JPH0311971A - Linear reciprocating shift scanner - Google Patents

Linear reciprocating shift scanner

Info

Publication number
JPH0311971A
JPH0311971A JP14352989A JP14352989A JPH0311971A JP H0311971 A JPH0311971 A JP H0311971A JP 14352989 A JP14352989 A JP 14352989A JP 14352989 A JP14352989 A JP 14352989A JP H0311971 A JPH0311971 A JP H0311971A
Authority
JP
Japan
Prior art keywords
shaft
coils
linear motor
linear
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14352989A
Other languages
Japanese (ja)
Inventor
Masayoshi Tsunezawa
経澤 昌芳
Hiroshi Ishii
洋 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP14352989A priority Critical patent/JPH0311971A/en
Publication of JPH0311971A publication Critical patent/JPH0311971A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve reliability by serving the shaft for regulating the motion of scanning system as the yoke in a magnetic circuit. CONSTITUTION:A motion regulating shaft 3 is arranged in the central section of a C-type cylindrical magnet 1 with the axial direction being matched each other. A non-magnetic coil holder 5 is arranged on the shaft 3 through a bearing 4 then coils 6a-6f are applied thereon thus producing a three-phase motor 6. Magnetic field detecting elements 7a-7c are fixed in the gap between adjoining coils on the outer circumference of the holder 5 in order to detect magnetic field and to perform switching control of excitation.

Description

【発明の詳細な説明】 主業上■肌里分野 本発明は、直線往復移動を行なう装置に関し、特には移
動規制にシャフトを用いているもの(例えば、複写機の
光学系ユニットやプリンタへンドなど)における駆動機
構に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to devices that perform linear reciprocating movement, particularly those that use a shaft to regulate movement (for example, the optical system unit of a copying machine or the head of a printer). etc.) related to the drive mechanism.

貰米曳及■ 従来、直線往復運動を行なう走査装置は、その移動規制
にシャフトを用いこれをガイドとして走査し、その駆動
源として回転型のモータを使用し、ワイヤーブーり機構
を介して駆動力を伝達していた。しかし近年の高速化の
要求に対して、回転モータのパワーアップだけでは伝達
機構に弾性部材(ワイヤープーリ機構)を介在させてい
るため、走査系に過渡振動が発生し高速高精変の走査装
置を提供することができなかった。この問題点を解決す
べ(、駆動系にリニアモータを用いる方法が提案されて
いる。
Conventionally, scanning devices that perform linear reciprocating motion use a shaft to regulate movement, use this shaft as a guide for scanning, and use a rotary motor as the drive source, which is driven via a wire booby mechanism. It was transmitting power. However, in response to the recent demand for higher speeds, simply increasing the power of the rotary motor requires an elastic member (wire pulley mechanism) to be inserted into the transmission mechanism, which causes transient vibrations in the scanning system. could not be provided. To solve this problem, a method using a linear motor in the drive system has been proposed.

日が解lしようとする課題 上記従来から提案されているリニアモータを用いた構成
としては第4図に示したものがある。ここで20は磁石
、 21.22.23はコイル、24は磁性体材料から
なる可動子ヨークである。このリニアモータを取り付け
た走査系は、周辺に配置されたシャフト等で移動規制さ
れながら図中矢印方向にコイル−磁石間のギャップ管理
を行ないながら直線往復移動を行なう。
Problems to Be Solved Today An example of a configuration using a linear motor that has been proposed in the past is shown in FIG. Here, 20 is a magnet, 21, 22, and 23 are coils, and 24 is a movable yoke made of a magnetic material. The scanning system equipped with this linear motor performs linear reciprocating movement in the direction of the arrow in the figure while controlling the gap between the coil and the magnet, while being restricted in movement by shafts and the like disposed around it.

上記従来のりニアモータ構造では、多極着磁された磁石
20と可動子ヨーク24との間に第4図(C)に示すよ
うな磁気回路が形成され、コイル21.2223に適切
に電流を流し切り換えることでリニアモータは動作する
。この時の問題点としては、(1)可動子ヨークのコギ
ング力 (2)磁石と可動子ヨークの吸引力による移動規制のシ
ャフトのたわみ (3)駆動系が走査系に搭載されていることによる走査
系の自重の増大 が挙げられる。これらの解決策として(1)、 (2)
については、 (1)可動子ヨーク形状の最適化によるコギング力の減
少を図る。
In the above-mentioned conventional linear motor structure, a magnetic circuit as shown in FIG. 4(C) is formed between the multi-pole magnetized magnet 20 and the mover yoke 24, and current is appropriately passed through the coils 21.2223. The linear motor operates by switching. The problems at this time are (1) Cogging force of the mover yoke, (2) Deflection of the shaft that restricts movement due to the attraction force between the magnet and the mover yoke, and (3) The drive system is mounted on the scanning system. One example of this is an increase in the weight of the scanning system. These solutions include (1), (2)
(1) Reduce cogging force by optimizing the shape of the mover yoke.

(2)吸引力が相殺されるようにリニアモータを走査方
向に対して対称に配置して2軸駆動力式とする。
(2) The linear motors are arranged symmetrically with respect to the scanning direction so that the suction forces cancel each other out, resulting in a two-axis driving force type.

などが行なわれたが、(1)についてはコギング力は零
にはならず、また(2)においては、自重の増加に伴う
リニアモーフ推力への負担増が挙げられ、(3)に至っ
ては同等解決策はみつかっておらず、仮に従来技術の構
成例で可動子ヨーク23を省略すると適切な磁気回路は
構成できず、軽量化は図れるもののりニアモータの推力
の大幅なダウンは否めない。
However, for (1), the cogging force does not become zero, and for (2), the burden on the linear morph thrust increases due to the increase in self-weight, and for (3), it is equivalent. No solution has been found, and if the mover yoke 23 is omitted in the conventional configuration example, an appropriate magnetic circuit cannot be constructed, and although weight reduction can be achieved, the thrust of the near motor will inevitably be significantly reduced.

そこで、本発明はりニアモータの軽量化を構成部品の増
加を伴うことなく行なうことのできる直線往復移動走査
装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a linear reciprocating scanning device that can reduce the weight of a linear motor without increasing the number of components.

i4  を”ンするための− 本発明は移動方向、即ら直線往復移動の方向を規制する
シャフトと、このシャフトの軸方向に移動するりニアモ
ータとを備えた直線往復移動走査装置において、リニア
モータとして固定子側の磁石形状を円筒側壁の一部を切
欠いた断面C型として多極着磁し、可動子側を上記C型
磁石の中心に前記シャフトを配置し、このシャフトに摺
動自在に設は固定子と可動子間で放射状の磁束分布を形
成して直線往復走査装置を構成するものである。
The present invention provides a linear reciprocating scanning device comprising a shaft that regulates the direction of movement, that is, the direction of linear reciprocating movement, and a linear motor that moves in the axial direction of this shaft. The magnet shape on the stator side is multipole magnetized to have a C-shaped cross section with a part of the cylindrical side wall cut out, and the shaft is placed in the center of the C-shaped magnet on the movable side, and the shaft is slidable on the shaft. The device forms a radial magnetic flux distribution between the stator and mover to form a linear reciprocating scanning device.

作−里 上記構成においては第1図(d)と第4図(C)を比較
してわかるように、 ■従来装置が不可欠の要素としている可動子ヨーク23
を省いても、磁気回路はC型磁石と移動規制用シャフト
間で構成されるため、リニアモータとしての動作に必要
な磁束分布が得られる。
In the above configuration, as can be seen by comparing Figures 1(d) and 4(C), ■Mover yoke 23, which is an essential element in the conventional device.
Even if the magnetic circuit is omitted, the magnetic flux distribution necessary for operation as a linear motor can be obtained because the magnetic circuit is constructed between the C-shaped magnet and the movement regulating shaft.

■上記理由により、可動子ヨークを省くことができるた
め走査系の軽量化が図れる。
(2) For the above reasons, the movable element yoke can be omitted, so the weight of the scanning system can be reduced.

■C型磁石の吸引力はシャフトの軸中心に対して放射方
向に作用するため、吸引力の相殺量が多く採れ、シャフ
トのたわみ量を小さくすることができる。
(2) Since the attractive force of the C-shaped magnet acts in a radial direction with respect to the axial center of the shaft, a large amount of attractive force can be offset, and the amount of deflection of the shaft can be reduced.

夫]L涜− 以下、本発明の一実施例を図面を用いて詳細に説明する
。第1図は本発明の全体構成図で、(a)は側面図、(
b)は正面図、(C)は上面図、(d)はζn束分布状
態図である。この図においてC型磁石lは第1図(e)
に示すように軸方向に一定ピッチtで多極着(nされた
円筒状磁石でリニアモータの固定子となる。ただし円筒
側壁の一部は軸方向に亘って切欠き2が形成された断面
がC型をなし、この切欠き2内を後述する可動子が軸方
向に往復移動する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is an overall configuration diagram of the present invention, in which (a) is a side view and (a) is a side view;
b) is a front view, (C) is a top view, and (d) is a ζn flux distribution state diagram. In this figure, the C-type magnet l is shown in Figure 1(e).
As shown in the figure, a cylindrical magnet with multiple poles attached at a constant pitch t in the axial direction becomes the stator of the linear motor. is C-shaped, and a movable element, which will be described later, reciprocates in the axial direction within this notch 2.

上記C型磁石1の円筒中心部には円筒の軸と軸方向を一
致させて移動規制用シャフト3が設置され、この移動規
制用シャフト3に軸受4を介して非磁性体からなるコイ
ルホルダ5が設けられている。コイルホルダ5の外周に
は、上記C型Eff石lの着磁ピッチLに対応させて本
実施例では3相モータ6コイルの関係になるように判定
のピンチ及び位置関係でコイル6a〜6fが巻かれてい
る。上記コイルホルダ5の外周には、隣接するコイルの
間隙に磁場検出素子78〜7cが取り付けられ、通過す
る磁場を検出して励磁の切り換えを制御するための信号
を形成する。コイルホルダ5の側縁は、上記C型磁石1
の切欠き2からC型磁石1の外部に導出され、光学系ユ
ニットやプリンタヘンド等の被駆動体(図示せず)を搭
載する支持体8となる。
A movement regulating shaft 3 is installed in the cylindrical center of the C-shaped magnet 1 with its axis aligned with the axis of the cylinder, and a coil holder 5 made of a non-magnetic material is connected to the movement regulating shaft 3 via a bearing 4. is provided. On the outer periphery of the coil holder 5, coils 6a to 6f are arranged in a determined pinch and positional relationship to correspond to the magnetization pitch L of the C-type Eff stone 1 and to correspond to the 6 coils of the 3-phase motor in this embodiment. It's wrapped. Magnetic field detection elements 78 to 7c are attached to the outer periphery of the coil holder 5 in gaps between adjacent coils, and detect the passing magnetic field to form a signal for controlling switching of excitation. The side edge of the coil holder 5 is connected to the C-shaped magnet 1.
It is led out from the notch 2 of the C-shaped magnet 1 and becomes a support 8 on which a driven body (not shown) such as an optical system unit or a printer head is mounted.

支持体8の一端は上記のようにコイルホルダ5に一体化
されているが、第2図に示す複写機の光学系走査ユニフ
トのように直線往復移動の高速化高倍転性が求められて
いる機器の駆動機構としては支持体8の他端側にも同様
のC型磁石を固定子に、コイルを巻いたコイルホルダを
可動子とするりニアモータを設け、支持体8で両側のり
ニアモータを連結して構成してもよい。このようにリニ
アモータを走査系の両端部に配設することで走査系の重
心駆動が可能になり、高速高精度な制御ができる。
One end of the support 8 is integrated with the coil holder 5 as described above, but high-speed linear reciprocating movement and high magnification are required, as in the optical system scanning unit of a copying machine shown in FIG. As a drive mechanism for the device, a linear motor is provided on the other end of the support 8, with a similar C-shaped magnet as a stator and a coil holder with a coil wound as a mover, and the support 8 connects the linear motors on both sides. It may be configured as follows. By arranging the linear motors at both ends of the scanning system in this manner, it becomes possible to drive the center of gravity of the scanning system, allowing high-speed and highly accurate control.

また第2図の複写機では、同様の構造からなる2台の光
学走査ユニットを、シャフト3を移動規制用シャフトと
して共用しながら直線往復移動する構造を示しており、
このように駆動系の数が走査系に対して増加しても、従
来構造のような可動子ヨークが不要であるため、結果と
して駆動系の重量は従来例に比べ増加せず、発生するモ
ータの推力を有効に活用することができる。
In addition, the copying machine shown in FIG. 2 shows a structure in which two optical scanning units having the same structure move back and forth in a straight line while sharing the shaft 3 as a movement regulating shaft.
Even if the number of drive systems increases relative to the scanning system, there is no need for a mover yoke like in the conventional structure, so as a result, the weight of the drive system does not increase compared to the conventional example, and the motor generated The thrust of the engine can be effectively utilized.

尚、上記実施例に示したりニアモータは支持体8の一端
側だけに設け、他端は支持体8の直線往復移動を可能に
する摺動自在の構造として構成することもできる。
In addition, as shown in the above embodiment, the near motor may be provided only on one end side of the support body 8, and the other end may be constructed as a slidable structure that allows the support body 8 to move back and forth in a straight line.

第1図中リニアモータの位置・速度の検出機構及び制御
機構は図示していない。
In FIG. 1, the position/speed detection mechanism and control mechanism of the linear motor are not shown.

上記構成において、リニアモータを駆動させるための磁
気回路は(d)に示されるように円筒状C型磁石lよコ
イルホルダ上のコイル68〜6f間で軸中心に対して放
射方向をなすため、コイル6a〜6fに通電し、磁場検
出素子73〜7cからの信号を利用して従来のりニアモ
ータと同様に励磁を適切に切り換えることによって、リ
ニアモータは矢印P方向に往復移動する。本実施例の構
造では磁束が放射状に分布するため、従来の構造では磁
気回路を構成する上で必要であった可動子ヨークが不要
となる。そのため、駆動系の軽量化が図れコギング力を
零とすることができ、高速高精度のりニアモータを提供
できる。更に従来例において問題であった磁石−可動子
ヨークの吸引力によるシャフトのたわみについて、その
吸引力がシャフトの軸中心に対して放射方向に作用する
ため、吸弓力の相殺量が多くなり結果としてシャフトの
たわみ量は小さくなり走査系の移動精度は向上する。
In the above configuration, the magnetic circuit for driving the linear motor forms a radial direction with respect to the axial center between the cylindrical C-shaped magnet l and the coils 68 to 6f on the coil holder, as shown in (d). The linear motor reciprocates in the direction of arrow P by energizing the coils 6a to 6f and appropriately switching the excitation using signals from the magnetic field detection elements 73 to 7c as in the conventional linear motor. In the structure of this embodiment, the magnetic flux is distributed radially, so that the movable element yoke, which was necessary in the conventional structure to form a magnetic circuit, is no longer necessary. Therefore, the weight of the drive system can be reduced, the cogging force can be reduced to zero, and a high-speed, high-precision linear motor can be provided. Furthermore, regarding the deflection of the shaft due to the attractive force of the magnet-mover yoke, which was a problem in the conventional example, since the attractive force acts in a radial direction with respect to the axial center of the shaft, the amount of cancellation of the bow absorption force increases, resulting in As a result, the amount of deflection of the shaft is reduced, and the movement accuracy of the scanning system is improved.

上記実施例に示したりニアモータは3相モータ6コイル
であったが、第3図に示すように、3相モータ3コイル
、2相モータ4コイル、2相モータ2コイルなどにも適
用することができ、必要とするりニアモータの推力や形
状的制限に対しても、本発明によるリニアモータは対応
が可能である。
Although the near motor shown in the above embodiment is a 3-phase motor with 6 coils, it can also be applied to a 3-phase motor with 3 coils, a 2-phase motor with 4 coils, a 2-phase motor with 2 coils, etc. The linear motor according to the present invention can also cope with the required thrust force and shape limitations of the linear motor.

光里少四果 以上の説明から明らかなように、本発明によると、リニ
アモータの磁気回路を構成するヨークを走査系を移動規
制するシャフトが兼用することによって、 (i)リニアモータに発生するコギング力を零にするこ
とができ、高精度制御が可能である(11)操作系の部
品点数の減少により、その自重が軽量化され准カアップ
が図れ、操作系に高速性能を与えることができる ( iii ) 磁石−ヨーク(本発明ではシャフト)
間の吸引力の相殺量が大きく採れるので、移動規制を行
なうシャフトのたわみ量が小さく、磁石−ヨーク間のギ
ャップ管理が容易である 等の効果が得られ、高速高精度のりニアモータを提供す
ることができ、精密機器の駆動系の信頼性を著しく向上
させることができる。
As is clear from the above explanation, according to the present invention, the shaft that regulates the movement of the scanning system also serves as the yoke that constitutes the magnetic circuit of the linear motor, thereby reducing (i) cogging that occurs in the linear motor; The force can be reduced to zero, enabling high-precision control. (11) By reducing the number of parts in the operating system, its own weight can be reduced, the capacity can be increased, and high-speed performance can be given to the operating system. iii) Magnet-yoke (shaft in the present invention)
To provide a high-speed, high-precision linear near motor, which has effects such as a small amount of deflection of the shaft that regulates movement and facilitates gap management between the magnet and the yoke, since a large amount of offset of the attractive force between the magnets and the yoke can be obtained. This makes it possible to significantly improve the reliability of precision equipment drive systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示し、第1図(alは側面
図、第1図(b)は正面図、第1図(C)は上面図、第
1図(d)は磁束分布状態図、第1図(e)は軸方向断
面図、第2図は本発明の一応用例を示す複写機光学系走
査ユニットの上面図、第3図はりニアモータの可動子の
種々の形態を示す図、第4図は従来装置を示す図である
。 1−−C型磁石、2−切欠き 3・−移動規制用シャフト 5−コイルホルダ68〜6
f−・コイル、 7a〜7cm磁場検出素子。
FIG. 1 shows an embodiment of the present invention, and FIG. 1 (al is a side view, FIG. 1(b) is a front view, FIG. 1(C) is a top view, and FIG. 1(d) is a magnetic flux Distribution state diagram, FIG. 1(e) is an axial sectional view, FIG. 2 is a top view of a copying machine optical system scanning unit showing an example of application of the present invention, and FIG. 3 shows various forms of the mover of the near motor. 4 shows a conventional device. 1--C-shaped magnet, 2-notch 3--movement regulating shaft 5-coil holder 68-6
f--coil, 7a~7cm magnetic field detection element.

Claims (1)

【特許請求の範囲】[Claims] (1)シャフトと、これをガイドとしてリニアモータの
駆動力によってシャフトの軸方向に移動規制される直線
往復移動走査装置において、前記リニアモータの磁気回
路は固定子側の磁石形状を円筒側壁の一部を切欠いたC
型として多極着磁し、前記C型磁石の中心に前記移動規
制シャフトを配置してなることを特徴とする直線往復移
動走査装置。
(1) In a linear reciprocating scanning device in which the shaft and the shaft are used as guides to restrict movement in the axial direction of the shaft by the driving force of a linear motor, the magnetic circuit of the linear motor moves the magnet shape on the stator side to the cylindrical side wall. C with notched part
A linear reciprocating scanning device characterized in that the C-shaped magnet is magnetized with multiple poles, and the movement regulating shaft is arranged at the center of the C-shaped magnet.
JP14352989A 1989-06-06 1989-06-06 Linear reciprocating shift scanner Pending JPH0311971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14352989A JPH0311971A (en) 1989-06-06 1989-06-06 Linear reciprocating shift scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14352989A JPH0311971A (en) 1989-06-06 1989-06-06 Linear reciprocating shift scanner

Publications (1)

Publication Number Publication Date
JPH0311971A true JPH0311971A (en) 1991-01-21

Family

ID=15340862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14352989A Pending JPH0311971A (en) 1989-06-06 1989-06-06 Linear reciprocating shift scanner

Country Status (1)

Country Link
JP (1) JPH0311971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238240A (en) * 2000-12-05 2002-08-23 Showa Electric Wire & Cable Co Ltd Linear motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238240A (en) * 2000-12-05 2002-08-23 Showa Electric Wire & Cable Co Ltd Linear motor

Similar Documents

Publication Publication Date Title
US20060273676A1 (en) Axial gap motor
EP1411255B1 (en) Stator core for a magnetic bearing
US4528533A (en) Actuator with compensating flux path
US4899072A (en) Pulse motor
EP1158547A2 (en) Electromagnetic actuator and composite electro-magnetic actuator apparatus
US10230292B2 (en) Permanent magnet operating machine
KR970023649A (en) Stage apparatus and linear motor, exposure apparatus and device production method using the stage apparatus
JPH04229063A (en) Linear rotary combination direct drive stepping motor, manufacture of linear rotary direct drive stepping motor and method of assembling linear rotary motion
US5955798A (en) Linear motor
US6809451B1 (en) Galvanometer motor with composite rotor assembly
US6713936B2 (en) Stepping motor
JP2003199288A (en) Magnetically levitated motor and magnetic bearing device
CN110323919B (en) Micro-positioning device based on normal stress electromagnetic drive
US4908592A (en) Electromagnetic actuating device
JPH03107615A (en) Magnetic bearing
JPH0311971A (en) Linear reciprocating shift scanner
US20030107274A1 (en) Stepping motor
JPH0332338A (en) Magnetic bearing formed integrally with motor
JPH1052022A (en) Brushless linear driving control system
US4914334A (en) Permanent magnet DC machine
JPH11196561A (en) Linear motor with adjustable braking characteristics
JPH11113238A (en) Linear motor
KR20010044157A (en) Brushless, coil core type linear motor and linear motion apparatus having the same
US11870385B2 (en) Linear motors with embedded encoder
US4516062A (en) Actuator