JPH0312149B2 - - Google Patents

Info

Publication number
JPH0312149B2
JPH0312149B2 JP29354887A JP29354887A JPH0312149B2 JP H0312149 B2 JPH0312149 B2 JP H0312149B2 JP 29354887 A JP29354887 A JP 29354887A JP 29354887 A JP29354887 A JP 29354887A JP H0312149 B2 JPH0312149 B2 JP H0312149B2
Authority
JP
Japan
Prior art keywords
plating
wire
nozzle
adhesion
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29354887A
Other languages
Japanese (ja)
Other versions
JPH01136974A (en
Inventor
Minoru Yamada
Takashi Sasaki
Hideji Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29354887A priority Critical patent/JPH01136974A/en
Publication of JPH01136974A publication Critical patent/JPH01136974A/en
Publication of JPH0312149B2 publication Critical patent/JPH0312149B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は線条材の表面処理方法に係り、特に溶
接用ワイヤ、ビードワイヤ等の線条材の置換銅メ
ツキに好適な置換メツキ方法に関するものであ
る。 (従来の技術) 一般に、線条材、特に溶接用ワイヤにおいて
は、その製造工程中にメツキ工程があるが、この
メツキ工程には従来より電気メツキ法、置換メツ
キ法等が採用されている。これらの方法はいずれ
も線条材を処理液中に走行浸漬させる方法、或い
はコイル状の線条材を処理液中に浸漬させる方法
である。 例えば、溶接用ワイヤの場合、周知の如く通電
性、給電チツプの耐摩耗性、送給性、耐錆性等の
向上のために鋼ワイヤの表面に銅メツキが施され
ているが、メツキされた銅分は溶接品質上は溶接
部の割れを起こす一因ともなることから有害とさ
れており、前述の条件が満たされる限りできるだ
け少量の方が望ましい。そのためのメツキ方法と
しては、従来、シアン化浴電気メツキが一般に実
施されていたが、近年、公害対策を含めてコスト
面から硫酸銅浴置換メツキも行われるようになつ
てきた。 (発明が解決しようとする問題点) これらのメツキ方法の工程は、線材を走行させ
る態様の場合、第12図(電気メツキ)及び第1
3図(置換メツキ)に例示するように、いずれも
ボビン2に巻かれた線材1は払出し装置によつて
引き出され、酸洗槽3、水洗槽4により表面を酸
洗し、スケール等を取り除いてワイヤ表面を活性
化した後、メツキ液が満たされたメツキ浴槽5中
を浸漬走行させてメツキし、水洗槽6で水洗し乾
燥後巻き取られるのが一般的である。しかし、前
者は浸漬通電時間を確保する必要があることから
長大な処理槽が必要であり、反面、ワイヤ走行速
度の高速化を難しくし、生産性の向上を図ること
ができない。また当然のことながら、電気メツキ
では整流器7をはじめ電気制御系も複雑大型化が
避けられず、後者の浸漬置換メツキでは整流器等
は不要であるが、所要メツキ厚(0.2〜1.0μ程度)
を得るための置換完了時間を確保するために大型
の処理槽が不可欠である。更には、大量の処理液
を必要とするため、本件設備、環境保全設備等に
多大な費用を要し、またメツキ品質上、密着性、
メツキ膜厚等にムラが生じやすく、細心の管理を
必要とする。その原因の1つとしては、このよう
なメツキ方法では槽中メツキ液が撹拌されない限
り、第14図に示す如く槽中メツキ液8が移動せ
ず、走行ワイヤ1の周辺に置換が終了した液及び
高濃度の鉄イオンが滞留するため、連続して送ら
れてくるワイヤへの銅の付着が極端に減少すると
共にメツキ品質上密着性を阻害するところとな
る。もつとも、実際には、この置換が進行するの
は走行ワイヤの振動とか熱による対流などによつ
てある程度はワイヤ周辺の液が入れ替わつている
ためであるが、大なり小なり第14図に示す如く
ワイヤ周辺に筒状の反応速度が遅い領域(点線部
内)9が生じ或いは生じやすいものである。 いずれにしても、溶接用ワイヤに限らず、他の
線条材の上記メツキ方法に際しても同様の問題が
生じるものである。 本出願人は、これらの問題を解決するため、先
に、走行する線条材に対して所定の置換メツキ液
をノズルより噴射させる置換メツキ方法を提案し
た(特願昭61−284925号)。この方法によれば、
走行する線条材に吹き付けるメツキ液の高速噴流
乃至ジエツトの圧力によつて全面的、瞬間的に置
換メツキが行われるので、密着性が優れ均一な膜
厚のメツキが短時間で得られ、従来の浸漬メツキ
のような長大な設備が不要となり、必要以上のメ
ツキ液を使わず、高速化ができて経済的である
等々の利点が得られる。 特に、上記方法は薄い膜厚の場合は勿論のこ
と、0.2μm以上の如く比較的厚い膜厚を形成する
場合にかゝる効果が顕著である。 本発明は、先に提案した上記置換銅メツキ法に
おいて、優れた諸効果を一層効率的に且つ確実に
発揮できる線条材表面処理方法を提供することを
目的とするものである。 (問題点を解決するための手段) 上記目的を達成するため、本発明者は、先の置
換銅メツキ法における種々のプロセス条件につい
て研究を重ねた結果、線条材に噴射させる置換メ
ツキ液を改善して硫酸銅のほか他の成分を添加す
ることにより可能であることを見い出し、本発明
をなしたものである。 すなわち、本発明に係る線条材表面処理方法
は、走行する線条材に対して所定の置換メツキ液
をノズルより噴射させて線条材の表面処理を行う
に当たり、置換メツキ液として、CuSO4・5H2O
≧5g/、H2SO4:5〜400g/、FeSO4
7H2O:5〜400g/を含有し、必要に応じて
更にCl-:0.01〜100g/を有するものを用いる
ことを特徴とするものである。 以下に本発明を更に詳細に説明する。 前述の如く、走行する線状材に対して所定の置
換メツキ液をノズルより噴射させる表面処理方式
の場合、所定速度で空間を走行する線状材(以
下、ワイヤという)に対し、高圧ポンプ等で加圧
供給されるメツキ液をノズルを介して高速且つ連
続的に吹き付けるが、これにより、置換反応を終
了した液はワイヤ周辺に滞留することなく高速噴
流乃至ジエツト噴流ではじき飛ばされ、しかもワ
イヤ表面の凹深部まで衝撃的にフレツシユなメツ
キ液で洗滌置き換えが行われる。その洗滌置き換
え効果は非常に大きなものであり、密着性のよい
メツキが瞬時に完了する。 この点、従来の浸漬式の置換メツキ法では、例
えば溶接ワイヤ等に適用されている比較的安価な
硫酸銅浴置換メツキの場合、析出メツキ層が比較
的粗い結晶粒子となりやすく、メツキの密着性が
劣るため、実用上問題があつた。そのため、析出
物粒子を密にする目的で古くからゼラチン、チオ
尿素、フエノール、アミノ酸類等の種々の有機物
の添加が試みられてきたが、濃度管理が煩雑であ
つたりして決定的な解決は得られていなかつた。 これに対し、上記方式は置換メツキ液をワイヤ
に高速且つ衝撃的に接触させることにより、析出
物粒子を密にしてメツキの密着性を良好にするこ
とが可能である。 更に置換メツキを行う場合、メツキ液濃度が高
いほどメツキ能率が向上するので望ましいことで
あるが、濃度が高いと密着性が悪くなる傾向にあ
ることが知られている。これは、銅置換メツキを
例にとるならば、Cu2+の還元速度が極めて大き
いので、それと同時に溶出する鉄の速度も極めて
大きくなり、生じた高濃度のFe2+が溶液内部へ
の拡散により取り除かれる前に沈澱(FeSO4
FeO3)になり、銅の内部に閉じ込められてしま
うためで、このような沈澱を含むメツキは非常に
粗い構造を呈し、下地の鉄と強固な結合ができ
ず、簡単に剥離してしまう(「金属表面技術」
Vol.26、No.12(1975)、p.595参照)。しかし、上記
方式によれば、そのような傾向が緩和されるの
で、適用濃度範囲を従来よりも拡大することがで
き、メツキ能率も向上する。 以上の如く、上記方式による置換銅メツキの場
合には、従来よりも優れた効果が得られるが、そ
のためには、置換メツキ液を含め、以下のような
プロセス条件で実施するのが好ましい。 まず、置換メツキ液としては、基本的には硫酸
銅メツキ浴であり、CuSO4・5H2Oを主成分とす
るが、他にH2SO4、FeSO4・7H2Oを所定量含有
する特定組成のものである。 すなわち、硫酸銅CuSO4・5H2Oの濃度が5
g/未満では、メツキ析出速度が遅すぎるので
不適切であるので、5g/以上とする必要があ
る。 硫酸H2SO4は密着性を良好にする効果がある
成分であり、その濃度は5〜400g/の範囲と
する。5g/未満では密着性を良好にする効果
がなく、逆に400g/を超えると密着性は良い
が、メツキCu析出速度が極めて遅くなり、能率
的に必要量が得られなくなり、また必要量を得る
ためにターン数を増すなど設備が過大なものとな
り、更には廃水処理面でも多量の中和剤を要し不
経済である。 硫酸第一鉄FeSO4・7H2Oは、硫酸と同様、密
着性を良好にする効果があり、その濃度は5〜
400g/の範囲とする。5g/未満並びに40
g/超では硫酸の場合と同様の不都合が生じる
ので好ましくない。 なお、置換メツキ浴は、浴温が高くなるほどメ
ツキCu量は増加するが、密着性は悪くなる。し
かし、塩素(Cl-)の適量添加により、高温にな
つても密着性の低下を防止することが可能であ
る。添加する場合には、0.01〜100g/の濃度
範囲とするが、0.01g/未満ではそのような効
果がなく、100g/を超えると、前記硫酸や硫
酸第一鉄の場合と同様、メツキCu析出速度が極
めて遅くなると共に密着性が低下し、更にワイヤ
の耐錆性が劣るなどの不都合が生じる。塩素
(Cl-)としてはNaCl、KCl、CaCl2、MgCl2
HCl等を用いることができる。 次に他のプロセス条件について説明する。 第1図は本発明法に用いる置換メツキ装置の一
例であり、1は適宜速度で走行するワイヤ、10
はこのワイヤに上記組成の置換メツキ液を噴射す
るノズルであり、このノズルは走行するワイヤ1
の走行方向に1個又は2個以上、また径方向に所
定の角度で1個又は2個以上配置されている。1
1はノズル10から噴射される置換メツキ液が
0.05Kg/cm2以上の如く必要な衝撃圧力にてワイヤ
表面に衝突するようにパイプ11′を介して高圧
(例、0.5Kg/cm2以上)で置換メツキ液を供給する
ポンプであり、通常は処理槽5の下部にメツキ液
8を循環させるものである。なお、12は水洗槽
6に配置した水洗又は洗滌用ノズルであり、ポン
プ13を使用してメツキ直後のワイヤ1に水を噴
射させるものである。 ノズル10からの噴射方向は走行するワイヤ1
の走行方向との関係で種々の態様が可能であり、
ワイヤ走行方向に対する噴射方向の角度θが0゜≦
θ≦180゜で任意に決めることができ(第2図)、
90゜<θ≦180゜のときは順方向(同方向ノズル方
式)、0゜≦θ<90゜のときは逆方向(対向流ノズル
方式)と云うことができ、0<θ<180゜のときは
交叉する方向と云うことができる。メツキ液でワ
イヤ表面に有効な衝撃力を与えるためには直角方
向(θ=90゜)がよく、またワイヤ走行方向と逆
方向に噴射させる対向流ノズル方式によれば相対
速度を増すことができて銅析出を促進することが
できるので、ワイヤ性状、送給方法等によつて適
宜角度θを選択すればよい。なお、順方向のとき
はワイヤ走行速度と相対速度差をもつて噴射させ
ることは云うまでもない。 また、ノズルはワイヤ走行速度、所定メツキ厚
等のメツキ条件によりワイヤ走行方向に対し、1
個又は2個以上、ワイヤ径方向に1個又は2個以
上適宜選択して配置することができる。 ノズルをワイヤ径方向に複数個配置するとき
は、ワイヤ径に対して2方向、3方向の如く種々
の方向の態様でワイヤ断面形状を考慮して選択す
ることができ、丸線ワイヤの場合、各方向のなす
角δとしてノズル2個のときは約δ=180゜(第3
図)、3個のときは約δ1、δ2、δ3=120゜(第4図)
の如く同一乃至略同一の均等角をなすように配置
して第4図に示す如く効率よくワイヤ全面にメツ
キ液が当るように配慮するのが望ましい。 また、ワイヤ走行方式の関連で、上記例ではワ
イヤを真直状に走行させる場合を示したが、第7
図a,bに示すように、メツキ槽5内に複数個の
ターンローラ14を配置してワイヤ1を複数回方
向転換させる方式の場合にはワイヤの表面及び裏
面にメツキ液噴射されるように複数個のノズル1
0を配置することができ、この場合にはメツキ槽
5の長さを節減させることができる。 更に、第8図に示すように、ワイヤ1を螺線状
に走行させ、螺線状走行軌跡の頂点、底部等にて
ノズル10によりメツキ液を噴射させることも可
能で、この場合もワイヤの移動方向での処理長さ
を節減することができる。 なお、以上のノズル配置態様で示したノズルは
走行するワイヤに対してワイヤ外側に配置した例
であつて、いわばジエツトノズル方式と云うこと
ができるが、ワイヤをノズル内中心に走行させる
ノズル中心ワイヤ走行方式も可能である。すなわ
ち、第5図に示すように、パイプ状ノズル10′
の中心にワイヤ1を通し、ワイヤの走行方向と逆
の方向(対向流)にメツキ液8を噴射させて相対
速度を増大させることにより、鉄イオンの滞留を
防止すると共に常にフレツシユなメツキ液を供給
する方式である。 また、メツキ液の噴射方向がワイヤ走行方向と
同一方向(順方向流)になる様ノズルを1個以上
設ける場合には、噴射方向が順方向となるのでワ
イヤ走行速度と相対速度差が生じるように噴射さ
せるのがよい。このようなノズル中心ワイヤ走行
方向の順方向ノズル配置の場合や対向流ノズル配
置の場合は、前記ジエツトノズル方式よりも効果
が小さくなる。何故ならば、ノズルから噴射され
たメツキ液はほゞワイヤ表面に平行な層流となる
のでメツキ液の撹拌性が悪く、ワイヤ表面の活性
化やメツキ液のイオン拡散が小さく、ジエツトノ
ズル方式ほどの充分な効果が得難いが、しかし、
従来の浸漬メツキ方式よりも格段に優れている。 上記ノズル中心ワイヤ走行方式の場合も、メツ
キ液の噴射方向とノズル個数との関連で、第6図
に示すように一対のパイプ状ノズル10′を対称
的に対向させて配置し、ノズル中心にワイヤ1を
走行させ、交叉する方向にメツキ液8を噴射させ
る変形方向が可能である。この場合、メツキ液は
各ノズルより高速噴射され、対向流(下流側ノズ
ル)と順方向流(上流側ノズル)の層流域15が
衝突した部分で完全な乱流(乱流域16)とな
り、ワイヤ表面全周にわたつてメツキ液の瞬間的
な入れ替りが達成される。このように両方向の噴
出流が衝突することにより、衝撃力がワイヤ表面
の活性化を進める一方、発生した乱流によりメツ
キ液のイオン拡散が大きくなり、高速且つ効率的
なメツキがなされる。 しかし、ノズル中心ワイヤ走行方式の場合、ワ
イヤがスムーズに通過するだけの間隙をノズル内
に設ける必要があり、間隙を設けるとメツキ液の
吹き出し側の反対側から大気が吸引されてワイヤ
周辺に空気が介在しやすいので、上記ジエツトノ
ズル方式に比べ、置換効率が悪く、或いはワイヤ
鉄地の酸化及びメツキ液の劣化によりメツキ効率
が低下する傾向がある。ワイヤが狭い間隙内を走
行するので、析出したメタル銅がノズル端に成長
してワイヤに疵を付けることがあるので、この点
に留意する必要がある。また、ノズル配置の状態
によつては噴射されたメツキ液は遠くまで達して
ミストとなり、環境を悪化させる問題はある。 次に、本発明の各噴射態様における他の留意点
について説明する。まず、ワイヤへのメツキ液の
衝撃圧力については、前述の噴射による各作用を
達成させるためには高いほどよく、0.05Kg/cm2
上の値が望ましい。衝撃圧力を高くすればする
程、メツき密着性が向上する。この衝撃圧力に応
じてポンプによるメツキ液の供給圧力、流量等々
が決められる。 また、ノズルによる噴射幅の態様としては、第
9図に示すように、1個のノズル10により1本
のワイヤ1に噴射する場合は(a)のようにスプレー
幅(範囲)を狭くして集中的に当るようにするこ
とができ、また1個のノズル10により複数本の
ワイヤ1に噴射する場合は(b)に示すようにスプレ
ー幅(範囲)を広くして当るようにすればよく、
この場合、必要に応じてスプレー幅はノズル10
の吹出口の形状により変えることができる。 更に、ワイヤの線速については、特に制限され
ないが、50〜500m/minの広範囲に選んでも本
メツキ浴組成の範囲であれば良好なメツキがで
き、メツキ設備の小型化が可能となる。線速によ
るメツキCu量の調整は、ワイヤ総延長並びにメ
ツキ液接触有効長さを適宜選択することにより可
能である。 (実施例) 次に本発明の実施例を示す。 実施例 1 第7図a,bに示す装置を使用し、第1表に示
す各種組成のメツキ液を用いると共に、次の条件
にて軟鋼線材(ワイヤ径2.3mm)に対して置換銅
メツキを実施し、性能確認テストを行つた。な
お、前処理はHCl酸洗により行つた。 メツキ条件 メツキ浴温:30℃ 噴射圧力:1Kg/cm2 メツキ液噴射流量:450/min ワイヤ総延長:8m(第7図で装置内のワイヤ長
さ) メツキ液接触有効長さ:1m(スプレー部長さ
l1、l2……の合計、第10図参照) ワイヤ走行速度:85m/min メツキ後、メツキCu量を測定すると共に密着
性を調べた。その結果を第1表に併記する。 なお、密着性の評価については、サンプルワイ
ヤを第11図に示すように共巻きにし、巻き付け
たワイヤの表面のメツキ剥離状況を倍率30倍に拡
大し目視観察し、剥離が全くない場合を◎印、剥
離の痕跡がある場合を○印、剥離が若干ある場合
を△印、剥離が多い場合を×印を付して評価し
た。またメツキCu量の評価については、溶接の
ワイヤとして耐錆性及びワイヤーチツプ間の通電
性の面から最小必要メツキCu量を0.07%とし、測
定したメツキCu量が0.07%以上の場合を良好と
し、0.07%に満たない場合を不良として評価し
た。 第1表において、総合判定が○印の本発明例
は、最小必要メツキCu量が確保されていると同
時に密着性が優れている。一方、メツキ浴組成が
本発明範囲該のものは総合判定が不良(×印)で
あり、最小必要Cu量が確保できず、或いは確保
できても密着性が不良である。 実施例 2 ワイヤ総延長を20m、メツキ液接触有効長さを
2mとした以外は実施例1の場合と同じ条件にて
置換銅メツキを実施し、性能確認テストを行つ
た。その結果を第2表に示す。 第2表より、設備は大型化するものの、ワイヤ
総延長及びメツキ液接触有効長さを長くすること
により、メツキCu量が0.4%程度の厚メツキが可
能であることがわかる。
(Industrial Application Field) The present invention relates to a surface treatment method for wire materials, and particularly to a displacement plating method suitable for displacement copper plating of wire materials such as welding wires and bead wires. (Prior Art) Generally, wire materials, particularly welding wires, include a plating step during their manufacturing process, and electroplating, displacement plating, etc. have been conventionally employed in this plating step. All of these methods involve moving and immersing the filament in the treatment liquid, or immersing the coiled filament in the treatment liquid. For example, in the case of welding wire, the surface of the steel wire is plated with copper to improve conductivity, wear resistance of the power supply chip, feedability, rust resistance, etc., as is well known. Copper content is considered harmful in terms of welding quality as it can cause cracks in the welded area, and it is desirable to keep the amount as small as possible as long as the above conditions are met. Conventionally, cyanide bath electroplating has been generally used as a plating method for this purpose, but in recent years, copper sulfate bath substitution plating has also been used due to cost considerations including pollution control. (Problems to be Solved by the Invention) The steps of these plating methods are as shown in Fig. 12 (electroplating) and Fig.
As illustrated in Fig. 3 (replacement plating), the wire 1 wound around the bobbin 2 is pulled out by a payout device, and the surface is pickled in a pickling tank 3 and a water washing tank 4 to remove scale, etc. After activating the surface of the wire, the wire is generally plated by being immersed in a plating bath 5 filled with a plating solution, washed with water in a washing bath 6, dried, and then wound up. However, the former method requires a long processing tank because it is necessary to ensure the immersion energization time, and on the other hand, it makes it difficult to increase the wire running speed, making it impossible to improve productivity. Naturally, with electric plating, the rectifier 7 and other electrical control systems are unavoidably complicated and large, and the latter type of immersion displacement plating does not require a rectifier, but the required plating thickness (approximately 0.2 to 1.0μ)
A large treatment tank is essential to ensure the time required to complete the replacement. Furthermore, since a large amount of processing liquid is required, a large amount of cost is required for the equipment and environmental protection equipment, and in terms of plating quality, adhesion and
It is easy to cause unevenness in plating film thickness, etc., and requires careful management. One of the reasons for this is that in such a plating method, unless the plating liquid in the tank is stirred, the plating liquid 8 in the tank does not move as shown in FIG. Since a high concentration of iron ions remains, the adhesion of copper to the continuously fed wire is extremely reduced and the adhesion of the plating quality is impaired. However, in reality, this replacement progresses because the liquid around the wire is replaced to some extent by vibrations of the running wire and convection due to heat, but the difference is shown in Figure 14 to a greater or lesser extent. A cylindrical region 9 (within the dotted line) where the reaction rate is slow occurs or tends to occur around the wire. In any case, similar problems occur not only in welding wire but also in the above-mentioned plating method for other wire materials. In order to solve these problems, the present applicant previously proposed a displacement plating method in which a predetermined displacement plating liquid is injected from a nozzle onto a running wire material (Japanese Patent Application No. 284925/1982). According to this method,
Displacement plating is carried out instantly on the entire surface using the high-speed jet of plating liquid sprayed onto the moving wire material or the pressure of the jet, so plating with excellent adhesion and a uniform thickness can be obtained in a short time, which is better than conventional methods. This method eliminates the need for lengthy equipment such as immersion plating, does not use more plating solution than is necessary, and has advantages such as being faster and more economical. In particular, the above method has a remarkable effect not only when forming a thin film, but also when forming a relatively thick film such as 0.2 μm or more. An object of the present invention is to provide a surface treatment method for a wire material that can more efficiently and reliably exhibit various excellent effects in the displacement copper plating method proposed above. (Means for Solving the Problems) In order to achieve the above object, the inventor of the present invention has repeatedly researched various process conditions in the above-mentioned displacement copper plating method, and as a result, has developed a method for displacing plating liquid to be injected onto the wire material. We have discovered that it is possible to improve this by adding other components in addition to copper sulfate, and have accomplished the present invention. That is, in the wire material surface treatment method according to the present invention, when performing surface treatment of the wire material by injecting a predetermined displacement plating liquid from a nozzle onto the traveling wire material, CuSO 4 is used as the displacement plating liquid.・5H2O
≧5g/, H2SO4 :5~400g/ , FeSO4
It is characterized in that it contains 7H 2 O: 5 to 400 g/, and if necessary, further contains Cl : 0.01 to 100 g/. The present invention will be explained in more detail below. As mentioned above, in the case of a surface treatment method in which a predetermined displacement plating liquid is injected from a nozzle onto a moving wire material, a high-pressure pump, etc. The plating liquid supplied under pressure is sprayed continuously through the nozzle at high speed.As a result, the liquid that has completed the substitution reaction is not stagnated around the wire, but is blown away by a high-speed jet or jet jet, and moreover, the plating liquid is sprayed away from the wire surface. Cleaning and replacement is carried out with shockingly fresh plating liquid even deep into the recesses. Its cleaning and replacement effect is very large, and plating with good adhesion is completed instantly. In this regard, in the conventional immersion-type displacement plating method, for example, in the case of relatively inexpensive copper sulfate bath displacement plating applied to welding wire, the precipitated plating layer tends to have relatively coarse crystal grains, and the adhesion of the plating becomes difficult. There were problems in practical use because of the inferior quality. For this reason, attempts have been made for a long time to add various organic substances such as gelatin, thiourea, phenols, and amino acids to make the precipitate particles denser, but concentration control is complicated and no definitive solution has been found. I wasn't getting it. On the other hand, in the above method, by bringing the displacement plating liquid into contact with the wire at high speed and impact, it is possible to make the precipitate particles denser and improve the adhesion of the plating. Furthermore, when performing displacement plating, it is desirable that the plating solution concentration is higher because the plating efficiency improves, but it is known that the higher the concentration, the more the adhesion tends to deteriorate. Taking copper substitution plating as an example, since the reduction rate of Cu 2+ is extremely high, the rate of elution of iron at the same time is also extremely high, and the resulting high concentration of Fe 2+ is diffused into the solution. The precipitate (FeSO 4 ,
This is because plating containing such precipitates has a very rough structure, cannot form a strong bond with the underlying iron, and easily peels off ( "Metal surface technology"
(See Vol. 26, No. 12 (1975), p. 595). However, according to the above method, such a tendency is alleviated, so that the applicable concentration range can be expanded compared to the conventional method, and the plating efficiency is also improved. As described above, in the case of displacement copper plating using the above method, superior effects can be obtained compared to the conventional method, but for this purpose, it is preferable to carry out the process under the following process conditions including the displacement plating solution. First, the displacement plating solution is basically a copper sulfate plating bath, which mainly contains CuSO 4 .5H 2 O, but also contains a predetermined amount of H 2 SO 4 and FeSO 4 .7H 2 O. It is of a specific composition. That is, the concentration of copper sulfate CuSO 4 5H 2 O is 5
If it is less than 5 g/g, the plating precipitation rate will be too slow, which is inappropriate, so it is necessary to set it to 5 g/or more. Sulfuric acid H 2 SO 4 is a component that has the effect of improving adhesion, and its concentration is in the range of 5 to 400 g/. If it is less than 5g/, it will not have the effect of improving adhesion, and if it exceeds 400g/, adhesion will be good, but the rate of copper deposition will be extremely slow, making it impossible to efficiently obtain the required amount, and it will be difficult to obtain the required amount. In order to obtain this, the number of turns is increased, which requires excessive equipment, and furthermore, a large amount of neutralizing agent is required for wastewater treatment, which is uneconomical. Like sulfuric acid, ferrous sulfate FeSO 4 7H 2 O has the effect of improving adhesion, and its concentration is between 5 and 7H 2 O.
The range is 400g/. Less than 5g/and 40
If it exceeds g/g, the same disadvantages as in the case of sulfuric acid will occur, so it is not preferable. In addition, in the substitution plating bath, as the bath temperature becomes higher, the amount of plating Cu increases, but the adhesion deteriorates. However, by adding an appropriate amount of chlorine (Cl - ), it is possible to prevent the adhesion from decreasing even at high temperatures. If added, the concentration should be in the range of 0.01 to 100 g/, but if it is less than 0.01 g/, there will be no such effect, and if it exceeds 100 g/, it will cause copper precipitation as in the case of sulfuric acid and ferrous sulfate. As the speed becomes extremely slow, adhesion deteriorates, and further disadvantages arise, such as poor rust resistance of the wire. Chlorine (Cl - ) includes NaCl, KCl, CaCl 2 , MgCl 2 ,
HCl etc. can be used. Next, other process conditions will be explained. FIG. 1 shows an example of a displacement plating device used in the method of the present invention, in which 1 is a wire running at an appropriate speed, 10
is a nozzle that injects a displacement plating liquid having the above composition onto this wire, and this nozzle
One or more of them are arranged in the running direction, and one or more of them are arranged at a predetermined angle in the radial direction. 1
1 indicates that the displacement plating liquid is injected from the nozzle 10.
It is a pump that supplies displacement plating liquid at high pressure (e.g., 0.5 Kg/cm 2 or more) through pipe 11' so that it impinges on the wire surface with a necessary impact pressure such as 0.05 Kg/cm 2 or more, and is usually The plating liquid 8 is circulated in the lower part of the processing tank 5. Note that 12 is a washing or cleaning nozzle placed in the washing tank 6, and uses a pump 13 to spray water onto the wire 1 immediately after plating. The direction of injection from the nozzle 10 is that of the running wire 1
Various aspects are possible depending on the running direction of the
The angle θ of the injection direction with respect to the wire running direction is 0°≦
It can be arbitrarily determined at θ≦180° (Fig. 2),
When 90°<θ≦180°, it can be said to be forward direction (same direction nozzle method), and when 0°≦θ<90°, it can be said to be reverse direction (counterflow nozzle method). It can be said that times are intersecting directions. In order to apply an effective impact force to the wire surface with the plating liquid, it is best to use the perpendicular direction (θ = 90°), and the relative speed can be increased by using a counterflow nozzle method that sprays the plating liquid in the opposite direction to the wire running direction. Therefore, the angle θ may be appropriately selected depending on the wire properties, feeding method, etc. It goes without saying that in the forward direction, the fuel is injected with a relative speed difference from the wire traveling speed. In addition, the nozzle is set at 1° in the wire running direction depending on the plating conditions such as the wire running speed and the predetermined plating thickness.
One or two or more can be appropriately selected and arranged in the wire radial direction. When arranging a plurality of nozzles in the radial direction of the wire, the nozzles can be selected in various directions such as two or three directions relative to the wire diameter, taking into consideration the cross-sectional shape of the wire. When there are two nozzles, the angle δ formed by each direction is approximately δ = 180° (the third
(Figure 4), when there are three pieces, approximately δ 1 , δ 2 , δ 3 = 120° (Figure 4)
It is desirable to arrange the wires so that they form the same or substantially the same angle as shown in FIG. 4, so that the plating liquid can efficiently hit the entire surface of the wire as shown in FIG. In addition, regarding the wire running method, the above example shows a case where the wire runs straight, but the seventh
As shown in Figures a and b, in the case of a method in which a plurality of turn rollers 14 are arranged in the plating tank 5 to change the direction of the wire 1 multiple times, the plating liquid is sprayed onto the front and back surfaces of the wire. Multiple nozzles 1
In this case, the length of the plating tank 5 can be reduced. Furthermore, as shown in FIG. 8, it is also possible to run the wire 1 in a spiral pattern and inject the plating liquid from the nozzle 10 at the top, bottom, etc. of the spiral trajectory. The processing length in the direction of movement can be reduced. Note that the nozzle shown in the above nozzle arrangement is an example in which the nozzle is arranged on the outside of the running wire, and can be called a jet nozzle system. method is also possible. That is, as shown in FIG. 5, a pipe-shaped nozzle 10'
By passing the wire 1 through the center of the wire and increasing the relative speed by injecting the plating liquid 8 in the opposite direction (counterflow) to the running direction of the wire, it is possible to prevent the accumulation of iron ions and to always maintain a fresh plating liquid. This is a supply method. In addition, if one or more nozzles are provided so that the plating liquid is sprayed in the same direction as the wire running direction (forward flow), the spraying direction will be in the forward direction, so there will be a difference in speed relative to the wire running speed. It is best to inject it. In the case of such a forward nozzle arrangement with the nozzle center wire traveling direction or in the case of a counterflow nozzle arrangement, the effect is smaller than that of the jet nozzle method. This is because the plating liquid injected from the nozzle forms a laminar flow that is almost parallel to the wire surface, so the agitation of the plating liquid is poor, activation of the wire surface and ion diffusion of the plating liquid are small, and it is not as effective as the jet nozzle method. Although it is difficult to obtain sufficient effects,
It is much superior to the conventional immersion plating method. In the case of the above-mentioned nozzle-centered wire traveling method, a pair of pipe-shaped nozzles 10' are arranged symmetrically opposite each other as shown in FIG. 6 in relation to the jetting direction of the plating liquid and the number of nozzles. A deformation direction is possible in which the wire 1 is run and the plating liquid 8 is injected in intersecting directions. In this case, the plating liquid is injected at high speed from each nozzle, and a completely turbulent flow (turbulent region 16) occurs at the part where the laminar region 15 of the opposing flow (downstream nozzle) and forward flow (upstream nozzle) collide, and the wire Instant exchange of the plating liquid over the entire circumference of the surface is achieved. As the ejected flows in both directions collide in this manner, the impact force activates the wire surface, and the generated turbulence increases the ion diffusion of the plating solution, resulting in high-speed and efficient plating. However, in the case of the nozzle-centered wire running system, it is necessary to provide a gap in the nozzle for the wire to pass through smoothly. is likely to intervene, so the replacement efficiency is poorer than in the jet nozzle method, or the plating efficiency tends to decrease due to oxidation of the wire base and deterioration of the plating solution. Since the wire runs in a narrow gap, the precipitated metal copper may grow on the nozzle end and cause flaws in the wire, so this point must be kept in mind. Furthermore, depending on the state of the nozzle arrangement, the injected plating liquid may reach a long distance and turn into mist, which may worsen the environment. Next, other points to be noted in each injection mode of the present invention will be explained. First, regarding the impact pressure of the plating liquid on the wire, the higher the impact pressure, the better in order to achieve each of the effects of the above-mentioned spraying, and a value of 0.05 Kg/cm 2 or more is desirable. The higher the impact pressure, the better the adhesion. Depending on this impact pressure, the supply pressure, flow rate, etc. of the plating liquid by the pump are determined. In addition, as for the aspect of the spray width by the nozzle, as shown in Fig. 9, when spraying onto one wire 1 with one nozzle 10, the spray width (range) is narrowed as shown in (a). It is possible to hit the spray in a concentrated manner, and when spraying onto multiple wires 1 with one nozzle 10, the spray width (range) can be widened to hit the spray as shown in (b). ,
In this case, the spray width can be adjusted to 10 mm as required.
It can be changed depending on the shape of the air outlet. Further, the wire speed is not particularly limited, but even if it is selected within a wide range of 50 to 500 m/min, good plating can be achieved as long as the plating bath composition is within the range of the present plating bath composition, and the plating equipment can be downsized. The amount of plating Cu can be adjusted by the wire speed by appropriately selecting the total length of the wire and the effective length of contact with the plating liquid. (Example) Next, an example of the present invention will be shown. Example 1 Using the apparatus shown in Figure 7a and b, and using plating solutions with various compositions shown in Table 1, displacement copper plating was applied to mild steel wire (wire diameter 2.3 mm) under the following conditions. We carried out a performance confirmation test. Note that pretreatment was performed by HCl pickling. Plating conditions Plating bath temperature: 30°C Injection pressure: 1 Kg/cm 2 Plating liquid injection flow rate: 450/min Total wire length: 8 m (Wire length inside the device in Figure 7) Effective plating liquid contact length: 1 m (spray length of department
Total of l 1 , l 2 . . . (see Figure 10) Wire running speed: 85 m/min After plating, the amount of plating Cu was measured and the adhesion was examined. The results are also listed in Table 1. For evaluation of adhesion, the sample wires were co-wound as shown in Figure 11, and the state of plating peeling on the surface of the wound wire was visually observed under 30x magnification.If there was no peeling at all, ◎ The evaluation was made by marking ◯ if there were traces of peeling, △ if there was some peeling, and × if there was a lot of peeling. Regarding the evaluation of the amount of copper plating, the minimum required amount of copper plating is 0.07% as a welding wire in terms of rust resistance and conductivity between wire chips, and if the measured amount of copper plating is 0.07% or more, it is considered to be good. , if it was less than 0.07%, it was evaluated as poor. In Table 1, the examples of the present invention marked with a mark ○ for the overall evaluation ensured the minimum required amount of plating Cu and at the same time had excellent adhesion. On the other hand, when the plating bath composition falls within the range of the present invention, the overall judgment is poor (marked with an x), and the minimum required amount of Cu cannot be secured, or even if it can be secured, the adhesion is poor. Example 2 Displacement copper plating was carried out under the same conditions as in Example 1, except that the total wire length was 20 m and the effective length of plating liquid contact was 2 m, and a performance confirmation test was conducted. The results are shown in Table 2. Table 2 shows that although the equipment becomes larger, thick plating with a plating Cu amount of about 0.4% is possible by increasing the total wire length and the effective length of plating liquid contact.

【表】【table】

【表】 実施例 3 メツキ浴温を上げた場合における塩素(Cl-
の添加効果を確認するために、第3表に示すよう
にメツキ浴温とCl-濃度を種々変化させ、他の条
件は実施例1の場合と同じにして性能テストを実
施した。性能テスト結果を第3表に併記する。な
お、性能評価基準は実施例1の場合と同様であ
る。 一般にメツキ浴温が高まるほどメツキCu量は
増すが、逆に密着性は悪くなる。しかし、その際
にCl-を添加するとメツキCu量が増加し、高能率
化がはかられ、尚且つ密着性の低下を防止するこ
とができる。 第3表より明らかなとおり、Cl-添加量が0.007
g/と低い場合(No.1〜No.6)は、メツキ浴温
が高温になるほどメツキCu量は増すが、逆に密
着性は悪くなる。しかし、Cl-添加量が0.05〜90
g/で適切な範囲にコントロールした場合(No.
7〜No.19)には、メツキ浴温が高温になるほどメ
ツキCu量は増すものの、密着性は低下せずに優
れている。この場合、メツキ浴温が80℃のときに
密着性が他のメツキ浴温のときよりも相対的に劣
る場合(No.9、No.11、No.13、No.15、No.17、No.19)
があるのは、メツキCu量が0.51〜0.6%と多く、
銅で置換した鉄が硫酸鉄としてメツキ内に閉じ込
められたためと考えられる。しかし、No.6の場合
のような密着性低下は生じない。一方、Cl-が110
g/と高過ぎる場合(No.20)にはメツキCu析
出速度が極めて遅くなり、高能率化の効果が得ら
れず、メツキCu量が低下する。
[Table] Example 3 Chlorine (Cl - ) when the bath temperature is increased
In order to confirm the effect of addition of , a performance test was conducted by varying the plating bath temperature and Cl - concentration as shown in Table 3, and keeping the other conditions the same as in Example 1. Performance test results are also listed in Table 3. Note that the performance evaluation criteria are the same as in the first embodiment. Generally, as the plating bath temperature increases, the amount of plating Cu increases, but on the contrary, the adhesion deteriorates. However, if Cl - is added at this time, the amount of plated Cu increases, efficiency can be increased, and deterioration of adhesion can be prevented. As is clear from Table 3, the amount of Cl - added is 0.007
When the plating bath temperature is low (No. 1 to No. 6), the plating Cu amount increases as the plating bath temperature becomes higher, but on the contrary, the adhesion deteriorates. However, the amount of Cl- added is 0.05-90
When controlled to an appropriate range with g/ (No.
7 to No. 19), although the plating Cu amount increases as the plating bath temperature becomes higher, the adhesion is excellent without decreasing. In this case, when the plating bath temperature is 80°C, the adhesion is relatively inferior to that at other plating bath temperatures (No. 9, No. 11, No. 13, No. 15, No. 17, No.19)
The reason for this is that the amount of metsuki Cu is as high as 0.51 to 0.6%.
This is thought to be because the iron substituted with copper was trapped in the metal as iron sulfate. However, the adhesion did not deteriorate as in the case of No. 6. On the other hand, Cl - is 110
If the ratio is too high (No. 20), the plating Cu precipitation rate becomes extremely slow, the effect of increasing efficiency cannot be obtained, and the amount of plating Cu decreases.

【表】【table】

【表】 以上の実施例からも明らかなとおり、本発明に
おいては、必要なメツキは瞬時に完了し、メツキ
密着性の優れたワイヤを得ることが可能となる
が、メツキ後にメツキ液がワイヤ周辺に滞留する
と不要なメタル銅が成長するので、これを防止す
るためには、工程上可能な限りメツキ後に、時間
的にはメツキ直後に液切り或いは洗浄することが
好ましく、特に溶接用ワイヤにおいては要求され
る密着性の良好がメツキが得られる。そのための
一例を示すならば、第1図に示したジエツトノズ
ル方式の場合、メツキ槽5の出口側に洗浄槽6を
設け、該槽内に同様のノズル10′を1個乃至2
個以上配置して、ワイヤ性状に適合した圧力、流
量等でジエツト水洗することにより、メツキ完了
直後にワイヤ洗浄を行えば、不要なメタル銅の成
長を防止することができる。なお、実験では最終
メツキ液吹き付け後、3秒以内に水洗すれば所定
のメツキ密着性が得られることが確認されてい
る。 なお、以下の付加的条件について実験したとこ
ろ、そのような範囲であれば同様の効果が得られ
ることが確認された。 すなわち、メツキ液には、薬品、ワイヤ、工業
用水、装置材料等々からの各種の不純物が含まれ
得るが、それら不純物量を5g/以下にするの
が望ましい。薬品(CuSO4、FeSO4、H2SO4)か
らの不純物としてはNi、Pb、Zn、As、Mn、
Ti、Se、Hg及び各種のリン酸塩、硝酸塩、アン
モニウム化合物、硫酸塩、窒素化合物などがあ
る。ワイヤからの不純物としてはワイヤ化学成分
のMn、Si、Al、Ti、Cr、Ni及び油脂類などの
表面付着物がある。工業用水からの不純物として
はCa、Mg、K、Fe、Mnなどのケイ酸塩、硫酸
塩、塩化物、炭酸塩、炭酸水素塩及び硝酸塩並び
にAlのケイ酸塩、硫酸塩、塩化物及び硝酸塩等
の無機化合物、或いはO2、CO2、N2等のガスが
ある。装置材料からの不純物としては装置材料で
あるステンレス鋼、樹脂、ゴム等から溶解してく
るものがある。 また、メツキ液中のFe3+は50g/以下が望
ましい。この値を超えるとメツキの密着性が悪く
なる傾向にあり、酸化防止用の雰囲気を流す等に
より上記値にコントロールすればよい。Fe3+
分析法はJIS M88530−フエナントロリン吸光光
度法による。 メツキ液の比重は1.05〜1.35(20℃)、粘度は
1.30〜3.50cp(20℃)、PHは1.5以下(20℃)が望ま
しい。 更にまた、ワイヤとしては、引張強さ(TS)
が30〜300Kgf/mm2のもの、或いはメツキ前ワイ
ヤの脱炭深さ、粒界酸化深さが共に0.50mm以下の
ものに対して適用しても同様の効果が得られる。 また、スプレー部長さl(スプレーの液が直接
当るワイヤ長さ)と非スプレー部長さL(スプレ
ーは直接当らないが液が付着又は浸漬状態にある
ワイヤ長さ)が次式 0.005≦l/L+l≦1 を満たす関係にあるのが望ましい。なお、メツキ
量と線速の関係でL+lはいくらでも長くするこ
とができるが、L+l≦200mであれば同様の効
果が得られる。 なお、上記説明では主として溶接用ワイヤにつ
き置換銅メツキの場合を例にとつたが、置換銅メ
ツキに限らず、置換スズメツキや硫酸銅と硫酸ス
ズの両方を含むような2種以上の金属を析出する
場合も同様の効果が得られる。また、溶接用ワイ
ヤとしてもソリツドワイヤのみならず、フラツク
ス入りワイヤであつてもよいことは云うまでもな
く、更に溶接用ワイヤに限らず、ビードワイヤ或
いはカツパーコートワイヤを使用する家具用スプ
リング、ダンボール止め金等々の様々な用途の線
条材に適用できることは云うまでもなく、したが
つて、様々な形状(円形、帯状、角状等や、ワイ
ヤの他、フープ、パイプ等)、寸法(0.2〜6.4mm
φ)、材質の線条材に対しても適用できる。材質
の一例としては、JIS Z3312(軟鋼及び高張力鋼
マグ溶接用ソリツドワイヤ)、3351(炭素鋼及び低
合金鋼用サブマージアーク溶接用ワイヤ)、3316
(軟鋼及び低合金鋼のテイグ溶接用鋼棒及びワイ
ヤ)、3317(モリブデン鋼及びクロムモリブデン鋼
用マグ溶接ソリツドワイヤ、JIS G3502(ピアノ
線材)、3505(軟鋼線材)、3506(硬鋼線材)などが
挙げられる。 (発明の効果) 以上説明したように、本発明によれば、走行す
る線条材に対して特定組成のメツキ液を吹き付
け、しかもメツキ液の高速噴流乃至ジエツトの圧
力によつて全面的、瞬間的に置換メツキを行うの
で、密着性が優れ均一な膜厚のメツキが短時間で
得られるため、従来の浸漬メツキのような長大な
設備が不要となり、必要以上のメツキ液を使わ
ず、高速化できて経済的である。特に、膜厚が
0.2μm以下と薄い場合は勿論のこと、従来浸漬メ
ツキでは困難であつた0.2〜3μm程度の比較的厚
い膜厚のメツキの場合でも効果が顕著である。就
中、メツキ液のジエツト噴流をワイヤ走行方向に
交叉する方向で吹き付ける方式によれば、メツキ
液のない空間でワイヤを走行させるので作業能率
が飛躍的に向上し、作業環境もよいので維持、管
理が容易である。本発明は特に溶接用ワイヤをは
じめとしてビードワイヤ等々の線条材の置換銅メ
ツキに好適である。
[Table] As is clear from the above examples, in the present invention, the necessary plating can be completed instantly and it is possible to obtain a wire with excellent plating adhesion. In order to prevent this, it is preferable to drain or clean the metal copper as soon as possible after plating, especially when it comes to welding wire. Plating with the required good adhesion can be obtained. To give an example of this, in the case of the jet nozzle method shown in FIG.
By arranging more than one wire and washing with jet water at a pressure, flow rate, etc. that suits the properties of the wire, it is possible to prevent unnecessary growth of metal copper by washing the wire immediately after plating is completed. In addition, it has been confirmed in experiments that a predetermined plating adhesion can be obtained by washing with water within 3 seconds after spraying the final plating solution. In addition, when experiments were conducted under the following additional conditions, it was confirmed that similar effects could be obtained within such ranges. That is, the plating solution may contain various impurities from chemicals, wires, industrial water, equipment materials, etc., but it is desirable that the amount of these impurities be 5 g/or less. Impurities from chemicals (CuSO 4 , FeSO 4 , H 2 SO 4 ) include Ni, Pb, Zn, As, Mn,
These include Ti, Se, Hg, and various phosphates, nitrates, ammonium compounds, sulfates, and nitrogen compounds. Impurities from the wire include wire chemical components Mn, Si, Al, Ti, Cr, Ni, and surface deposits such as oils and fats. Impurities from industrial water include silicates, sulfates, chlorides, carbonates, bicarbonates, and nitrates of Ca, Mg, K, Fe, and Mn, and silicates, sulfates, chlorides, and nitrates of Al. There are inorganic compounds such as O 2 , CO 2 , N 2 and other gases. Impurities from equipment materials include those dissolved from equipment materials such as stainless steel, resin, and rubber. Further, the Fe 3+ content in the plating solution is preferably 50 g/or less. If this value is exceeded, the adhesion of plating tends to deteriorate, and it may be controlled to the above value by, for example, flowing an atmosphere for preventing oxidation. The analysis method for Fe 3+ is based on JIS M88530-phenanthroline absorption spectrophotometry. The specific gravity of the plating liquid is 1.05 to 1.35 (20℃), and the viscosity is
1.30-3.50cp (20℃), PH is preferably 1.5 or less (20℃). Furthermore, as a wire, the tensile strength (TS)
Similar effects can be obtained even when applied to wires with a decarburization depth of 30 to 300 Kgf/mm 2 or wires before plating where both the depth of decarburization and the depth of grain boundary oxidation are 0.50 mm or less. In addition, the length of the spray part L (the length of the wire that is directly hit by the spray liquid) and the length of the non-spray part L (the length of the wire that is not directly hit by the spray but is attached or immersed in the liquid) is calculated by the following formula: 0.005≦l/L+l It is desirable that the relationship satisfies ≦1. Note that L+l can be made as long as desired depending on the relationship between the amount of plating and the linear speed, but the same effect can be obtained as long as L+l≦200 m. The above explanation mainly takes the case of displacement copper plating for welding wire as an example, but it is not limited to displacement copper plating, but also substitution tin plating and deposits of two or more metals containing both copper sulfate and tin sulfate. A similar effect can be obtained if Furthermore, it goes without saying that welding wires may be not only solid wires but also flux-cored wires.Furthermore, welding wires are not limited to welding wires, but also furniture springs and cardboard fasteners that use bead wires or cutper coated wires. Needless to say, it can be applied to wire materials for various purposes such as gold, etc., and therefore, it can be applied to various shapes (circular, band-shaped, square, etc., as well as wire, hoop, pipe, etc.) and dimensions (0.2~ 6.4mm
φ), it can also be applied to wire material. Examples of materials include JIS Z3312 (solid wire for mag welding of mild steel and high-strength steel), 3351 (wire for submerged arc welding of carbon steel and low alloy steel), and 3316.
(steel rods and wire for Teig welding of mild steel and low alloy steel), 3317 (MAG welding solid wire for molybdenum steel and chromium molybdenum steel), JIS G3502 (piano wire rod), 3505 (mild steel wire rod), 3506 (hard steel wire rod), etc. (Effects of the Invention) As explained above, according to the present invention, a plating liquid of a specific composition is sprayed onto a running wire material, and the entire surface is covered by a high-speed jet of the plating liquid or the pressure of a jet. Since displacement plating is performed instantly, it is possible to obtain plating with excellent adhesion and uniform thickness in a short time, eliminating the need for extensive equipment like in conventional immersion plating, and eliminating the need for using more plating solution than necessary. It is economical because it can speed up the process.Especially when the film thickness is
The effect is remarkable not only when plating is as thin as 0.2 μm or less, but also when plating with a relatively thick film thickness of about 0.2 to 3 μm, which was difficult with conventional dip plating. In particular, according to the method of spraying a jet jet of plating liquid in a direction that intersects with the direction in which the wire runs, the wire is run in a space where there is no plating liquid, which dramatically improves work efficiency, and the work environment is also good, so it is easy to maintain. Easy to manage. The present invention is particularly suitable for displacement copper plating of wire materials such as welding wires and bead wires.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一態様であるジエツトノズル
方式を実施するためのメツキ装置の一例を示す説
明図、第2図はノズルよりの噴射方向とワイヤ走
行方向のなす角θを示す説明図、第3図及び第4
図はノズルが2個又は3個の場合の噴射方向のな
す角δを示す説明図、第5図及び第6図は本発明
の一態様であるノズル中心ワイヤ走行方式のため
のノズル及びその配置を示す説明図、第7図a,
bはターンローラを用いたワイヤ走行の場合のノ
ズル配置例を示す図で、aは平面図、bは側面図
であり、第8図はワイヤを螺旋状に走行させる場
合のノズル配置例を示す説明図、第9図はノズル
よりの噴射範囲を示す図で、aは狭幅の場合を示
し、bは広幅の場合を示し、第10図はスプレー
部長さを説明する図、第11図はメツキ密着性判
定に用いたワイヤ巻き状態を示す説明図、第12
図乃至第14図は従来のメツキ方式を説明する図
で、第12図は電気メツキの場合、第13図は浸
漬メツキの場合、第14図はワイヤ周辺の液状態
を示している。 1……線条材(ワイヤ)、5……メツキ槽、6
……水洗槽、8……メツキ液、10′……パイプ
状ノズル、10……パイプ状ノズル、11,13
……ポンプ、11′……パイプ、12……水洗用
ジエツトノズル、14……ターンローラ、15…
…層流域、16……乱流域。
FIG. 1 is an explanatory diagram showing an example of a plating device for implementing the jet nozzle method which is one aspect of the present invention, FIG. 2 is an explanatory diagram showing the angle θ between the jetting direction from the nozzle and the wire running direction, Figures 3 and 4
The figure is an explanatory diagram showing the angle δ formed by the injection direction when there are two or three nozzles, and Figures 5 and 6 are nozzles and their arrangement for the nozzle center wire running system, which is an embodiment of the present invention. An explanatory diagram showing FIG. 7a,
b is a diagram showing an example of nozzle arrangement when the wire is run using turn rollers, a is a plan view, b is a side view, and FIG. 8 is a diagram showing an example of nozzle arrangement when the wire is run in a spiral shape. Explanatory diagrams, Figure 9 are diagrams showing the spray range from the nozzle, a shows the narrow width case, b shows the wide width case, Figure 10 is a diagram explaining the length of the spray part, and Figure 11 is a diagram showing the spray range. Explanatory diagram showing the wire winding state used for plating adhesion determination, No. 12
1 to 14 are diagrams for explaining conventional plating methods. FIG. 12 shows the case of electroplating, FIG. 13 shows the case of immersion plating, and FIG. 14 shows the liquid state around the wire. 1... Line material (wire), 5... Plating tank, 6
... Washing tank, 8 ... Plating liquid, 10' ... Pipe-shaped nozzle, 10 ... Pipe-shaped nozzle, 11, 13
...Pump, 11'...Pipe, 12...Washing jet nozzle, 14...Turn roller, 15...
...Laminar region, 16...Turbulent region.

Claims (1)

【特許請求の範囲】 1 走行する線条材に対して所定の置換メツキ液
をノズルより噴射させて線条材の表面処理を行う
に当たり、置換メツキ液として、 CuSO4・5H2O≧5g/ H2SO4:5〜400g/ FeSO4・7H2O:5〜400g/ をそれぞれ含有するものを用いることを特徴とす
る線条材表面処理方法。 2 走行する線条材に対して所定の置換メツキ液
をノズルより噴射させて線条材の表面処理を行う
に当たり、置換メツキ液として、 CuSO4・5H2O≧5g/ H2SO4:5〜400g/ FeSO4・7H2O:5〜400g/ Cl-:0.01〜100g/ をそれぞれ含有するものを用いることを特徴とす
る線条材表面処理方法。
[Scope of Claims] 1. When performing surface treatment on a moving wire material by spraying a predetermined displacement plating liquid from a nozzle, the displacement plating liquid includes CuSO 4 .5H 2 O≧5g/ A method for surface treatment of a wire material, characterized in that a method containing H 2 SO 4 : 5 to 400 g/FeSO 4 .7H 2 O: 5 to 400 g/ is used. 2 When performing surface treatment on the running wire material by spraying a specified displacement plating liquid from a nozzle, the displacement plating liquid should be CuSO 4 5 H 2 O ≧ 5 g / H 2 SO 4 :5 400g/ FeSO4.7H2O : 5-400g/ Cl- : 0.01-100g/ A method for surface treatment of a wire material, characterized by using a material containing each of the following.
JP29354887A 1987-11-20 1987-11-20 Surface treatment of filament material Granted JPH01136974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29354887A JPH01136974A (en) 1987-11-20 1987-11-20 Surface treatment of filament material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29354887A JPH01136974A (en) 1987-11-20 1987-11-20 Surface treatment of filament material

Publications (2)

Publication Number Publication Date
JPH01136974A JPH01136974A (en) 1989-05-30
JPH0312149B2 true JPH0312149B2 (en) 1991-02-19

Family

ID=17796179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29354887A Granted JPH01136974A (en) 1987-11-20 1987-11-20 Surface treatment of filament material

Country Status (1)

Country Link
JP (1) JPH01136974A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573445B2 (en) * 2001-02-16 2010-11-04 吉野電化工業株式会社 Electroless copper plating solution composition and electroless copper plating method
JP4598033B2 (en) * 2002-08-27 2010-12-15 Jx日鉱日石金属株式会社 Copper Al2O3 composite powder sintered body and method for producing the same
JP2009001872A (en) * 2007-06-22 2009-01-08 Kobe Steel Ltd Copper-plating method of wire-like material, and copper-plated wire
JP5344695B2 (en) * 2009-07-06 2013-11-20 日産自動車株式会社 Method for manufacturing plated substrate
CN106906473B (en) * 2017-02-28 2018-12-04 昆明市斑铜厂有限公司 The surface treatment method of antique copper imitation artware

Also Published As

Publication number Publication date
JPH01136974A (en) 1989-05-30

Similar Documents

Publication Publication Date Title
US5616424A (en) Corrosion-resistant coated metal strip
US5395702A (en) Coated metal strip
US6080497A (en) Corrosion-resistant coated copper metal and method for making the same
JP2858089B2 (en) Corrosion resistant colored stainless steel and its manufacturing method
WO2007146161A1 (en) High-aluminum alloy for general galvanizing
KR101568509B1 (en) HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
JP2012167362A (en) Method for producing cold rolled steel sheet excellent in chemical conversion treatability and corrosion resistance after coating
JPH04214895A (en) Surface treated steel sheet excellent in plating performance and weldability and manufacture thereof
US20060266800A1 (en) Copper welding solid wire with good arc stability
JPH0312149B2 (en)
JP3675290B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JPH01298195A (en) Method for plating wire or bar with copper
JPH0542511B2 (en)
JP3966670B2 (en) Method for producing hot-dip galvanized steel sheet
JP2004315965A (en) Hot dip galvanized steel sheet having excellent spot weldability and slidability on press working, and production method therefor
JP5928437B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance
JP4469055B2 (en) Hot-dip Zn-Mg-Al alloy plating method
JP7111080B2 (en) Manufacturing method for high-strength hot-dip galvanized steel sheet
CA2224055C (en) Corrosion resistant stainless steel and method of making same
JP2004066265A (en) Method for manufacturing metal plated steel tube
JP2726144B2 (en) Manufacturing method of high corrosion resistance Pb-Sn alloy plated Cr-containing steel sheet with excellent coverage and adhesion
JPH04362193A (en) Production of cr-containing steel sheet excellent in adhesion of electroplating
JPS59104433A (en) Preparation of zinc plated steel plate excellent in weldability
JPH02101176A (en) Production of hot dip galvanized steel sheet having superior blackening resistance
JPS6338597A (en) Method and device for producing zn alloy electroplated steel sheet