JPH0485392A - Heat input control in coke oven - Google Patents

Heat input control in coke oven

Info

Publication number
JPH0485392A
JPH0485392A JP19980490A JP19980490A JPH0485392A JP H0485392 A JPH0485392 A JP H0485392A JP 19980490 A JP19980490 A JP 19980490A JP 19980490 A JP19980490 A JP 19980490A JP H0485392 A JPH0485392 A JP H0485392A
Authority
JP
Japan
Prior art keywords
coke
temperature
carbonization
amount
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19980490A
Other languages
Japanese (ja)
Other versions
JPH0819416B2 (en
Inventor
Yoshiyuki Kashiwabara
義之 柏原
Akihiro Murata
明宏 村田
Taiji Ikenaga
池永 泰治
Toshio Kondo
近藤 俊雄
Koji Nakao
中尾 孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19980490A priority Critical patent/JPH0819416B2/en
Publication of JPH0485392A publication Critical patent/JPH0485392A/en
Publication of JPH0819416B2 publication Critical patent/JPH0819416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To stabilize the quality of coke and lower the heat quantity of carbonization by making the temp. of discharged coke constant by a specified method using a model for predicting the temp. of coke after carbonization based on the quantity of charged coal, its water content, the oven temp. and the duration of carbonization. CONSTITUTION:In the production of shaft furnace coke in a coke oven having a plurality of kilns, a modellized correction is computed from the actual coke temp. measured at the time of discharging the coke on the basis of a model for predicting the temp. of coke after carbonization from the quantity of charged coal, its water content, the oven temp. and the duration of carbonization. Using the correction, an oven temp. necessary for attaining the intended coke temp. is determined based on the actual quantity of charged coal, its water content and the designed duration of carbonization. By controlling the heat input, the oven temp. is adjusted to the intended value, and the temp. of discharged coke is stabilized.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、複数の窯を有するコークス炉のコークス品
質と乾留熱量のばらつき低減をはかるための燃焼制御方
法に係り、明確な乾留指標である排出コークス温度を一
定化するための投入熱量の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a combustion control method for reducing variations in coke quality and carbonization heat in a coke oven having a plurality of ovens. This invention relates to a method of controlling the amount of heat input to keep the temperature constant.

従来の技術 高炉用コークスの品質は、高炉操業において大きな影響
を与える。このため、コークス品質を所定の値に調整す
ること、および品質のばらつきを低減することは極めて
重要である。また、コークス炉の操業において、乾留熱
量のばらつきを低減することは操業の安定化と大幅省エ
ネルギーにつながるため、投入熱量を適正に制御するこ
とが重要である。
BACKGROUND OF THE INVENTION The quality of blast furnace coke has a great influence on blast furnace operation. For this reason, it is extremely important to adjust coke quality to a predetermined value and to reduce quality variations. Furthermore, in the operation of a coke oven, reducing the variation in the amount of heat of carbonization leads to stable operation and significant energy savings, so it is important to appropriately control the amount of heat input.

高炉用コークスは一般に複数の窯を有するコーク、ス炉
で製造されるが、コークス品質の調整はコークス炉の燃
焼制御により行なわれている。
Blast furnace coke is generally manufactured in a coke oven having a plurality of ovens, and the coke quality is controlled by combustion control in the coke oven.

従来の燃焼制御方法としては、コークス炉の火落ち時間
を自動検知できる指標で定義し、装炭から火落ちまでの
時間(以下「火落ち時間Jという)が一定となるよう投
入熱量(炉温)を制御する方法(特開昭57−1598
77号公報等)が−船釣である。
Conventional combustion control methods define the coke oven fire-off time using an index that can automatically detect the fire-off time, and adjust the amount of heat input (furnace temperature ) (Japanese Unexamined Patent Publication No. 57-1598
Publication No. 77, etc.) is - boat fishing.

火落ち時間を一定化するための制御方法としては、火落
ち時間と炉温、装入炭量、装入炭水分および装入炭揮発
分との関係式をもとに目標火落ち時間となる炉温を算出
し、該目標炉温となるよう投入熱量を制御する方法が知
られている(特開昭57−159877号公報)。
As a control method to keep the fire-off time constant, the target fire-off time is determined based on the relational expression between the fire-off time, furnace temperature, charged coal amount, charged coal moisture content, and charged coal volatile content. A method is known in which the furnace temperature is calculated and the amount of heat input is controlled so as to reach the target furnace temperature (Japanese Patent Application Laid-Open No. 159877/1983).

コークス炉の操業においては、火落ち時間を一定化する
ことにより乾留状況を一定化できるので、火落ち時間の
ばらつきが減少した分乾留時間内で火落ち時間を延長し
乾留熱量を低減できる。また、乾留状況が一定化される
ことにより、コークス品質のばらつきも低減される。
In the operation of a coke oven, by making the fire-off time constant, the carbonization situation can be made constant, so it is possible to extend the fire-off time within the carbonization time and reduce the amount of carbonization heat by reducing the variation in the fire-off time. Moreover, by making the carbonization situation constant, variations in coke quality are also reduced.

ところで、「火落ち」は石炭がコークス化する過程での
発生ガスの温度や濃度で定義されているが、火落ち時間
を精度よく推定することは非常に困難である。このため
、火落ち時間を一定化させることは非常に難しく、不明
確とならざるを得ない。
Incidentally, "fire-off" is defined by the temperature and concentration of gas generated during the process of coking coal, but it is extremely difficult to accurately estimate the fire-off time. For this reason, it is very difficult to make the fire fall time constant, and it cannot help but be unclear.

したがって、精度よく推定することが難しく、不明確な
火落ち時間を被制御量として用いる従来のコークス炉の
炉温調整、あるいは燃焼制御方法では、乾留熱原単位の
低減や安定生産達成のための燃焼管理が十分になされて
いるとは言い得ないのが実情である。
Therefore, it is difficult to estimate accurately, and with conventional coke oven furnace temperature adjustment or combustion control methods that use the uncertain fire-off time as a controlled variable, it is difficult to estimate the The reality is that combustion management cannot be said to be adequate.

発明が解決しようとする課題 この発明は前に述べたような実情よりみて、火落ち時間
を被制御量として用いる従来の燃焼制御方法に替えて、
コークス炉の操業において明確な乾留指標である排出コ
ークス温度を一定化することによって、コークス品質の
安定化と乾留熱量の低減をはかるコークス炉の投入熱量
制御方法を提案しようとするものである。
Problems to be Solved by the Invention In view of the above-mentioned actual situation, the present invention has been developed to replace the conventional combustion control method using the fire fall time as a controlled variable.
This paper attempts to propose a method for controlling the amount of heat input into a coke oven that stabilizes coke quality and reduces the amount of heat of carbonization by keeping the temperature of discharged coke constant, which is a clear index of carbonization in coke oven operation.

課題を解決するための手段 この発明の要旨は、装入炭量、装入炭水分、炉温、乾留
時間の4つの要素から乾留後のコークス温度を推定する
モデルを用い、コークス排出時に測定するコークス温度
測定値によりモデル補正量を求め、実績装入炭量、実績
装入炭水分、計画乾留時間の3つの要素から目標コーク
ス温度を達成するための炉温を求め、該炉温になるよう
投入熱量を制御する方法であり、また、前記推定モデル
を用い、装入炭量、装入炭水分および乾留時間の計画操
業条件から、コークス中心温度が目標値となるための窯
内のある位置のコークス温度を求め、該コークス温度と
なるよう投入熱量を制御する方法である。
Means for Solving the Problems The gist of this invention is to use a model that estimates the coke temperature after carbonization from four elements: charging coal amount, charging coal moisture, furnace temperature, and carbonization time, and to measure it at the time of coke discharge. Calculate the model correction amount from the measured coke temperature value, calculate the furnace temperature to achieve the target coke temperature from the three elements of actual charging coal amount, actual charging coal moisture, and planned carbonization time, and adjust the furnace temperature to achieve the target coke temperature. This is a method of controlling the amount of heat input, and also uses the estimation model to find a certain position in the kiln where the coke center temperature reaches the target value from the planned operating conditions of the amount of charged coal, the moisture content of the charged coal, and the carbonization time. In this method, the coke temperature is determined, and the amount of heat input is controlled so as to reach the coke temperature.

作    用 乾留後の目標コークス温度を一定化するためには、当該
温度を精度よく推定し得る手段が必要である。そこで、
この発明ではコークス炉の炭化室と燃焼室を炉幅方向に
分割し、燃焼室から石炭およびコークスへの伝熱をシミ
ュレーションするモデルを用いる。
In order to keep the target coke temperature after carbonization constant, a means to accurately estimate the temperature is required. Therefore,
This invention uses a model that divides the coking chamber and combustion chamber of a coke oven in the oven width direction and simulates heat transfer from the combustion chamber to coal and coke.

第1図に伝熱シミュレーションモデルを示す。Figure 1 shows the heat transfer simulation model.

このモデルは燃焼室から炭化室への1次元的な熱流れに
基づいた炉幅方向1次元モデルであり、煉瓦内と炭層内
を熱伝導とし、煉瓦壁と炭層表面間は放射によるものと
し、炭層については含有水分の気化熱を考慮している。
This model is a one-dimensional model in the furnace width direction based on one-dimensional heat flow from the combustion chamber to the coking chamber, with heat conduction within the bricks and coal seam, and radiation between the brick wall and the coal seam surface. Regarding the coal seam, the heat of vaporization of the contained moisture is taken into consideration.

伝熱計算は各メツシュ毎の熱バランス式をベースとした
伝熱差分方程式を用いて行なう。
Heat transfer calculations are performed using a heat transfer difference equation based on the heat balance equation for each mesh.

伝熱シミュレータを関数で表すと、下記の通りとなる。The heat transfer simulator can be expressed as a function as follows.

Tc=T−(w、m、T+ X’t) T−=T−(w、m、T+ 、t) ここで、T、  排出コークス中心温度(”C)T、:
窯内のある場所の排出コークス 温度(例えば表面)(C) W°装入炭量(ton) m、水分(%) Tf 、炉温(C) t:乾留時間(hr) 第2図にこの発明の制御フローを示す。
Tc=T-(w, m, T+
Temperature of discharged coke at a certain location in the kiln (e.g. surface) (C) W° Charging coal amount (ton) m, Moisture (%) Tf, Furnace temperature (C) t: Carbonization time (hr) Figure 2 shows this. 3 shows the control flow of the invention.

(I)  目標排出コークス温度計算 伝熱シミュレータで目標排出コークス中心温度達成フリ
ュー温度TIc を求める。
(I) Target discharged coke temperature calculation Calculate the flue temperature TIc at which the target discharged coke center temperature is achieved using a heat transfer simulator.

The =T++(Te”  T、(w 、m 、T+
、ビ))Tf:実績炉温(”C) Te  目標排出コークス中心温度(’C)w8:計画
装炭量(ton) m 計画水分(%) t  計画乾留時間(h r) 。゛炉温影響算出用炉温幅(℃) T l e′に対する伝熱シミュレータ推定排出コーク
ス温度T、(w”、mo、Trc、t”)を目標排出コ
ークス温度Tw  とする。
The = T++ (Te” T, (w, m, T+
, B)) Tf: Actual furnace temperature (''C) Te Target discharge coke center temperature ('C) w8: Planned coal loading (ton) m Planned moisture content (%) t Planned carbonization time (hr) .゛Furnace temperature Let the heat transfer simulator estimated discharged coke temperature T, (w", mo, Trc, t") with respect to the furnace temperature range for effect calculation (° C.) T le' be the target discharged coke temperature Tw.

(■)伝熱シミュレータフィードバック計jE実績を基
にシミュレータ補正量を修正する。
(■) Modify the simulator correction amount based on the heat transfer simulator feedback meter jE results.

δ=?十G’+f〒w −Tw  (w、m、〒t、t
) −J’)δ゛伝熱シミュレータ補正量(’C) δ 前チャージまでのδ (”C) GI°修正ゲイン(−) T、 コークス排出時放射温度計測定値(’C)W:実
績装炭量(ton) F:実績水分(%) Tf :実績炉温(℃) 丁:実績乾留時間(hr) (III)目標炉温計算 目標排出コークス温度を達成するための炉温を、伝熱シ
ミュレータと補正量から決定する。
δ=? 10G'+f〒w −Tw (w, m, 〒t, t
) -J')δ゛Heat transfer simulator correction amount ('C) δ δ up to previous charge (''C) GI° correction gain (-) T, Radiation thermometer measurement value at coke discharge ('C) W: Actual installation Coal amount (ton) F: Actual moisture content (%) Tf: Actual furnace temperature (℃) D: Actual carbonization time (hr) (III) Target furnace temperature calculation Calculate the furnace temperature to achieve the target discharge coke temperature by heat transfer Determine based on the simulator and correction amount.

(IV)目標炉団温度計算 1番目の通りのTIをT++” とし、下記式で求める
(IV) Calculation of target furnace temperature The first TI is assumed to be T++'' and calculated using the following formula.

Σ冒J To:目標炉団温度(’C) TxIj番の通りの目標炉団温度(’C)Wj:重み係
数(−) (V)投入熱量計算 目標炉団温度が求まると、下記式に基づいて投入熱量を
算出し、この投入熱量になるよう炉団の燃料バルブ開度
調整装置により炉団の燃料バルブ開度を調整するのであ
る。
ΣEFJ To: Target furnace temperature ('C) Target furnace temperature ('C) according to TxIj number Wj: Weighting coefficient (-) (V) Calculation of input heat amount Once the target furnace temperature is determined, use the following formula. Based on this, the amount of heat input is calculated, and the opening degree of the fuel valve of the furnace group is adjusted using the fuel valve opening adjustment device of the furnace group so that the amount of heat input is calculated.

Q=に、(T”−T)+に2Σ(T”  T)  K3
T  K4△TQ、投入熱量(kcal/hr) T、実績炉温(’C) To、目標炉団温度(’C) △T:実績炉温の増加量(’C) K r −K −:係数 なお、窯毎に投入熱量制御できる場合は、もちろん上述
の目標炉団温度を介して制御する必要はない。
Q = to (T"-T) + 2Σ(T" T) K3
T K4△TQ, input heat amount (kcal/hr) T, actual furnace temperature ('C) To, target furnace temperature ('C) △T: amount of increase in actual furnace temperature ('C) K r -K -: Coefficient Note that if the amount of heat input can be controlled for each kiln, it is of course not necessary to control via the above-mentioned target furnace temperature.

実施例 実施例1 第3図は、伝熱シミュレータのチャージ内精度を示すも
ので、装炭から押出しまでの炭中温度の変化について、
実績値と計算値を比較した結果である。この図から明ら
かなごとく、実績値と計算値は非常によく一致している
Examples Example 1 Figure 3 shows the in-charge accuracy of the heat transfer simulator, and shows the change in temperature in the coal from charging to extrusion.
This is the result of comparing actual values and calculated values. As is clear from this figure, the actual values and calculated values match very well.

実施例2 第4図(A)は伝熱シミュレータの排出コークス温度推
定精度を示すもので、図(B)に示す操業条件で操業し
たときの排出コークス中心温度と排出コークス表面温度
の変化について、実績値と推定値を比較した結果であり
、実績値と推定値の推移は非常によく一致している。
Example 2 Figure 4 (A) shows the accuracy of estimating the temperature of discharged coke by the heat transfer simulator, and shows the changes in the center temperature of discharged coke and the surface temperature of discharged coke when operating under the operating conditions shown in Figure (B). This is the result of comparing the actual value and the estimated value, and the trends in the actual value and estimated value match very well.

実施例3 第5図(A)はこの発明法を適用して炉温制御したとき
の結果を示し、(B)は無制御の場合の結果を示す。
Example 3 FIG. 5(A) shows the results when the furnace temperature was controlled by applying the method of this invention, and FIG. 5(B) shows the results when the furnace temperature was not controlled.

第5図の結果より明らかごとく、この発明法を適用して
炉温制御することにより排出コークス温度のバラツキ(
σ)を18℃から 6℃に大幅に低減することができた
As is clear from the results shown in Figure 5, by applying the method of this invention to control the furnace temperature, the variation in temperature of discharged coke (
σ) was able to be significantly reduced from 18°C to 6°C.

この結果より、この発明を適用して炉温制御することに
より、排出コークス温度を一定化できることを確認でき
た。
From this result, it was confirmed that the temperature of discharged coke could be made constant by controlling the furnace temperature by applying the present invention.

発明の詳細 な説明したごとく、この発明方法によれば、排出コーク
ス温度のばらつきを低減することができるので、排出コ
ークス表面温度並びに排出コークス中心温度を低下する
ことが可能となり、乾留熱量を低減できるとともに、コ
ークス品質の安定化をはかることができ、火落ち時間を
被制御量とする従来の燃焼制御方法に比し、乾留熱原単
位の低減および安定生産の達成に大なる効果を奏する。
As described in detail of the invention, according to the method of this invention, it is possible to reduce variations in the temperature of discharged coke, so it is possible to lower the surface temperature of discharged coke and the center temperature of discharged coke, and the amount of heat of carbonization can be reduced. At the same time, coke quality can be stabilized, and compared to conventional combustion control methods in which fire-off time is a controlled variable, this method has great effects in reducing carbonization heat consumption and achieving stable production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の伝熱シミュレータモデルを示すブロ
ック図、第2図はこの発明の制御フローを示すブロック
図、第3図はこの発明の実施例における伝熱シミュレー
タのチャージ内精度を示す図、第4図は伝熱シミュレー
タの排出コークス温度の推定精度を示す図で、図(A)
は実績値と推定値を比較して示す図、図(B)は同上実
施例における操業条件を示す図、第5図(A)はこの発
明法を適用して炉温制御したときの結果を示す図、同図
(B)は無制御の場合の結果を示す図である。 第5図 (A)
Fig. 1 is a block diagram showing the heat transfer simulator model of the present invention, Fig. 2 is a block diagram showing the control flow of the invention, and Fig. 3 is a diagram showing the intra-charge accuracy of the heat transfer simulator in the embodiment of the invention. , Figure 4 is a diagram showing the estimation accuracy of discharged coke temperature by the heat transfer simulator, and Figure (A)
is a diagram showing a comparison between the actual value and the estimated value, Figure (B) is a diagram showing the operating conditions in the same example, and Figure 5 (A) is the result when controlling the furnace temperature by applying this invention method. The figure shown in FIG. 2B is a diagram showing the results in the case of no control. Figure 5 (A)

Claims (1)

【特許請求の範囲】 1 装入炭量、装入炭水分、炉温、乾留時間等から乾留後の
コークス温度を推定するモデルを用い、コークス排出時
に測定するコークス温度測定値によりモデル補正量を求
め、実績装入炭量、実績装入炭水分、計画乾留時間の3
つの要素から、目標コークス温度を達成するための炉温
を求め、該炉温になるよう投入熱量を制御することを特
徴とするコークス炉の投入熱量制御方法。 2 装入炭量、装入炭水分、炉温、乾留時間等から乾留後の
コークス温度を推定するモデルを用い、装入炭量、装入
炭水分および乾留時間の計画操業条件から、コークス中
心温度が目標値となるための窯内のある位置のコークス
温度を求め、該コークス温度となるよう投入熱量を制御
することを特徴とするコークス炉の投入熱量制御方法。
[Claims] 1. Using a model that estimates the coke temperature after carbonization from the amount of charged coal, the moisture content of the charged coal, furnace temperature, carbonization time, etc., the model correction amount is calculated based on the coke temperature measurement value measured at the time of coke discharge. calculation, actual amount of charged coal, actual amount of charged coal, and planned carbonization time.
A method for controlling the amount of heat input into a coke oven, characterized in that the furnace temperature for achieving a target coke temperature is determined from two factors, and the amount of heat input is controlled so as to reach the furnace temperature. 2 Using a model that estimates the coke temperature after carbonization from the amount of charged coal, moisture content of the charged coal, furnace temperature, carbonization time, etc., the coke center 1. A method for controlling the amount of heat input to a coke oven, comprising determining the coke temperature at a certain position in the oven so that the temperature reaches a target value, and controlling the amount of heat input so that the temperature reaches the coke temperature.
JP19980490A 1990-07-27 1990-07-27 Control method of heat input to coke oven Expired - Fee Related JPH0819416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19980490A JPH0819416B2 (en) 1990-07-27 1990-07-27 Control method of heat input to coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19980490A JPH0819416B2 (en) 1990-07-27 1990-07-27 Control method of heat input to coke oven

Publications (2)

Publication Number Publication Date
JPH0485392A true JPH0485392A (en) 1992-03-18
JPH0819416B2 JPH0819416B2 (en) 1996-02-28

Family

ID=16413907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19980490A Expired - Fee Related JPH0819416B2 (en) 1990-07-27 1990-07-27 Control method of heat input to coke oven

Country Status (1)

Country Link
JP (1) JPH0819416B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001815A (en) * 2006-06-23 2008-01-10 Jfe Steel Kk Combustion-controlling method in coke oven

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001815A (en) * 2006-06-23 2008-01-10 Jfe Steel Kk Combustion-controlling method in coke oven

Also Published As

Publication number Publication date
JPH0819416B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
US4045292A (en) Method for controlling combustion in coke oven battery
CN106636606B (en) A kind of method for controlling furnace temperature of heating furnace based on simulation model
US6436335B1 (en) Method for controlling a carbon baking furnace
JPH0485392A (en) Heat input control in coke oven
JPH03157483A (en) Process for controlling combustion of coke oven
JPS61261433A (en) Method for controlling temperature of heating furnace
JPH09302351A (en) Method for controlling heat input to every coke lot in coke oven
KR101536386B1 (en) System and method for controlling cokes temperature
CN104583367A (en) Coke oven temperature control device and coke oven temperature control method
KR100415927B1 (en) Method for controlling combustion of coke oven by using coke final temperature
JPH01304180A (en) Method for combustion control of coke oven
JPS6032665B2 (en) Combustion control method for coke oven
JPH0248196B2 (en) KOOKUSURONOHIOTOSHIJIKANSEIGYOHOHO
JPS62177090A (en) Control of combustion in coke oven
JPS6346799B2 (en)
Suzuki et al. Development of an automatic computer control system for coke oven operation
JPH09302350A (en) Method for controlling heat input to coke oven
JPH0147687B2 (en)
JP2001316674A (en) Method of controlling coke oven to reduce inter-furnace variation in time required to complete carbonization and mean wall temperature in carbonization chamber at extrusion
SU673831A1 (en) Method of controlling roasting process
JPS62177091A (en) Control of combustion in coke oven
JPS6383196A (en) Method of estimating and controlling coking time in coke oven
JPS62177094A (en) Control of combustion in coke oven
RU2013453C1 (en) Method of heating ingots in heating well
JPS58154789A (en) Control of combustion in coke oven

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees