JPH03120869A - Image reader - Google Patents

Image reader

Info

Publication number
JPH03120869A
JPH03120869A JP1259532A JP25953289A JPH03120869A JP H03120869 A JPH03120869 A JP H03120869A JP 1259532 A JP1259532 A JP 1259532A JP 25953289 A JP25953289 A JP 25953289A JP H03120869 A JPH03120869 A JP H03120869A
Authority
JP
Japan
Prior art keywords
light
waveguide
light irradiation
layer
irradiation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1259532A
Other languages
Japanese (ja)
Other versions
JP2879744B2 (en
Inventor
Ikue Kawashima
伊久衛 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Research Institute of General Electronics Co Ltd, Ricoh Co Ltd filed Critical Ricoh Research Institute of General Electronics Co Ltd
Priority to JP1259532A priority Critical patent/JP2879744B2/en
Priority to US07/564,078 priority patent/US5124543A/en
Publication of JPH03120869A publication Critical patent/JPH03120869A/en
Application granted granted Critical
Publication of JP2879744B2 publication Critical patent/JP2879744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make the best use of a merit in using optical waveguides for a light irradiation system and a photoreceptive system and to obtain an image read element, which makes possible a reduction in a size and a reduction in cost, by a method wherein the reflective index distributions of the respective waveguides of the light irradiation system and the photodetecting system are augmented from outward of the waveguides toward the center of the section of the element and at the same time, a luminous layer is made to position in the interior of the optical waveguide of the light irradiation system. CONSTITUTION:In an image read element having a light irradiation system, which consists of a luminous layer and an optical waveguide, and a photoreceptive system, which consists of a photoelectric conversion layer and an optical waveguide, the reflective index distributions of the respective waveguides of the light irradiation system and the photodetecting system are augmented from outward of the waveguides toward the center of the section of the element and at the same time, the above luminous layer is made to position in the interior of the optical waveguide of the light irradiation system. For example, a waveguide of a light irradia tion system is formed on a substrate 1 and a light-emitting element 2 is formed in the waveguide. Then, a waveguide of a photoreceptive system is formed on the waveguide of the light irradiation system and a photoelectric conversion element 3 is formed in the waveguide of the photodetecting system or facing the waveguide. The waveguides of the light irradiation system and the photoreceptive system are constituted of a core layer 5 and a clad layer 4 and light in the layer 5 is confined in the layer 4.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、ファクシミリ等に使用される画像読み取り素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an image reading element used in facsimiles and the like.

〔従来技術〕[Prior art]

ファクシミリが普及するにつれ、写真や細かい図面等も
鮮明に送信できる製品が望まれている。
As facsimiles become more widespread, products that can clearly transmit photographs, detailed drawings, etc. are desired.

画像の高品位化のためには、原稿を読み取る、いわゆる
画像読み取り素子の高分解能化が不可欠となる。
In order to improve the quality of images, it is essential to increase the resolution of so-called image reading elements that read documents.

画像読み取り素子の高分解能化の妨げとなる大きな要因
に1画像読み取り素子の光照射系と、光受光系の間に、
迷光が存在することが挙げられる。
One of the major factors that hinders the improvement of the resolution of image reading elements is that there is a problem between the light irradiation system and the light receiving system of the image reading element.
One example is the presence of stray light.

これを少し詳しく説明すると、第1図に示すように1本
来原稿面に照射した光は原稿面で原稿の濃淡に応じて光
が反射され、受光素子まで導かれる。しかしながら、光
源から出射した光の一部は第1図に示すように薄膜の界
面で反射され、直接受光素子に入射してしまう光が発生
する。これをいわゆる迷光と呼ぶ。
To explain this in a little more detail, as shown in FIG. 1, light originally irradiated onto the document surface is reflected by the document surface according to the density of the document and is guided to a light receiving element. However, a portion of the light emitted from the light source is reflected at the interface of the thin film, as shown in FIG. 1, and some light is directly incident on the light receiving element. This is called stray light.

迷光が存在すると受光素子が受ける光電流が、原稿の濃
淡だけにはよらなくなり、分解能が劣化する。
When stray light is present, the photocurrent received by the light receiving element no longer depends solely on the density of the document, resulting in degraded resolution.

この迷光による分解能の劣化を防ぐ目的で、光照射系と
光受光系に光導波路を用いる方式が提案されている(特
開昭61−10073号、特開昭58−106947号
)。
In order to prevent the resolution from deteriorating due to this stray light, a system has been proposed in which optical waveguides are used in the light irradiation system and the light receiving system (Japanese Patent Laid-Open Nos. 61-10073 and 58-106947).

しかし、これらの提案では、光源と導波路とのアセンブ
リが必要であったり、受光素子が導波路端面に、端面を
覆うように形成されていることにより製造工程が複雑で
あったりするという欠点を有し、画像読み取り素子の小
型化、低コスト化は困難であった。
However, these proposals have the drawbacks that assembly of the light source and waveguide is required, and that the manufacturing process is complicated because the light receiving element is formed on the end face of the waveguide so as to cover the end face. However, it has been difficult to reduce the size and cost of image reading elements.

〔目  的〕〔the purpose〕

本発明の目的は、このような従来の欠点に鑑み、光導波
路を光照射系及び光受光系に用いるメリットを生かし、
且つ、小型化、低コスト化が可能な画像読み取り素子の
構成を提案することにある。
The purpose of the present invention is to take advantage of the advantages of using an optical waveguide in a light irradiation system and a light reception system, in view of such conventional drawbacks, and to
Another object of the present invention is to propose a configuration of an image reading element that can be made smaller and lower in cost.

〔構  成〕〔composition〕

本発明は、発光層及び光導波路からなる光照射系と、光
電変換層及び光導波路からなる光受光系を有する画像読
み取り素子において、光照射系及び光受光系のそ、れぞ
れの導波路が導波路外方から断面中心に向い屈折率分布
が連続的あるいは非連続的に増大するものであると共に
、前記発光層が光慮波路内部に位置することを特徴とす
る画像読み取り素子に関する。
The present invention provides an image reading element having a light irradiation system consisting of a light emitting layer and an optical waveguide, and a light reception system consisting of a photoelectric conversion layer and an optical waveguide, in which each waveguide of the light irradiation system and the light reception system is The present invention relates to an image reading element, wherein the refractive index distribution increases continuously or discontinuously from the outside of the waveguide toward the center of the cross section, and the light emitting layer is located inside the optical waveguide.

前記光照射系あるいは前記光受光系の光導波路の屈折率
分布が非連続的である場合においては、導波路の断面中
心に位置する層をコア層、外側に位置する層をクラッド
層と呼ぶ場合、クラッド層として空気あるいは透明基板
を用いることができる。
When the refractive index distribution of the optical waveguide of the light irradiation system or the light reception system is discontinuous, the layer located at the center of the cross section of the waveguide is called the core layer, and the layer located outside is called the cladding layer. , air or a transparent substrate can be used as the cladding layer.

本発明の原理を第2図を用いて説明する。The principle of the present invention will be explained using FIG. 2.

まず、基板1上に光照射系の導波路が形成され、導波路
中には発光素子2が形成される。次に光照射系の導波路
上に光受光系の導波路が形成され、光受光系の導波路中
にあるいは導波路に面して光電変換素子3が形成される
First, a waveguide for a light irradiation system is formed on a substrate 1, and a light emitting element 2 is formed in the waveguide. Next, a waveguide for a light receiving system is formed on the waveguide for the light irradiation system, and a photoelectric conversion element 3 is formed in or facing the waveguide for the light receiving system.

光照射系及び光受光系の導波路は、コアWJ5及びクラ
ッド層4から構成されており、コア層S中の光はクラッ
ド層4で閉じ込められ、導波路中を伝搬する。
The waveguides of the light irradiation system and the light reception system are composed of a core WJ5 and a cladding layer 4, and the light in the core layer S is confined by the cladding layer 4 and propagates in the waveguide.

発光素子2が導波路中に形成されているため、発光素子
2から出射された光の内、多くの光が導波路コア層5と
クラッド層4の界面で全反射を繰り返し、導波路端面が
ら原稿1o面に照射される。原稿面から反射された光は
光受光系の導波路に入射し、全反射を繰り返し光電変換
素子3を含む受光部に到達し、光電流として検出される
Since the light-emitting element 2 is formed in the waveguide, much of the light emitted from the light-emitting element 2 is repeatedly totally reflected at the interface between the waveguide core layer 5 and the cladding layer 4, and is reflected from the waveguide end face. The light is irradiated onto the surface of the original 1o. The light reflected from the document surface enters the waveguide of the light receiving system, undergoes repeated total reflection, reaches the light receiving section including the photoelectric conversion element 3, and is detected as a photocurrent.

本発明で示される画像読み取り素子は、特開昭58−1
06947号、特開昭61−100073号に較べて、
以下に示す効果がある。第一に画像読み取り素子に必要
な光源11及び光検出素子が同一平面上に、順次形成で
きるため1画像読み取り素子の小型化、低コスト化が実
現できる。
The image reading element shown in the present invention is disclosed in Japanese Patent Application Laid-Open No. 58-1
Compared to No. 06947 and JP-A-61-100073,
It has the following effects. First, since the light source 11 and the photodetecting element necessary for the image reading element can be formed sequentially on the same plane, it is possible to realize miniaturization and cost reduction of one image reading element.

第二に導波路光出射端、原稿面、導波路光入射端の位置
関係が、非常に近接させることができるため、発光素子
から出射される光の利用効率が高くなる。
Second, since the waveguide light output end, the document surface, and the waveguide light input end can be positioned very close to each other, the utilization efficiency of the light emitted from the light emitting element is increased.

加えて、前記公報記載の技術と同様光照射部、光受光部
共に、光導波路を用いているため、先に述べた迷光の影
響が少なくなり、画像読み取り素子の高分解能化が実現
できる。
In addition, like the technology described in the above-mentioned publication, since optical waveguides are used for both the light irradiation section and the light reception section, the influence of the stray light mentioned above is reduced, and high resolution of the image reading element can be realized.

第3図に本発明の別の構成を示す。第2図で示した構成
と違うのは、光受光系の導波路と光照射系の導波路の間
に遮光層6を設けた点であるにの構成においては1発光
素子部Hと光電変換素子3を備えた受光部Rを近接させ
た構成においても、迷光の影響を防ぐことができるとい
う特徴を持つ。
FIG. 3 shows another configuration of the present invention. The difference from the configuration shown in Fig. 2 is that a light shielding layer 6 is provided between the waveguide of the light receiving system and the waveguide of the light irradiation system. Even in a configuration in which the light receiving section R including the element 3 is placed close to each other, the influence of stray light can be prevented.

第4図に本発明のさらに別の構成を示す。第2図、第3
図で示した構成と違うのは、基板2上に、最初に光受光
系を形成し、その後、光照射系を形成する点にある。本
構成の特徴は、例えば、薄膜プロセスで光電変換素子3
及びその駆動素子を形成する際、500℃以上の高温プ
ロセスが必要となり、かつ発光素子の特性が高温での温
度履歴に影響される場合、この様な構成が望ましい。
FIG. 4 shows yet another configuration of the present invention. Figures 2 and 3
The difference from the configuration shown in the figure is that a light receiving system is first formed on the substrate 2, and then a light irradiating system is formed. The feature of this configuration is that, for example, the photoelectric conversion element 3 is formed using a thin film process.
Such a configuration is desirable when a high-temperature process of 500° C. or higher is required to form the driving element and the characteristics of the light-emitting element are affected by the temperature history at high temperatures.

逆に、発光素子を薄膜プロセスで形成する際の温度履歴
が受光素子の特性に影響を及ぼす場合は、第2.3図で
示した構成が望ましい。
On the other hand, if the temperature history when forming the light emitting element by a thin film process affects the characteristics of the light receiving element, the configuration shown in FIG. 2.3 is preferable.

第5図に、本発明のさらに別の構成を示す。FIG. 5 shows yet another configuration of the present invention.

本構成と第2〜4図で示した構成の違いは、光照射系と
光受光系をそれぞれ別の基板1,1′上に形成し、その
後に貼り合せを行うことにより光照射系と光受光系を一
体化させた点にある。
The difference between this configuration and the configurations shown in Figures 2 to 4 is that the light irradiation system and the light reception system are formed on separate substrates 1 and 1', respectively, and then they are bonded together. The key point is that the light receiving system is integrated.

本構成の特徴は、光照射系及び光受光系を薄膜プロセス
で形成する際、それぞれの温度履歴がそれぞれの特性に
影響を及ぼす場合は、この様な構成にするのが望ましい
The feature of this configuration is that when forming the light irradiation system and the light reception system by a thin film process, such a configuration is desirable if the temperature history of each affects the characteristics of each.

又、本構成の別の特徴は第6図に示す。光照射系と光受
光系の基板を貼り合せる際、角度をもたせて貼り合せる
ことが可能なため光照射系から原稿へ出射された光の内
、光受光系に取り込まれる光の量を多くすることができ
る。
Another feature of this configuration is shown in FIG. When bonding the light irradiation system and light receiving system substrates, it is possible to attach them at an angle, increasing the amount of light that is emitted from the light irradiation system to the document and taken into the light receiving system. be able to.

第7図に、本発明のさらに別の構成を示す。FIG. 7 shows yet another configuration of the present invention.

本構成の特徴は、光照射系および、あるいは、光受光系
の導波路端面が、原稿面に対して斜めに対峙している点
にある。この構成を取れば。
A feature of this configuration is that the waveguide end face of the light irradiation system and/or the light reception system faces obliquely to the document surface. If you take this configuration.

光照射系及びあるい光受光系の原稿に対する光軸中心が
導波路光軸に対して傾けることができ、光照射系から原
稿へ出射された光のうち、光受光系に取り込まれる光の
量を多くすることができる。
The center of the optical axis of the light irradiation system and/or light receiving system for the document can be tilted with respect to the optical axis of the waveguide, and the amount of light that is taken into the light receiving system out of the light emitted from the light irradiation system to the document. can be increased.

本発明で用いられる材料としては、基板材料としては、
アルミナ、AρN、BN、石英ガラス、パイレックスガ
ラス等が挙げられる。尚基板材として、発光素子の発光
波長に対して透明で、かつコア層の屈折率よりも屈折率
が低い場合には、基板自体をクラッド層として用いるこ
ともできる。同様の理由で空間、又は接着層をクラッド
層として用いることもできる。
The materials used in the present invention include the following substrate materials:
Examples include alumina, AρN, BN, quartz glass, and Pyrex glass. Note that if the substrate material is transparent to the emission wavelength of the light emitting element and has a refractive index lower than the refractive index of the core layer, the substrate itself can also be used as the cladding layer. For similar reasons, a space or an adhesive layer can also be used as a cladding layer.

又、光導波路材料としてはMgO,5in2、S i3
N4.3iON薄膜や薄板ガラス等が用いられる。
In addition, as the optical waveguide material, MgO, 5in2, Si3
N4.3iON thin film, thin glass, etc. are used.

今まで述べた光導波路は、コア層及びクラッド層から形
成されるものについてであったが、本発明には光ファイ
バー等ですでに実現されているような光導波路層の屈折
率を導波路中心から外側に向って連続的に減少させるよ
うにした、いわゆる屈折率分布型光導波路も含まれる。
The optical waveguides described so far have been formed from a core layer and a cladding layer, but in the present invention, the refractive index of the optical waveguide layer, which has already been realized in optical fibers, etc. can be changed from the center of the waveguide. Also included is a so-called gradient index optical waveguide in which the refractive index decreases continuously toward the outside.

この場合、発光層は屈折率分布型導波路内部に形成すれ
ば良い。
In this case, the light emitting layer may be formed inside the gradient index waveguide.

又、発光素子としては、EL、LED、レーザーダイオ
ード等が挙げられる。さらに光電変換素子としては、C
dS、アモルファスシリコン、PINフォトダイオード
、CCD、SIT等が挙げられる。
Furthermore, examples of the light emitting element include EL, LED, laser diode, and the like. Furthermore, as a photoelectric conversion element, C
Examples include dS, amorphous silicon, PIN photodiode, CCD, and SIT.

又、遮光層材料としては、AQ、Cr、M。Further, as the light-shielding layer material, AQ, Cr, M may be used.

Si、WSi等の金属系薄膜が挙げられる。Examples include metal thin films such as Si and WSi.

〔実施例〕〔Example〕

本発明において、発光素子としてEL素子を。 In the present invention, an EL element is used as a light emitting element.

光電変換素子してa−8i薄膜を用いた場合についての
作成方法の一例を示す。素子構成は第3図のものである
An example of a manufacturing method for a case where an a-8i thin film is used as a photoelectric conversion element will be shown. The element configuration is shown in FIG.

基板1としてはアルミナ基板を用いた。基板上に光照射
系のクラッド層4としてプラズマCVD法を用い、屈折
率1.45のSiO2膜を作成した。膜厚は5μmとし
た。次にコアWJ5としてプラズマCVD法を用い、屈
折率2.0のSiN膜を作成した。膜厚は10μmとし
た。次にRFスパッタリング法を用いて発光素子の下部
電極21として、ITO薄膜を形成した。膜厚は100
0人とした。次にEL素子の下部絶縁層22としてTa
2O,膜を反応性RFスパツタリング法を用いて形成し
た。膜厚は3000人とした。次に発光/lF23とし
て、Tb0FドープZn5l膜をRFスパッタリング法
で作成した。膜厚は7000人とした。次にEL素子の
上部絶縁層24と上部電極25を、下部絶縁層22や下
部電極21と同じ物質を同じ膜厚だけ順次作成した。次
に発光素子のクラッド層4として再度上記と同じSin
、膜を5μm作成した。
As the substrate 1, an alumina substrate was used. A SiO2 film having a refractive index of 1.45 was formed on the substrate as the cladding layer 4 of the light irradiation system using the plasma CVD method. The film thickness was 5 μm. Next, a SiN film having a refractive index of 2.0 was formed as the core WJ5 using a plasma CVD method. The film thickness was 10 μm. Next, an ITO thin film was formed as the lower electrode 21 of the light emitting device using an RF sputtering method. Film thickness is 100
The number was set to 0. Next, Ta is used as the lower insulating layer 22 of the EL element.
2O, the film was formed using a reactive RF sputtering method. The film thickness was set at 3,000 people. Next, as light emission/lF23, a Tb0F-doped Zn5l film was created by RF sputtering. The film thickness was set at 7,000 people. Next, the upper insulating layer 24 and the upper electrode 25 of the EL element were sequentially formed using the same material as the lower insulating layer 22 and the lower electrode 21 and having the same film thickness. Next, as the cladding layer 4 of the light emitting element, the same Sin as above was used again.
, a film with a thickness of 5 μm was prepared.

次に、遮光層6として、Cr薄膜を真空蒸着法で作成し
た。膜厚は2000人とした。次に光受光系の導波路と
してクラッド層4及びコア層5を前記光照射系と同じも
のを作成した。膜厚もそれぞれ、5μm及び10μmと
した。次に光電変換素子の下部電極31としてITO膜
をRFスパッタリング法を用いて作成した。膜厚は10
00人とした。次に光電変換素子3としてa−Si薄膜
をプラズマCVD法を用いて作成した。膜厚は1μmと
した。次に光電変換素子3の上部電極25として、Cr
薄膜を真空蒸着法で作成した。膜厚は2000人とした
。次に光受光系のクラッド層4としてSin、膜を前記
と同条件で作成した。膜厚は5μmとした。最後に、発
光素子及び受光素子用の配線用電極として、Afl薄膜
を真空蒸着法で作成した。膜厚は1μmとした。
Next, a Cr thin film was formed as the light-shielding layer 6 by vacuum evaporation. The film thickness was 2000 people. Next, a cladding layer 4 and a core layer 5 that were the same as those in the light irradiation system were created as a waveguide for a light reception system. The film thicknesses were also 5 μm and 10 μm, respectively. Next, an ITO film was formed as the lower electrode 31 of the photoelectric conversion element using an RF sputtering method. Film thickness is 10
00 people. Next, an a-Si thin film was formed as a photoelectric conversion element 3 using a plasma CVD method. The film thickness was 1 μm. Next, as the upper electrode 25 of the photoelectric conversion element 3, Cr
A thin film was created using a vacuum evaporation method. The film thickness was 2000 people. Next, a film of Sin was formed as the cladding layer 4 of the light receiving system under the same conditions as described above. The film thickness was 5 μm. Finally, an Afl thin film was formed by vacuum evaporation as wiring electrodes for the light-emitting element and the light-receiving element. The film thickness was 1 μm.

〔効  果〕〔effect〕

(1)画像読取り素子に必要な光源及び光検出素子が同
一平面上に、順次形成できるため。
(1) The light source and photodetection element necessary for the image reading element can be formed sequentially on the same plane.

画像読み取り素子の小型化、低コスト化が実現した。Image reading elements have been made smaller and lower in cost.

(2)導波路光出射端、原稿面、導波路光入射端の位置
関係が、非常に近接させることができるため、発光素子
から出射される光の利用効率が高くなった。
(2) Since the waveguide light output end, the document surface, and the waveguide light input end can be positioned very close to each other, the utilization efficiency of light emitted from the light emitting element is increased.

(3)光照射部H1光受光部R共に、光導波路を用いて
いるため、先に述べた迷光の影響が少なくなり、画像読
み取り素子の高分解能化が実現できた。
(3) Since both the light irradiation section H and the light reception section R use optical waveguides, the influence of the stray light mentioned above is reduced, and high resolution of the image reading element can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、光センサの原理と迷光の発生を説明するため
のモデル図であり、第2図は1本発明の画像読み取り素
子の基本構成例を示す断面図であり、第3〜7図は、本
発明の変形例を示す断面図である。 ■、1′・・・基板 3・・・光電変換素子 5・・・コア層 7・・・透明電極 IO・・・原稿 22・・・下部絶縁層 24・・・上部絶縁層 31・・・下部電極 H・・・発光素子部 2・・・発光素子 4・・・クラッド層 6・・・遮光層 8・・・接着剤(接着層) 21・・・下部電極 23・・・発光層 25・・・上部電極 35・・・上池電極 R・・受光部
FIG. 1 is a model diagram for explaining the principle of an optical sensor and the generation of stray light, FIG. 2 is a sectional view showing an example of the basic configuration of an image reading element of the present invention, and FIGS. FIG. 3 is a sectional view showing a modification of the present invention. ■, 1'...Substrate 3...Photoelectric conversion element 5...Core layer 7...Transparent electrode IO...Original 22...Lower insulating layer 24...Upper insulating layer 31... Lower electrode H...Light emitting element portion 2...Light emitting element 4...Clad layer 6...Light blocking layer 8...Adhesive (adhesive layer) 21...Lower electrode 23...Light emitting layer 25 ... Upper electrode 35 ... Upper electrode R ... Light receiving part

Claims (1)

【特許請求の範囲】[Claims] 1、発光層及び光導波路からなる光照射系と、光電変換
層及び光導波路からなる光受光系を有する画像読み取り
素子において、光照射系及び光受光系のそれぞれの導波
路が導波路外方から断面中心に向い屈折率分布が増大す
るものであると共に、前記発光層が光導波路内部に位置
することを特徴とする画像読み取り素子。
1. In an image reading element having a light irradiation system consisting of a light emitting layer and an optical waveguide, and a light reception system consisting of a photoelectric conversion layer and an optical waveguide, each of the waveguides of the light irradiation system and the light reception system is connected from the outside of the waveguide. An image reading element characterized in that the refractive index distribution increases toward the center of the cross section, and the light emitting layer is located inside an optical waveguide.
JP1259532A 1989-08-09 1989-10-04 Image reading element Expired - Fee Related JP2879744B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1259532A JP2879744B2 (en) 1989-10-04 1989-10-04 Image reading element
US07/564,078 US5124543A (en) 1989-08-09 1990-08-08 Light emitting element, image sensor and light receiving element with linearly varying waveguide index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1259532A JP2879744B2 (en) 1989-10-04 1989-10-04 Image reading element

Publications (2)

Publication Number Publication Date
JPH03120869A true JPH03120869A (en) 1991-05-23
JP2879744B2 JP2879744B2 (en) 1999-04-05

Family

ID=17335414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1259532A Expired - Fee Related JP2879744B2 (en) 1989-08-09 1989-10-04 Image reading element

Country Status (1)

Country Link
JP (1) JP2879744B2 (en)

Also Published As

Publication number Publication date
JP2879744B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US5124543A (en) Light emitting element, image sensor and light receiving element with linearly varying waveguide index
JPS60191548A (en) Image sensor
US5187596A (en) Contact image sensor
US20040240788A1 (en) Optical grating coupler
JPH02301703A (en) Integration of free space planer optical element
JPH02301702A (en) Planer reflection optical device
JPH10190944A (en) Image input device
JPH0262847B2 (en)
JPH03120869A (en) Image reader
JPH09281302A (en) Flat plate microlens array with reflection surface and its production
JPS61133911A (en) Coupling method of light emitting element and photodetector as well as optical waveguide
JPH01201983A (en) Semiconductor laser device
JPS61188964A (en) Contact type image sensor
JP3153771B2 (en) Optical waveguide type reduced image sensor and method of manufacturing the same
JPS63124460A (en) Complete contact type image sensor
JP2783817B2 (en) Manufacturing method of optical waveguide device
JP2637946B2 (en) Direct reading type line image sensor
JPH02198877A (en) Image forming device
JP2924872B2 (en) Optical head and its assembling method
JPH0795792B2 (en) Contact image sensor
JPS5896775A (en) Photoelectric detecting structure
KR950009643B1 (en) Deciphering device of image
JPS62110358A (en) Perfect contact type image sensor reading device
JP3687104B2 (en) Optical device
JPH0360155A (en) Perfectly close contact type image sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees