JPH03121190A - Method for controlling combustion in coke oven - Google Patents

Method for controlling combustion in coke oven

Info

Publication number
JPH03121190A
JPH03121190A JP25789689A JP25789689A JPH03121190A JP H03121190 A JPH03121190 A JP H03121190A JP 25789689 A JP25789689 A JP 25789689A JP 25789689 A JP25789689 A JP 25789689A JP H03121190 A JPH03121190 A JP H03121190A
Authority
JP
Japan
Prior art keywords
change
furnace temperature
time
coke oven
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25789689A
Other languages
Japanese (ja)
Inventor
Hitoshi Tanaka
均 田中
Hironobu Oshima
大島 弘信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25789689A priority Critical patent/JPH03121190A/en
Publication of JPH03121190A publication Critical patent/JPH03121190A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always attain a target net coking time and to realize a stable operation and a reduction in heat consumption even when the operating efficiency of a coke oven is changed by establishing specified means for controlling combustion in a coke oven. CONSTITUTION:For controlling combustion in a coke oven, the following means are established: (1) a first means which comprises converting a deviation from a target value of net coking time, a change in coking time, and a change in the moisture contact of coal charge into at least two decision functions based on fuzzy logic in advance to determine control inputs respectively corresponding to these decision functions, selecting pertinent control inputs based on measured data, composing those control inputs depending on the degree to which fine measured data conform to the decision functions to determine composite control inputs, and changing the set value of the oven temperature based on the composite control inputs. (2) A second means which comprises changing the control range for fuel gas by a method based on fuzzy logic from a difference between a set value of the oven temperature and an actual value thereof, a change is the oven temperature, and time during which the fuel gas flow rate is held within upper and lower limits.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明はコークス炉の燃焼制御方法に関し、炉温設定値
及び燃料ガスの上下限値をあい、よい理論に基づいて設
定し、コークス炉を経済的に操業する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method of controlling combustion in a coke oven, and a method for controlling the combustion of a coke oven by setting the oven temperature setting value and the upper and lower limit values of fuel gas based on a good theory. Concerning how to operate economically.

〔従来の技術1 一般にコークス炉は第2図に示すように炉体の下部に蓄
熱室3があり、その上部に燃焼室1と炭化室2が交互に
配列された構造となっており、炭化室2に装入された石
炭は15〜20時間の乾溜の後コークスとなる。
[Prior art 1] In general, a coke oven has a structure in which a heat storage chamber 3 is located at the bottom of the furnace body, and combustion chambers 1 and carbonization chambers 2 are arranged alternately above the heat storage chamber 3, as shown in Fig. 2. The coal charged in chamber 2 becomes coke after dry distillation for 15 to 20 hours.

コークス炉操業では、各窯に装入された石炭が所定の時
間で乾留終了となるように炉温管理を行うことが重要で
ある。
In coke oven operation, it is important to control the furnace temperature so that the carbonization of the coal charged into each furnace is completed within a predetermined time.

最近のコークス炉の燃焼制御技術としては第3図にフロ
ーチャートを示すように、各窯の発生ガスの温度変化等
から乾留終了である欠落を検出し、数窯単位の平均欠落
時間と目標値との偏差に応じて適正な炉温設定値を定め
、燃焼室の実測値と比較し、その偏差がゼロになるよう
に燃料ガス流量を制御し、炉温を適正値に制御する方法
が採られている。
As shown in the flowchart in Figure 3, recent coke oven combustion control technology detects gaps at the end of carbonization based on temperature changes in the gas generated in each kiln, and calculates the average gap time for several kilns and the target value. The method used is to determine an appropriate furnace temperature setting value according to the deviation, compare it with the actual measurement value of the combustion chamber, and control the fuel gas flow rate so that the deviation becomes zero, thereby controlling the furnace temperature to the appropriate value. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のように従来のコークス炉の燃焼制御方法としては
、コークス炉の各窯の上昇管部に温度計や媒塵計等を設
置して、発生ガスの温度変化や粉塵の濃度変化から欠落
を検出し、この欠落時間な数窯単位にデータ加工して得
られる炉団の代表欠落時間と目標値との偏差に応じて炉
温変更を行う方法が一般的である。
As mentioned above, the conventional combustion control method for coke ovens is to install thermometers, dust meters, etc. in the riser pipe of each oven of the coke oven to detect defects due to changes in the temperature of the generated gas and changes in the concentration of dust. A common method is to detect the missing time, process the data in units of several kilns, and change the furnace temperature according to the deviation between the representative missing time of the furnace group and the target value.

しかしながら、通常、コークス炉の炉温変更により欠落
時間に影響を及ぼすまでには6〜8時間の応答遅れがあ
り、したがって、単にある一定時間毎に実績欠落時間と
目標値との偏差から炉温変更を行うとオーバーアクショ
ンとなり、欠落時間の変動を助長する結果となる。
However, there is usually a response delay of 6 to 8 hours before a change in coke oven oven temperature affects the missing time. Making changes will result in overaction and increase the fluctuation of missed time.

そこで例えば特開昭62−109887では重回帰式を
もとに制御周期毎に実績欠落時間から将来の予測欠落時
間を算出し、これと目標値との偏差に応じて炉温設定変
更を行う方法を提案している。
For example, in JP-A-62-109887, a method is proposed in which the predicted future missing time is calculated from the actual missing time for each control cycle based on a multiple regression equation, and the furnace temperature setting is changed according to the deviation between this and the target value. is proposed.

この方法によれば欠落時間の応答遅れによる悪影響はか
なり回避できるが、欠落時間の応答遅れは、コークス炉
の窯出しピッチ(稼動率)等によって大きく異なり、動
特性を定式化することが容易ではないこと、また欠落時
間の予測に重回帰式を用いるため予測精度がやや低いこ
となどから、より制御効果の大きい方法が期待されてい
た。
This method can largely avoid the negative effects of response delays due to missing times, but the response delays due to missing times vary greatly depending on factors such as the pitch (operating rate) of the coke oven, and it is not easy to formulate dynamic characteristics. However, there were expectations for a method with a greater control effect, as the prediction accuracy was rather low because multiple regression was used to predict missing time.

さらに、上記の制御方法はコークス炉の稼動率が一定(
即ち目標欠落時間も一定)の操業時に適用することが望
ましく、稼動率変更時のように大幅な炉温変更を伴う場
合は、燃料ガス流量の変動が大きく、これに起因し炉温
のハンチングも大となり、炉温の自動制御さえ困難な場
合があった。
Furthermore, the above control method allows the operating rate of the coke oven to be constant (
In other words, it is desirable to apply it during operation when the target missing time is constant), and when a large change in furnace temperature is involved, such as when changing the operating rate, there is a large fluctuation in the fuel gas flow rate, which may cause hunting in the furnace temperature. In some cases, it became difficult to automatically control the furnace temperature.

本発明は稼動率が一定の場合でも、変更を伴う場合でも
常に欠落時間を目標欠落時間に合致させるように制御す
るコークス炉の燃焼制御方法を提供するものである。
The present invention provides a combustion control method for a coke oven that always controls the missing time to match the target missing time even when the operating rate is constant or changes.

〔課題を解決するための手段1 本発明はコークス炉の稼動率一定時及び変更時の炉温、
欠落時間等の動特性を詳細に解析することにより完成さ
れた。
[Means for Solving the Problems 1] The present invention provides a method for controlling the furnace temperature when the operating rate of a coke oven is constant and when changing.
This was completed through detailed analysis of dynamic characteristics such as dropout time.

本発明は稼動率一定の定常操業のみならず稼動率変更時
の非定常操業においても常に、実績欠落時間が設定され
た目標欠落時間となるようにあいまい(Fuzzy)理
論に基づき炉温設定値並びに燃料ガス流量の制御範囲を
求め燃焼を制御するものである。
The present invention is based on the fuzzy theory to set the furnace temperature set value and set value so that the actual missing time always matches the set target missing time, not only in steady operation with a constant operating rate, but also in unsteady operation when the operating rate changes. This is to determine the control range of fuel gas flow rate and control combustion.

本発明はコークス炉燃焼室の測定炉温と設定炉温の偏差
に基づいて燃料ガス流量の増減アクションにより、燃焼
を制御する方法において、次の技術手段により設定炉温
及び燃料ガス流量の制御範囲を求めることを特徴とする
ものである。
The present invention provides a method for controlling combustion by increasing/decreasing the fuel gas flow rate based on the deviation between the measured furnace temperature and the set furnace temperature in a coke oven combustion chamber. It is characterized by seeking.

(1)欠落時間の目標値との偏差、欠落時間の変化、装
入炭水分値の変化をあいまい理論に基づく2つ以上の判
断関数に変換し、各判断関数に対応するそれぞれの操作
量を定め、実測データに基づき当該する操作量を選択し
、それらを実測データが判断関数に該当する割合に応じ
て合成して合成操作量を決定し、この合成操作量に基づ
き、炉温設定値を変更すること。
(1) Convert the deviation of the missing time from the target value, the change in the missing time, and the change in the charged coal moisture value into two or more judgment functions based on the vague theory, and calculate the respective manipulated variables corresponding to each judgment function. Based on the measured data, select the corresponding manipulated variable, combine them according to the proportion of the measured data that corresponds to the judgment function, determine the composite manipulated variable, and set the furnace temperature set value based on this composite manipulated variable. To change.

(2)炉温の設定値と実績値との偏差、炉温の変化、燃
料ガス流量が上下限値でホールドされている時間とから
あいまい理論に基づく方法を用い燃料ガスの制御範囲を
変更すること。
(2) Change the fuel gas control range using a method based on vague theory based on the deviation between the set value and actual value of the furnace temperature, changes in the furnace temperature, and the time the fuel gas flow rate is held at the upper and lower limits. thing.

本発明により、コークス炉の稼動率が一定時ばかりでな
(稼動率変更時についても常に目標とする欠落時間を達
成することができ、操業の安定化を図ることができるば
かりでなく、消費熱量上のロスも大幅に削減される。
According to the present invention, it is possible to always achieve the target missing time not only when the operating rate of the coke oven is constant (even when the operating rate is changed), it is possible not only to stabilize the operation, but also to reduce the amount of heat consumed. The above losses are also significantly reduced.

〔作用〕[Effect]

以下、本発明の構成を作用と共に詳細に説明する。 Hereinafter, the structure of the present invention will be explained in detail together with its operation.

(1)まず、設定炉温の求め方について説明する。(1) First, how to determine the set furnace temperature will be explained.

(イ)欠落時間の判断関数化 第4図は稼動率一定時の制御対象である欠落時間、炉温
及び装入炭水分値の惟移の例を示したものである。欠落
時間は炉温、装入炭水分の影響を受は大きな時間サイク
ルで変動し、かつ炉温に対して例えば炉温か上昇すれば
欠落時間は短くなるが、時間遅れがある。
(a) Converting the missing time into a decision function Figure 4 shows an example of changes in the missing time, furnace temperature, and charged coal moisture value, which are the objects of control when the operating rate is constant. The missing time is affected by the furnace temperature and the moisture content of the charged coal, and varies over a large time cycle. For example, if the furnace temperature rises, the missing time becomes shorter, but there is a time lag.

したがって、例えば時刻tの時点について見ると、欠落
時間が目標値を上廻っているからといって、装入炭の水
分が低下しているのにかかわらず炉温を上げると、欠落
時間は急速に過度に低下し欠落時間の変動を助長する。
Therefore, for example, when looking at time t, even though the missing time exceeds the target value, if the furnace temperature is increased even though the moisture content of the charged coal is decreasing, the missing time will rapidly decrease. This may cause the dropout time to fluctuate excessively.

つまり、欠落時間を適正値に制御するためには、単に、
欠落時間が目標値に対して「短いか」または「長いか」
だけでな(、「短くなってきたか」または「長くなって
きたか」、さらに今後「短くなる要因があるのかJまた
は「長くなる要因があるか」という情報に基づき、炉温
設定変更アクションを行う必要がある。
In other words, in order to control the missing time to an appropriate value, simply
Is the missing time “shorter” or “longer” than the target value?
Based on information such as ``Has it become shorter?'' or ``Has it become longer?'' and ``Is there a factor causing it to become shorter?'' or ``Is there a factor causing it to lengthen?'', take action to change the furnace temperature setting. There is a need.

そこで、これら欠落時間に関する判断には実績欠落時間
の目標値との偏差: 八〇Ti  (分) 欠落時間の変化: △CTi−Δc’rt−1(分) 装入炭水分値の変化: TMi −TMi−、(%) ここで添字iは制御タイミング を用いそれぞれ第5図に示すように2つ以上の判断関数
をつ(る。
Therefore, in determining these missing times, the deviation of the actual missing time from the target value: 80Ti (minutes) Change in missing time: △CTi-Δc'rt-1 (minutes) Change in charged coal moisture value: TMi -TMi-, (%) Here, the subscript i is used to calculate two or more judgment functions using control timing, as shown in FIG.

第5図において、縦軸はファジィ値と呼ばれるもので、
1,0を最大値とする。1.0は全ての人がそのように
判断することを意味しており、全員賛成であることを示
す。
In Figure 5, the vertical axis is what is called the fuzzy value,
1,0 is the maximum value. 1.0 means that everyone makes the same decision, indicating that everyone agrees.

ファジィ値はその判断関数に該当する割合を示すもので
ある。
The fuzzy value indicates the proportion corresponding to the judgment function.

判断関数とは、人間が「丁度良い」 「欠落が短い」な
どという抽象的判断をグループ化したものである。第5
図の例では例えば制御タイミング時の欠落時間偏差ΔC
Tjが15分であれば全ての人が「欠落が長い」と判断
し、3分であれば「丁度よい」と判断する。8分であれ
ば「欠落が長い」と判断する人と、「丁度よい」と判断
する人と半分、半分であることを示す。
A judgment function is a grouping of abstract judgments that humans make, such as ``just right'' and ``short gaps.'' Fifth
In the example shown in the figure, for example, the missing time deviation ΔC at the control timing
If Tj is 15 minutes, all the people judge that "the gap is long", and if Tj is 3 minutes, it is "just right". This shows that if it is 8 minutes, half of the people think that the gap is ``long'' and half of the people think that it is ``just right''.

以上のようにして欠落時間の判断関数を作成するが、今
後「欠落が短くなるのか」または「長(なるか」の要因
については、装入炭水分値の変化に限らず装入炭粒度、
装入重量等その他の指標について例えば第7図に例示す
るように判断関数を作成しても構わない。
The decision function for the missing time is created as described above, but in the future, the factors that determine whether the missing time will become shorter or longer will be determined not only by changes in the moisture content of the charged coal but also by the particle size of the charged coal,
For other indicators such as charging weight, a judgment function may be created as illustrated in FIG. 7, for example.

(ロ)操作量のルール化 第1表は欠落時間偏差と欠落時間変化傾向を各々3つの
判断関数として構成した操作量ルール表であり、また第
6図は操作量(炉温変更量)を示す。
(b) Ruleization of manipulated variables Table 1 is a manipulated variable rule table in which the missing time deviation and missing time change tendency are each configured as three judgment functions, and Figure 6 shows the manipulated variables (furnace temperature change amount). show.

第1表の操作量ルールから、例えば欠落時間が長く、か
つ欠落時間が長くなってきている場合は操作量3を選択
する。このように欠落時間の測定値に基づき、炉温変更
量を求めることができる。
From the manipulated variable rules in Table 1, for example, if the missing time is long and the missing time is getting longer, select the manipulated variable 3. In this way, the amount of furnace temperature change can be determined based on the measured value of the missing time.

本発明では第1表に示したルールのほかに、水分変化に
関する第2表のルールを用いて第6図の操作量から炉温
変更量を算出する。
In the present invention, in addition to the rules shown in Table 1, the furnace temperature change amount is calculated from the manipulated variable shown in FIG. 6 using the rules shown in Table 2 regarding moisture changes.

第  1 表 第  2  表 (ハ)操作量の合成 第7図には前述の欠落時間偏差、欠落時間変化傾向、及
び水分変化の判断関数を示す。
Table 1 Table 2 (c) Synthesis of manipulated variables FIG. 7 shows the aforementioned missing time deviation, missing time change trend, and judgment function for moisture change.

第7図(a)から例えば欠落時間偏差が13分、第7図
(b)から欠落時間変化が一8分であれば、次の■〜■
のケースが選択される。
For example, if the missing time deviation is 13 minutes from FIG. 7(a), and the missing time change is 18 minutes from FIG. 7(b), then the following ■~■
case is selected.

■ 欠落時間が長いと判定する該当割合は0.8■ 欠
落時間が丁度良いと判定する該当割合は0.2 ■ 欠落時間が短(なってきたと判断する該当割合は0
.6 ■ 欠落時間が変わらないと判断する該当割合は0.4 これを第1表のルールに対比させて操作量を選択する。
■ The percentage that determines that the missing time is long is 0.8 ■ The percentage that determines that the missing time is just right is 0.2 ■ The percentage that judges that the missing time is short (it has become) is 0.
.. 6 ■ The corresponding ratio for determining that the missing time does not change is 0.4. Compare this with the rules in Table 1 and select the amount of operation.

上記の例では i)欠落時間が「長い」かつ欠落変化が「短め傾向」か
ら操作量2゜ ii)欠落時間が「長い」かつ「変化なし」から操作量
3゜ 1ii)欠落時間が「丁度よい」かつ「短かめ傾向」か
ら操作量1゜ ivl 欠落時間が「丁度よい」かつ「変化なし」かも
操作量2 を選択する。
In the above example, i) the missing time is "long" and the missing change is "shortish", so the manipulated amount is 2°; ii) the missing time is "long" and "no change", so the manipulated amount is 3°; ii) the missing time is "just right" If the missing time is "just right" and "no change", select the manipulated variable 1゜ivl.

またこの時の装入炭水分変化が1.0%であれば第7図
(C)から判断関数1.0となり第2表のルールに基づ
き、同様に ■) 欠落時間が「長い」かつ水分が「増加」から操作
量3 vi)欠落時間が「丁度よい」かつ水分が「増加」から
操作量3 を選択する。
Also, if the change in the moisture content of the charged coal at this time is 1.0%, the judgment function will be 1.0 from Figure 7 (C), based on the rules in Table 2. vi) Select the manipulated variable 3 because the missing time is "just right" and the water content is "increase".

次にこれらの各操作量を合成する方法を説明する。Next, a method of synthesizing each of these manipulated variables will be explained.

まず、各操作量に対して判断関数の該当割合に応じて重
み付けを行う、即ち、上記i)の例で操作量2を選択す
る場合、欠落時間が「長い」に対応する該当割合0.8
と「短かめ傾向」に対応する該当割合0.6の低い方を
選択し操作量の該当割合(重み付け)とする。このよう
にして各操作量の該当割合を求める。この結果、i)〜
vilではi)操作量2 該当割合 0.6 ii)操作量3 該当割合 0.4 iii1操作量l 該当割合 0.2 iv)操作量2 該当割合 0.2 ■)操作量3 該当割合 0.8 vi)操作量3 該当割合 0.2 となる。
First, each manipulated variable is weighted according to the corresponding ratio of the judgment function. That is, when selecting the manipulated variable 2 in the example of i) above, the corresponding ratio corresponding to the "long" missing time is 0.8.
The lower of the applicable ratios of 0.6 and 0.6 corresponding to the "shorter tendency" is selected as the relevant ratio (weighting) of the manipulated variable. In this way, the corresponding proportion of each manipulated variable is determined. As a result, i)
In vil, i) Manipulated amount 2 Corresponding ratio 0.6 ii) Manipulated amount 3 Corresponding ratio 0.4 iii1 Manipulated amount l Corresponding ratio 0.2 iv) Manipulated amount 2 Corresponding ratio 0.2 ■) Manipulated amount 3 Corresponding ratio 0. 8 vi) Manipulated amount 3 corresponding ratio will be 0.2.

第8図には上記の操作量の分布を示すが、各操作量は、
そのファジィ値(該当割合)により山切りした後、和集
合として求める。即ち第8図の斜線部が欠落時間偏差1
3分、欠落時間変化−8分、装入炭水分変化1.0%の
時の操作量(炉温変化量)の分布であり、この分布の重
心を操作出力とする。この重心Cは重み付は法と呼ばれ
る方法で として算出される。
Figure 8 shows the distribution of the above manipulated variables, and each manipulated variable is
After cutting the peaks according to the fuzzy value (corresponding ratio), it is determined as a union. In other words, the shaded area in Fig. 8 is the missing time deviation of 1.
This is the distribution of the manipulated variable (furnace temperature change) when 3 minutes, missing time change -8 minutes, and charged coal moisture change 1.0%, and the center of gravity of this distribution is taken as the manipulated output. This center of gravity C is calculated using a method called the weighting method.

(ニ)炉温設定値の算出 炉温設定値Tsvは上記の方法で求められた炉温変更量
△Tsv(すなわち上記重心Cの値)と前回の設定値T
sv−tをもとに次式で求められる。
(d) Calculating the furnace temperature set value The furnace temperature set value Tsv is the furnace temperature change amount △Tsv (that is, the value of the center of gravity C mentioned above) obtained by the above method and the previous set value T.
It is determined by the following formula based on sv-t.

T SV” T 5V−1+ΔTsv この例の場合、第8図から となり現在の温度設定値を2.25℃高(する、すなわ
ち、例えば現在のTSV−1が1100℃であれば変更
後のTsvは1102.25℃に設定する。
T SV" T 5V-1 + ΔTsv In this example, the current temperature setting value is increased by 2.25℃ (for example, if the current TSV-1 is 1100℃, the Tsv after the change is 1102. Set to 25°C.

(2)次に燃料ガス流量の制御範囲の求め方について説
明する。
(2) Next, how to determine the control range of the fuel gas flow rate will be explained.

コークス炉のように熱容量の大きな系では熱的な応答遅
れも大きく第9図(a)に示すように。
In a system with a large heat capacity, such as a coke oven, the thermal response delay is large, as shown in FIG. 9(a).

設定炉温を大きく変更する場合、燃料ガス流量は大きく
変動し、これに起因して炉温の制御性が悪化する。した
がって、大幅な炉温変更時には燃料ガス流量の制御範囲
を第9図(b)に示すように上下限内の適性制御範囲に
規定することが必要である。
When the set furnace temperature is changed significantly, the fuel gas flow rate fluctuates greatly, which deteriorates the controllability of the furnace temperature. Therefore, when the furnace temperature is significantly changed, it is necessary to define the control range of the fuel gas flow rate to an appropriate control range within the upper and lower limits, as shown in FIG. 9(b).

そこで燃料ガス流量の制御範囲を常に適性範囲に維持す
るために第1O図、第11図、第3表に示す判断関数操
作量、および操作量ルールを用いる。
Therefore, in order to always maintain the control range of the fuel gas flow rate within the appropriate range, the judgment function manipulated variables and manipulated variable rules shown in FIGS. 1O, 11, and Table 3 are used.

ここでホールド時間とは第9図(b)に示すように、燃
料ガス流量の制御範囲の上限または下限値の状態でガス
流量が推移する経過時間θを意味する。
Here, the hold time refers to the elapsed time θ during which the gas flow rate remains at the upper limit or lower limit of the control range of the fuel gas flow rate, as shown in FIG. 9(b).

なお、第3表のルールはホールド時間が短いかあるいは
普通の場合は、燃料ガス流量の制御範囲が適正レベルと
見なせるので、ホールド時間が長いケース2時間以上の
みを対象としたルールとしている。
Note that the rules in Table 3 apply only to cases where the hold time is long, 2 hours or more, because the control range of the fuel gas flow rate can be considered to be at an appropriate level when the hold time is short or normal.

前述(1)の方法と同様に制御タイミング毎に、実測デ
ータから各判断関数のファジィ値を求め、操作量ΔGs
v(燃料ガス流量の制御範囲変更量)を算出する。
Similarly to the method (1) above, the fuzzy value of each judgment function is calculated from the actual measurement data at each control timing, and the manipulated variable ΔGs
v (control range change amount of fuel gas flow rate) is calculated.

第3表 例えば第10図において、炉温偏差が一9℃、炉温変化
が3.5℃、ホールド時間が3hrであれば、 ■ 炉温か低いと判断する該当割合は0.8■ 炉温か
調度良いと判断する該当割合は0.2■ 炉温か上昇し
てきたと判断する該当割合は0.5 ■ 炉温か変化していないと判断する該当割合は0.5 ■ ホールド時間が長いと判断する該当割合は1.0 が選択される。
Table 3 For example, in Figure 10, if the furnace temperature deviation is 19°C, the furnace temperature change is 3.5°C, and the hold time is 3 hours, ■ The corresponding ratio that determines that the furnace temperature is low is 0.8■ Furnace temperature The corresponding percentage that determines that the furnace temperature is good is 0.2 ■ The applicable percentage that determines that the furnace temperature has increased is 0.5 ■ The applicable percentage that determines that the furnace temperature has not changed is 0.5 ■ The applicable percentage that determines that the hold time is long A ratio of 1.0 is selected.

次に、上記■〜■のケースについて第3表に示すルール
に対比させて操作量を選択する。
Next, the operation amount is selected in comparison with the rules shown in Table 3 for the cases ① to ② above.

操作量は次のように選択される。The manipulated variable is selected as follows.

i)炉温偏差が「低い」かつ炉温が「上昇」かつホール
ド時間が「長い」から操作量2゜ii)炉温偏差が「低
い」かつ「変化なし」かつホールド時間が「長い」から
操作量3゜1ii)炉温偏差が「丁度良い」かつ炉温が
「上昇」かつ「長い」から操作量2゜ iv)炉温偏差が「丁度よい」かつ「変化なし」から操
作量2 を選択する。
i) The manipulated variable is 2° because the furnace temperature deviation is “low”, the furnace temperature is “increased”, and the hold time is “long” ii) The furnace temperature deviation is “low”, “no change”, and the hold time is “long” Manipulated amount 3゜1ii) The furnace temperature deviation is ``just right'' and the furnace temperature is ``increasing'' and ``long'', so the manipulated variable 2゜iv) The furnace temperature deviation is ``just right'' and ``no change'', so the manipulated variable 2 is set. select.

次に、各操作量に対して判断関数の該当割合に応じて重
み付けを行う。この結果、i)〜ivlではi)操作量
2 該当割合 0.5 ii)操作量3 該当割合 0.5 iii1操作量2 該当割合 0.2 iv)操作量2 該当割合 0.2 となる。
Next, each manipulated variable is weighted according to the corresponding ratio of the judgment function. As a result, for i) to ivl, i) Manipulated amount 2 Corresponding ratio 0.5 ii) Manipulated amount 3 Corresponding ratio 0.5 iii1 Manipulated amount 2 Corresponding ratio 0.2 iv) Manipulated amount 2 Corresponding ratio 0.2.

第12図は上記の操作量の分布であり、炉温変更量の算
出と同様に、分布の重心を重み付は法と呼ばれる方法で
求め操作出力とする。
FIG. 12 shows the distribution of the above-mentioned manipulated variables, and similarly to the calculation of the furnace temperature change amount, the center of gravity of the distribution is weighted by a method called the modulus and used as the manipulated output.

=250  (Nゴ/m) 燃料ガス制御範囲は前回の制御範囲と操作量から次式で
求める。
=250 (Ngo/m) The fuel gas control range is determined from the previous control range and the manipulated variable using the following formula.

F(上限値);F(上限値)−1+△GsvF(下限値
)二F(下限値)−1+△Gsvまた第10図の判断関
数としては、 炉温の設定値との偏差:ΔT PVL  (’C)炉温
の変化: Ti −T<−1(”C)燃料ガス流量が上
下限値にホールドされているホールド時間:θ(分) を用いる。ここでホールド時間θは燃料ガス流量がその
制御許容範囲である上限値もしくは下限値に達した時点
からの経過時間であり、この時間の長短及び炉温の偏差
、変化傾向から適正な制御状態かどうかを判断する。
F (upper limit); F (upper limit) - 1 + △Gsv F (lower limit) 2 F (lower limit) - 1 + △Gsv Also, the judgment function in Figure 10 is: Deviation from furnace temperature set value: ΔT PVL ('C) Change in furnace temperature: Ti -T<-1 (''C) Hold time during which the fuel gas flow rate is held at the upper and lower limit values: θ (minutes) is used. Here, the hold time θ is the fuel gas flow rate. This is the elapsed time from the time when the temperature reaches the upper limit or lower limit of the allowable control range, and it is determined whether the control is in an appropriate state based on the length of this time and the deviation and change tendency of the furnace temperature.

例えば第9図(b)のようにθが長く炉温か設定値に追
従しないケースは明らかに燃料ガス流量の制御範囲が低
いためであり、この時制御範囲はΔGsvだけ変更され
る。
For example, the case where θ is long and does not follow the furnace temperature set value as shown in FIG. 9(b) is clearly due to the low control range of the fuel gas flow rate, and at this time the control range is changed by ΔGsv.

以上の方法で制御タイミングi毎に炉温変更量及び燃料
ガス流量制御範囲変更量が算出され、それぞれの設定値
が変更される。なお、制御タイミングは2〜4時間毎で
ある。
With the above method, the furnace temperature change amount and the fuel gas flow rate control range change amount are calculated at each control timing i, and the respective set values are changed. Note that the control timing is every 2 to 4 hours.

〔実施例J 本発明の実施例の装置構成を第1図に示す。[Example J FIG. 1 shows the configuration of an apparatus according to an embodiment of the present invention.

各窯の上昇管部に設置した発生ガス温度センサ4により
、発生ガス温度を検出し、欠落判定器5で各窯の欠落時
間が測定される。
A generated gas temperature sensor 4 installed in the riser pipe section of each kiln detects the temperature of the generated gas, and a lack determination device 5 measures the missing time of each kiln.

この欠落時間測定値、水分分析器6による装入炭水分値
及び目標欠落時間から、制御タイミング毎に、判断関数
演算器7により各判断関数のファジィ値が算出され、操
作量演算器8でルールに基づき設定炉温の変更量が算出
される。
From this missing time measurement value, the charged coal moisture value determined by the moisture analyzer 6, and the target missing time, the fuzzy value of each judgment function is calculated by the judgment function calculator 7 at each control timing, and the fuzzy value of each judgment function is calculated by the manipulated variable calculator 8. The amount of change in the set furnace temperature is calculated based on.

また、燃料ガス流量及び炉温データをもとに、同様にガ
ス流量制御範囲の変更量が算出される。
Furthermore, the amount of change in the gas flow rate control range is similarly calculated based on the fuel gas flow rate and furnace temperature data.

求めた設定炉温及びガス流量制御範囲は、それぞれ炉温
設定器9、ガス流量制御範囲設定器IOにセットされ、
ガス流量の変更アクションによる適正な温度自動制御が
行われる。
The determined set furnace temperature and gas flow rate control range are set in the furnace temperature setting device 9 and gas flow rate control range setting device IO, respectively.
Appropriate automatic temperature control is performed by changing the gas flow rate.

本発明を制御周期4時間毎に実施した時の操業データを
従来法と比較して第13図及び第4表に示した。
Operational data when the present invention was implemented at a control cycle of every 4 hours are shown in FIG. 13 and Table 4 in comparison with the conventional method.

第4表 従来法では装入炭の水分変動に対し設定炉温を変更する
が、大幅な設定変更時にはこれに追従すべくガス流量ア
クシランが過剰となり炉温の制御性悪化傾向が見られる
。またこれに起因して欠落時間のばらつきも大きい。一
方、本発明方法では、水分変動に対してもガス流量の制
御範囲が適正に規定されるため、炉温のハンチングも少
なく欠落時間の制御性も良好である。このように本発明
によれば欠落時間の制御性が大幅に改善される。
Table 4 In the conventional method, the set furnace temperature is changed in response to changes in the moisture content of the charged coal, but when the settings are changed significantly, the gas flow rate of Axilane becomes excessive to follow this change, and there is a tendency for the controllability of the furnace temperature to deteriorate. Also, due to this, there is a large variation in the dropout time. On the other hand, in the method of the present invention, since the control range of the gas flow rate is appropriately defined even with respect to moisture fluctuations, there is less hunting in the furnace temperature, and the controllability of the missing time is also good. As described above, according to the present invention, the controllability of the dropout time is greatly improved.

〔発明の効果] 本発明はコークス炉の燃焼制御を行う上で、欠落時間の
変化傾向、変化要因の増減等から人間のオペレーション
感覚に近い判断及びアクションを採ることができるため
、操業条件の急変に対しても安定な制御を継続すること
ができる。
[Effects of the Invention] When controlling the combustion of a coke oven, the present invention can make judgments and actions similar to a human operation sense based on the change trend of missing time, increase/decrease of change factors, etc. Stable control can be maintained even for

また、従来法と比べ欠落時間の制御性が改善されるため
消費熱量の低減及びコークス品質の安定にも大きく寄与
することができ、コークス炉の燃焼制御上極めて有効な
手段である。
Furthermore, since the controllability of the missing time is improved compared to the conventional method, it can greatly contribute to reducing the amount of heat consumed and stabilizing the quality of coke, and is an extremely effective means for controlling combustion in a coke oven.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のフローシート、第2図はコー
クス炉の断面図、第3図はコークス炉燃焼制御の系統図
、第4図は欠落時間、炉温の推移例を示すグラフ、第5
図は観測事象の判断関数図、第6図は炉温変更の操作量
関数図、第7図は炉温変更に関する判断関数図、第8図
は操作量分布図、第9図は炉温、ガス流量推移例を示す
グラフ、第1O図はガス流量制御範囲変更に関する判断
関数図、第11図、第12図はガス流量制御範囲変更の
操作量関数図、第13図は本発明と従来方法との制御卸
性比較チャートである。 l・・・燃焼室、2−・・炭化室、3・・・蓄熱室、4
・・・欠落判定センサ(発生ガス温度計)、5・・−欠
落判定器、6−水分分析器、7−・・判断関数演算器、
8・−・操作量演算器、9・−・炉温設定器、10・・
・ガス流量制御範囲設定器
Fig. 1 is a flow sheet of an embodiment of the present invention, Fig. 2 is a cross-sectional view of a coke oven, Fig. 3 is a system diagram of coke oven combustion control, and Fig. 4 is a graph showing an example of changes in missing time and oven temperature. , 5th
The figure is a judgment function diagram for observed events, Figure 6 is a manipulated variable function diagram for furnace temperature changes, Figure 7 is a decision function diagram for furnace temperature changes, Figure 8 is a manipulated variable distribution diagram, and Figure 9 is a furnace temperature, Graphs showing examples of gas flow rate transitions; Figure 1O is a judgment function diagram for changing the gas flow rate control range; Figures 11 and 12 are manipulated variable function diagrams for changing the gas flow rate control range; Figure 13 is the present invention and conventional method. This is a control wholesale comparison chart. l... Combustion chamber, 2-... Carbonization chamber, 3... Heat storage chamber, 4
... Missing judgment sensor (generated gas thermometer), 5...- Missing judgment device, 6- Moisture analyzer, 7-... Judgment function calculator,
8.--Manipulated variable calculator, 9.--Furnace temperature setting device, 10..
・Gas flow control range setting device

Claims (1)

【特許請求の範囲】 1 コークス炉の燃焼制御において、 欠落時間の目標値との偏差、欠落時間の変化、装入炭水
分値の変化をあらかじめあいまい理論に基づく2つ以上
の判断関数に変換し、各判断関数に対応するそれぞれの
操作量を定めると共に、実測データに基づき当該する操
作量を選択し、次いで、実測データが判断関数に該当す
る割合に応じてそれらの操作量を合成して合成操作量を
決定し、この合成操作量に基づき、炉温設定値を変更す
る第1の手段と、 炉温の設定値と実績値との偏差、炉温の変化、燃料ガス
流量が上下限値でホールドされている時間とからあいま
い理論に基づく方法を用い燃料ガスの制御範囲を変更す
る第2の手段とからなることを特徴とするコークス炉の
燃焼制御方法。
[Claims] 1. In the combustion control of a coke oven, the deviation of the missing time from the target value, the change in the missing time, and the change in the charged coal moisture value are converted in advance into two or more judgment functions based on an ambiguous theory. , determines each operation amount corresponding to each judgment function, selects the corresponding operation amount based on the actual measured data, and then synthesizes and synthesizes the operation amounts according to the proportion of the actual measurement data that corresponds to the judgment function. A first means of determining the manipulated variable and changing the furnace temperature set value based on this composite manipulated variable, and determining the deviation between the furnace temperature set value and the actual value, the change in the furnace temperature, and the fuel gas flow rate to the upper and lower limits. and a second means for changing the control range of fuel gas using a method based on an ambiguous theory.
JP25789689A 1989-10-04 1989-10-04 Method for controlling combustion in coke oven Pending JPH03121190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25789689A JPH03121190A (en) 1989-10-04 1989-10-04 Method for controlling combustion in coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25789689A JPH03121190A (en) 1989-10-04 1989-10-04 Method for controlling combustion in coke oven

Publications (1)

Publication Number Publication Date
JPH03121190A true JPH03121190A (en) 1991-05-23

Family

ID=17312695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25789689A Pending JPH03121190A (en) 1989-10-04 1989-10-04 Method for controlling combustion in coke oven

Country Status (1)

Country Link
JP (1) JPH03121190A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2245999A (en) * 1990-06-29 1992-01-15 Matsushita Electric Ind Co Ltd Control of cooking

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2245999A (en) * 1990-06-29 1992-01-15 Matsushita Electric Ind Co Ltd Control of cooking
GB2245999B (en) * 1990-06-29 1993-11-24 Matsushita Electric Ind Co Ltd Cooking apparatus providing accurate control of cooking process and capability for specifying hardness degree of cooked food
US5300757A (en) * 1990-06-29 1994-04-05 Matsushita Electric Industrial Co., Ltd. Cooking apparatus providing accurate control of cooking process and capability for specifying hardness degree of cooked food

Similar Documents

Publication Publication Date Title
CN103115356B (en) The monitoring method of Supercritical CFB Boiler burning signal and optimal control method
CN102453792B (en) Method and equipment for controlling furnace pressure of continuous annealing furnace
CN104316559B (en) A kind of method of testing that can accurately reflect heater for rolling steel dynamic thermal balance
CN103593578A (en) Flue suction force feedback setting method in coke oven heating combustion process
JPH03121190A (en) Method for controlling combustion in coke oven
CN110598185B (en) Coke oven coking unit consumption influence factor sequencing method and system
Reid et al. Factors affecting the thickness of coal-ash slag on furnace-wall tubes
JP2008001816A (en) Combustion-controlling method in coke oven
JPS61508A (en) Operating method of blast furnace
RU2251721C2 (en) Intellectual control system
JPS5950196B2 (en) How to determine whether a coke oven has caught fire
JPH0248196B2 (en) KOOKUSURONOHIOTOSHIJIKANSEIGYOHOHO
JPS6365230A (en) Burning control method for hot air furnace
JPH03273091A (en) Method for forecasting shrinkage of blended coal for coke
Zhaogang et al. Temperature estimation of cement rotary kiln based on extended Kalman filter
Hernández et al. Model reference adaptive temperature control of a rotary cement kiln
JPS61141787A (en) Control of oven temperature in coke oven
CN115111580A (en) Quantitative control method for slag cooler
JPWO2019003670A1 (en) Fire time control method, fire time control guidance display device, operating method of coke oven, and fire time control device
JPS62177090A (en) Control of combustion in coke oven
JPH07126652A (en) Method for controlling temperature of coke discharged from coke oven
JP2023015450A (en) Method for controlling amount of coal charge into coke oven carbonization chamber and method for producing coke
JPS6055561B2 (en) How to operate a blast furnace
JPH0485392A (en) Heat input control in coke oven
JPH0719453A (en) Control for constant gas-calorie combustion in coke oven