the shrinkage rate of the molded body during firing. Figure 1 is a graph summarizing the survey results. As shown in the figure, as the specific surface area of I5) becomes smaller, the shrinkage rate also becomes smaller. Specific surface area is 20
If it is m2/g or less, the shrinkage rate will be 20% or less, and a dense fired body with few cracks will be obtained.

本発明は、上記の知見に基づくもので、その要旨は、下
記(1)の酸化物粉末および(2)の圧電磁器の製造方
法にある。
The present invention is based on the above findings, and its gist lies in the following (1) oxide powder and (2) piezoelectric ceramic manufacturing method.

(1)比表面積が208/Ifi”以下である水熱反応
を利用して製造したペロブスカイト型鉛含有複合酸化物
粉末。
(1) A perovskite-type lead-containing composite oxide powder produced using a hydrothermal reaction and having a specific surface area of 208/Ifi" or less.

(2)次の■〜■の工程からなる圧電磁器の製造方法。(2) A method for manufacturing piezoelectric ceramics comprising the following steps 1 to 2.

■水熱反応を利用してペロブスカイト型鉛含有複合酸化
物の粉末を作る工程、 ■粉末を500〜1000°Cで熱処理して粒成長を起
こさせその比表面積を20m”/g以下とする工程、■
バインダーを混合し成形する工程、 ■成形体を脱バインダーするとともに、理論密度の50
%以上の密度をもつ成形体とする工程、■上記の成形体
を焼成する工程。
■Process of producing perovskite-type lead-containing composite oxide powder using hydrothermal reaction; ■Process of heat-treating the powder at 500 to 1000°C to cause grain growth and reduce its specific surface area to 20 m"/g or less , ■
The process of mixing the binder and molding, ■Remove the binder from the molded product and reduce the theoretical density to 50%.
% or more, ■ a step of firing the above molded body.

上記のペロブスカイト型鉛含有複合酸化物とは、一般式
A B 0 !で表されるものである。ただし、Aは、
pbあるいはpbとSr、 Ca、 Ba、 La、、
Liなどの少なくとも一種類の成分であり、Bは、Zr
、 Ti、Nh、 Mg、 Ni、Fe、 W、 Mn
などの少なくとも一種類の成分、0は酸素である。
The above perovskite-type lead-containing composite oxide has the general formula A B 0 ! It is expressed as However, A is
pb or pb and Sr, Ca, Ba, La,...
At least one component such as Li, B is Zr
, Ti, Nh, Mg, Ni, Fe, W, Mn
At least one component such as 0 is oxygen.

ペロブスカイト型鉛含有複合酸化物のむ)末を水熱反応
を利用して製造する方法としては、前記特開昭63−8
5014号公報に記載されるような方法も利用できるが
、本発明者らの先願発明(特願平1−30844号の発
明)の方法を用いるのが望ましい。
As a method for producing perovskite-type lead-containing composite oxide powder using a hydrothermal reaction, the above-mentioned Japanese Patent Application Laid-Open No. 63-8
Although the method described in Japanese Patent Application No. 5014 can also be used, it is preferable to use the method of the present inventors' earlier invention (Japanese Patent Application No. 1-30844).

その方法は、概略下記の工程からなる。The method generally consists of the following steps.

(a)  反応容器内で水溶性鉛酸化物を低濃度アルカ
リ金属水溶液と反応させて鉛系水酸化物沈殿を生成させ
る工程、 (b)  上記反応容器内に鉛系水酸化物以外の水酸化
物を生成させる水溶性塩を加えて上記の水酸化物沈殿を
生成させる工程、 (C)反応容器内を高温、高圧にして水熱反応を起こさ
せる工程、 (d)  濾過、洗浄および乾燥する工程。
(a) A step in which water-soluble lead oxide is reacted with a low concentration alkali metal aqueous solution in a reaction vessel to generate a lead-based hydroxide precipitate; (b) Hydroxide other than lead-based hydroxide in the reaction vessel. (C) A step of raising the temperature and pressure inside the reaction vessel to cause a hydrothermal reaction, (d) Filtration, washing and drying. Process.

なお、上記(C)の水熱反応は、P)112以上、温度
150〜200°Cで行わせるのが望ましい。
Note that the hydrothermal reaction (C) above is preferably carried out at P) 112 or higher and a temperature of 150 to 200°C.

得られた粉末は、圧縮成形に先立って、500〜100
0°Cで熱処理し比表面積が20m”/g以下となるま
で粒成長させる(■の工程)、熱処理雰囲気は大気中、
処理時間は1〜5時間程度でよい。
The obtained powder was heated to 500-100% prior to compression molding.
The grains were heat-treated at 0°C and grown until the specific surface area became 20 m"/g or less (step ■). The heat treatment atmosphere was air,
The processing time may be about 1 to 5 hours.

このように熱処理した粉末にバインダーを混合して、金
型プレスなどで圧縮成形する(■の工程)。
The heat-treated powder is mixed with a binder and compression molded using a mold press or the like (step (■)).

成形圧力は1〜3 ton/Cm”程度とする。The molding pressure is approximately 1 to 3 tons/Cm''.

上記の成形体を400〜600°Cで1〜2時間程度加
熱して脱バインダーを行うとともに、理論密度の50%
以上の成形体とする(■の工程)。
The above molded body is heated at 400 to 600°C for about 1 to 2 hours to remove the binder and reduce the density to 50% of the theoretical density.
The above molded body is obtained (step (■)).

後に詳しく述べるとおり、■の熱処理を加えておけば、
脱バインダー後に理論密度の50%以上、70%程度ま
での密度が容易に得られる。
As will be explained in detail later, if you add the heat treatment described in ■,
After removing the binder, a density of 50% or more and up to about 70% of the theoretical density can be easily obtained.

こうして得られた成形体を焼成して磁器組成物とする 
(■の工程)、この焼成は、800〜1300°C程度
の温度で、1〜5時間程度行えばよい。焼成の雰囲気は
、鉛雰囲気または大気中とする。
The molded body thus obtained is fired to form a porcelain composition.
(Step (■)) This firing may be performed at a temperature of about 800 to 1300°C for about 1 to 5 hours. The firing atmosphere is a lead atmosphere or air.

(作用) 水熱合成粉末は、通常、比表面積が20〜70rr?/
gと非常に大きな値であり、球状粒子と仮定した換算粒
径が、0.05μ−以下の微粒子である。そのため、こ
の粉末にバインダーとして、例えばポリビニルアルコー
ル8重量%の水溶液を5〜IO重世%添加して混合した
後、1〜2 ton/c4の圧力で加圧成形し600°
Cで2時間脱バインダーした成形体密度は、理論密度の
50%に達しない、従って、これを焼成して理論密度に
近い焼成体を得ようとするならば、20%以上の収縮率
が必要となり、成形体には変形(ソリ)やクランクが発
生する。これは、わ)末の粒径が小さすぎて、成形体の
空隙率が大きくなるためである。粉末の比表面積を予め
20rd/g以下にして、その成形体を前記のように脱
バインダー処理すれば、理論密度の50%以上の密度を
もつ成形体が得られ、これを焼成した場合の収縮率は、
第1図に示したように、20%以下となり変形やクラッ
クの発生がごく少なくなる。
(Function) Hydrothermal synthetic powder usually has a specific surface area of 20 to 70rr? /
g, which is a very large value, and the converted particle size, assuming that they are spherical particles, is 0.05μ or less. Therefore, as a binder, for example, an aqueous solution of 8% by weight of polyvinyl alcohol is added and mixed in an amount of 5 to 10% by weight, and then the powder is press-molded at a pressure of 1 to 2 tons/c4 and heated at 600°.
The density of the molded product after removing the binder for 2 hours at C does not reach 50% of the theoretical density. Therefore, if you want to obtain a fired product close to the theoretical density by firing it, a shrinkage rate of 20% or more is required. As a result, deformation (warp) and cranking occur in the molded product. This is because the particle size of the powder (W) is too small and the porosity of the molded body becomes large. If the specific surface area of the powder is set to 20rd/g or less in advance and the molded body is treated to remove the binder as described above, a molded body having a density of 50% or more of the theoretical density can be obtained, and when this is fired, the shrinkage will be reduced. The rate is
As shown in FIG. 1, it is less than 20%, and the occurrence of deformation and cracking is extremely small.

成形に先立ち、水熱合成わ)末を500〜1000’C
で熱処理すると粉末の粒成長がおこり、その比表面積を
20r+(/g以下、球状粒子として換算した粒径で0
.05μm以上とすることができる。その後、上記と同
様な方法で成形した成形体密度は、理論密度の50〜7
0%まで達する。この成形体を焼成すれば、収縮率は小
さく、変形やクランクの少ない緻密な焼成体が得られる
Prior to molding, the hydrothermally synthesized powder is heated to 500-1000'C.
When heat treated with
.. The thickness can be set to 0.05 μm or more. Thereafter, the density of the compact formed by the same method as above was 50 to 7 of the theoretical density.
It reaches 0%. If this molded body is fired, a dense fired body with a small shrinkage rate and less deformation and cranking can be obtained.

(実施例) 下記の工程で水熱合成粉末を製造した。(Example) A hydrothermally synthesized powder was produced using the following steps.

1、水酸化カリウム(KOj+) : 1375 gを
水に溶解し、全量を3500dとし、これに硝酸鉛(I
’b(NO,)り650.0 gを水1500mlにン
容解した水ン容液を加えて、室温で30分間反応させ、
鉛系沈澱物を生成さ・口た。
1. Potassium hydroxide (KOj+): Dissolve 1375 g in water to make a total amount of 3500 d, and add lead nitrate (I
A solution prepared by dissolving 650.0 g of 'b(NO,) in 1500 ml of water was added, and the mixture was allowed to react at room temperature for 30 minutes.
A lead-based precipitate is formed.

11、次に、オキシ塩化ジルコニウム(ZrOCl 。11. Next, zirconium oxychloride (ZrOCl).

81hO)  : 393.4 gを水500mNに溶
解した水溶液と、T1Cf−水溶液(Ti分16.7讐
L%) : 179. gと硝酸ランタン(1,a(N
Oi)s ・61bO) :69.Ogを水150m1
に溶解した水溶液との混合溶液を加えて室温で30分反
応させ、ジルコニウム系沈澱物、チタン系沈澱物、ラン
タン系沈澱物を生成させた。
81hO): 393.4 g dissolved in 500 mN water and a T1Cf-aqueous solution (Ti content: 16.7L%): 179. g and lanthanum nitrate (1, a(N
Oi)s ・61bO) :69. Og to 150ml of water
A mixed solution with an aqueous solution dissolved in was added and reacted at room temperature for 30 minutes to produce a zirconium-based precipitate, a titanium-based precipitate, and a lanthanum-based precipitate.

iii、上記の沈澱物を含む!Q濁液をオートクレーブ
に移して、180’cで5時間反応させた。生成した沈
′R物を水で充分洗浄した後、120°C7′15時間
の乾燥を行った。
iii. Contains the above precipitate! The Q suspension was transferred to an autoclave and reacted at 180'C for 5 hours. After thoroughly washing the resulting precipitate with water, it was dried at 120°C for 7'15 hours.

以上の工程で得られた粉末の特性および焼結性を調査し
た。
The properties and sinterability of the powder obtained in the above steps were investigated.

第2図は、上記の工程で得られたまま(熱処理せず)の
粉末と500〜900°C″?:1時間熱処理した粉末
のBET法により測定した比表面積、およびそれを球状
粒子として換算した粒径を示すものである。熱処理して
いない粉末は、40nf/gと大きな比表面積値を示し
、その粒径は0.02μmと極めて微細である。一方、
900°Cで1時間熱処理したt))末は1μ亀径程度
の粒子になっている。
Figure 2 shows the specific surface area measured by the BET method of the powder obtained in the above process (without heat treatment) and the powder heat-treated at 500 to 900°C for 1 hour, and its conversion as spherical particles. The powder without heat treatment shows a large specific surface area value of 40 nf/g, and its particle size is extremely fine as 0.02 μm.On the other hand,
The t)) powder heat-treated at 900°C for 1 hour has particles with a diameter of about 1 μm.

次に、700°Cで1時間熱処理した粉末と熱処理して
いない粉末を使用して、焼結性を試験した。
Next, sinterability was tested using powders heat-treated at 700°C for 1 hour and powders that were not heat-treated.

それぞれの粉末に対して、バインダーとしてポリビニル
アルコール: %加え、乳鉢でよく混合した.次に金型プレスで直径1
6mm、厚さ5InI11の成形体に加圧成形した.こ
の時の圧力は、1 ton/c4とした.この成形体を
600°Cで2時間加熱して脱バインダーした後、成形
体密度を測定した。その結果を第1表に示す。
% polyvinyl alcohol was added as a binder to each powder and mixed well in a mortar. Next, use a mold press to create a diameter of 1
It was press-molded into a molded body of 6 mm and 5 InI11 thickness. The pressure at this time was 1 ton/c4. This molded body was heated at 600° C. for 2 hours to remove the binder, and then the density of the molded body was measured. The results are shown in Table 1.

第  1  表 寧理論密度は7.8 g/cm’ 第】表に見られるように、熱処理したわ)末の密度は、
4.7g/c4、熱処理していない粉末を用いた方の密
度は、3.0g/c4であり、理論密度(7.8g/c
od)に対する割合は、各々約60%、約38%であっ
た。
Table 1: The theoretical density is 7.8 g/cm. As shown in Table 1, the density of the heat-treated powder is:
4.7g/c4, and the density of the powder that has not been heat treated is 3.0g/c4, which is the theoretical density (7.8g/c4).
od) were about 60% and about 38%, respectively.

これは、熱処理していない粉末は、比表面積からも分か
るように、超微粒子であり、粒子間に作用する付着力、
凝集力の影響が大きく、空隙率が大きくなり、成形密度
が上がらないものと考えられる。これに対し熱処理した
粉末は、ある程度の犬きさの−成粒子まで粒成長させて
いるため上記のような問題はなく、成形体密度の値が大
きくなるのである。
This is because powder that has not been heat treated is ultrafine particles, as seen from the specific surface area, and the adhesive force that acts between the particles
It is thought that the effect of cohesive force is large, the porosity increases, and the molding density does not increase. On the other hand, heat-treated powder does not have the above problem because the grains are grown to a certain degree of dog size, and the compact density value increases.

次に、これらの成形体を用いて、1000〜1250’
cで2時間焼成を行い、焼成密度と径方向収縮率を調べ
た。その結果を第3図と第4図にそれぞれ示す。第3図
は、焼成温度と焼成密度の関係、第4図は、焼成温度と
径方向収縮率の関係である。これらの図中に実施例と記
したのが、第1表の■の成形体を焼成したもの、比較例
と記したのが■の成形体を焼成したものである。
Next, using these molded bodies, 1000 to 1250'
Firing was performed for 2 hours at c, and the firing density and radial shrinkage rate were examined. The results are shown in FIGS. 3 and 4, respectively. FIG. 3 shows the relationship between firing temperature and firing density, and FIG. 4 shows the relationship between firing temperature and radial shrinkage rate. In these figures, "Example" is the one obtained by firing the molded article (2) in Table 1, and "Comparative Example" is the one obtained by firing the molded article (2).

実施例では1100°C以上の焼成温度でほぼ理論密度
に達し、また収縮率も約15%であり、クラックのない
緻密な焼成体が得られた。一方、比較例では1250°
Cの焼成温度でも理論密度に達せず、収縮率も1100
°C以上の焼成温度では20%以上と大きく、これらの
焼成体には大部分クランクが生していた。
In the example, the theoretical density was almost reached at a firing temperature of 1100°C or higher, and the shrinkage rate was about 15%, resulting in a dense fired body without cracks. On the other hand, in the comparative example, 1250°
The theoretical density was not reached even at the firing temperature of C, and the shrinkage rate was 1100.
At a firing temperature of °C or higher, it was as high as 20% or more, and most of these fired bodies had cranks.

また実施例の焼成体は、密度だけでなく、その他の物性
(抗折強度、誘電率、誘電tU失、透光性など)におい
ても、極めて良好であった。
Furthermore, the fired bodies of Examples were extremely good not only in density but also in other physical properties (flexural strength, dielectric constant, dielectric tU loss, translucency, etc.).

(発明の効果) 本発明によれば、粒子が微細で、組成の均一性が高い水
熱合成粉末を原料として用い、しかも、焼成の際に変形
やクランクの発生を抑えた緻密な圧N Eft 器を提
供することができる。本発明の方法は、近年用途の拡大
しているペロブスカイト型鉛含有複合酸化物の圧電6i
器の製造方法として極めて優れたものである。
(Effects of the Invention) According to the present invention, a hydrothermally synthesized powder with fine particles and a highly uniform composition is used as a raw material, and a dense pressure N Eft that suppresses deformation and cranking during firing is used. equipment can be provided. The method of the present invention can be applied to piezoelectric 6i of perovskite-type lead-containing composite oxides whose applications have been expanding in recent years.
This is an extremely excellent method for making pottery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、水熱合成t5〕末の比表面積と同粉末を成形
し焼成したときの収縮率との関係を示す図、第2図は、
水熱合成粉末の熱処理前と500〜900°Cで1時間
熱処理した粉末の比表面積と、球状粒子として換算した
粒径を示す図、 第3図は、本発明の実施例と比較例で得られた焼結体の
焼結温度と焼結密度との関係を示す図、第4図は、同じ
く焼結温度と径方向収縮率との関係を示す図、である。
Figure 1 shows the relationship between the specific surface area of the hydrothermally synthesized t5 powder and the shrinkage rate when the same powder is molded and fired, and Figure 2 shows the
Figure 3 shows the specific surface area of the hydrothermally synthesized powder before heat treatment and the powder heat treated at 500 to 900°C for 1 hour, and the particle size converted to spherical particles. FIG. 4 is a diagram showing the relationship between the sintering temperature and the sintered density of the sintered body, and FIG. 4 is a diagram also showing the relationship between the sintering temperature and the radial shrinkage rate.

Claims (2)

【特許請求の範囲】[Claims] (1)比表面積が20m^2/g以下である水熱反応を
利用して製造したペロブスカイト型鉛含有複合酸化物粉
末。
(1) Perovskite-type lead-containing composite oxide powder produced using a hydrothermal reaction and having a specific surface area of 20 m^2/g or less.
(2)水熱反応を利用して製造したペロブスカイト型鉛
含有複合酸化物の粉末を500〜1000℃で熱処理し
てその比表面積を20m^2/g以下としたのちバイン
ダーと混合して圧縮成形し、脱バインダーして理論密度
の50%以上の成形体とし、その成形体を焼成すること
を特徴とする圧電磁器の製造方法。
(2) Powder of a perovskite-type lead-containing composite oxide produced using a hydrothermal reaction is heat-treated at 500 to 1000°C to have a specific surface area of 20 m^2/g or less, and then mixed with a binder and compression molded. A method for manufacturing piezoelectric ceramics, which comprises: removing the binder to form a molded body having a theoretical density of 50% or more; and firing the molded body.
JP1256556A 1989-09-30 1989-09-30 Oxide powder for piezoelectric porcelain and production of piezoelectric porcelain Pending JPH03122021A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1256556A JPH03122021A (en) 1989-09-30 1989-09-30 Oxide powder for piezoelectric porcelain and production of piezoelectric porcelain
US07/827,537 US5204031A (en) 1989-09-30 1992-01-30 Powder of oxide for dielectric ceramics and a process for producing dielectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256556A JPH03122021A (en) 1989-09-30 1989-09-30 Oxide powder for piezoelectric porcelain and production of piezoelectric porcelain

Publications (1)

Publication Number Publication Date
JPH03122021A true JPH03122021A (en) 1991-05-24

Family

ID=17294283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256556A Pending JPH03122021A (en) 1989-09-30 1989-09-30 Oxide powder for piezoelectric porcelain and production of piezoelectric porcelain

Country Status (1)

Country Link
JP (1) JPH03122021A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020560A (en) * 2018-10-10 2018-12-18 贵州大学 A kind of hydro-thermal treatment method of ceramic oxide composite granule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020560A (en) * 2018-10-10 2018-12-18 贵州大学 A kind of hydro-thermal treatment method of ceramic oxide composite granule

Similar Documents

Publication Publication Date Title
US4814128A (en) Process for making a homogeneous doped silicon nitride article
JPS60210508A (en) Manufacture of sinterable ceramic fine powder
JPH03122021A (en) Oxide powder for piezoelectric porcelain and production of piezoelectric porcelain
US6592805B1 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors
JP4806893B2 (en) Method for producing oxide powder having perovskite structure
JPS6363511B2 (en)
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPS5926966A (en) Manufacture of ceramics green molded body
CN114477996B (en) Preparation method of barium titanate-based ceramic
JPH0515666B2 (en)
JPH0262496B2 (en)
JPS6227371A (en) Composition for ceramic dielectric and manufacture of ceramic dielectric
JP2003063877A (en) Method for manufacturing multicomponent piezoelectric material
JP3084401B1 (en) High performance piezoelectric ceramics and their manufacturing method
JP3160899B2 (en) Method for producing oxide high-temperature superconductor
JPH02255568A (en) Production of sintered body of lead titanate
JP3012021B2 (en) Phosphoric acid-based sintered body and method for producing the same
JPS63239125A (en) Production of perovskite ceramic powder containing zirconium
JPH0258230B2 (en)
KR950004596B1 (en) Manufacturing method of piezo electric composition
JPH0517221A (en) Material for titania series ceramics
JPH02212316A (en) Production of pzt powder
JPS59162168A (en) Manufacture of porous ceramics
JPH0431353A (en) Production of multicomponent oxide sintered material
JPH07206526A (en) Production of silicon nitride sintered compact