JP2002238240A - Linear motor - Google Patents

Linear motor

Info

Publication number
JP2002238240A
JP2002238240A JP2001049625A JP2001049625A JP2002238240A JP 2002238240 A JP2002238240 A JP 2002238240A JP 2001049625 A JP2001049625 A JP 2001049625A JP 2001049625 A JP2001049625 A JP 2001049625A JP 2002238240 A JP2002238240 A JP 2002238240A
Authority
JP
Japan
Prior art keywords
coil
linear motor
longitudinal direction
movable
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001049625A
Other languages
Japanese (ja)
Other versions
JP5005131B2 (en
Inventor
Takeshi Moriyama
毅 森山
Satoru Muranishi
哲 村西
Osamu Kokubo
修 小久保
Ikuma Nariyoshi
郁馬 成吉
Sukehiro Akama
助広 赤間
Teruaki Yokoyama
照晃 横山
Noboru Murakami
昇 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP2001049625A priority Critical patent/JP5005131B2/en
Publication of JP2002238240A publication Critical patent/JP2002238240A/en
Application granted granted Critical
Publication of JP5005131B2 publication Critical patent/JP5005131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a linear motor in which utilization efficiency of magnetic field is high, heating of a yoke is suppressed and a movable coil can produce a stabilized thrust while reducing the size. SOLUTION: A center yoke is provided in a side yoke having U-shaped cross-section and inserted into its own cavity section and a coil movable in the longitudinal direction is provided in the linear motor. On the inner surface of the upper and lower segments of the side yoke, magnets are provided while facing the same polarity each other and alternating the polarity in the longitudinal direction and at least a plurality of movable coils and hollow coils are coupled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リニアモータに係
り、特に、位相制御駆動リニアモータに関する。
The present invention relates to a linear motor, and more particularly to a phase control drive linear motor.

【0002】[0002]

【従来の技術】従来より位相制御駆動リニアモータ、特
に、三相同期駆動のリニアモータは、図7に示すように
断面コ字状のサイドヨーク10を備え、サイドヨークの
上片12,下片14の内面に、対向する磁石の極性が異
なるようにかつ、それぞれ長手方向に隣接する磁石の極
性が異なるようにN極,S極,N極,・・・・S極の配
列で永久磁石51,52が設けられており、磁気回路が
構成されている。この磁気回路内には、可動コイル30
が設けられており、可動コイル30に、所定の方向に電
流を印加することにより、図中A方向に可動する構成と
なっている。
2. Description of the Related Art Conventionally, a phase control drive linear motor, particularly a three-phase synchronous drive linear motor, has a side yoke 10 having a U-shaped cross section as shown in FIG. The permanent magnets 51 are arranged on the inner surface of the permanent magnets 51 in an arrangement of N poles, S poles, N poles,... S poles such that the magnets facing each other have different polarities and the magnets adjacent in the longitudinal direction have different polarities. , 52 are provided to form a magnetic circuit. The moving coil 30 is provided in this magnetic circuit.
The movable coil 30 is configured to be movable in the direction A in the figure by applying a current to the movable coil 30 in a predetermined direction.

【0003】この可動コイル30は、図9、図10、図
11に示すように、補強板32を挟んでそれ自身の上下
面に、扁平形状のコイル部材32A,32B,32Cを
設けた構成で、これらを各々所定間隔K1を空けて並列
に配した構成となっている。また、三相交流で駆動する
ため、各相をU相、W相,V相とすれば、コイル32A
の32A1が[+U],32A2が[−U],32Bの
32B1が[+W],32B2が[−W],32Cの3
2C1が[+V],32C2が[−V]相に対応するよ
うに、電流が印可されるようになっている。また、この
可動コイル30は、図8に示すように長手方向の磁気回
路の寸法Tがサイドヨーク12,14に設けられた磁石
51,52のN極,S極の単位磁石4組分の寸法Sと等
しくなるように構成されている。
As shown in FIGS. 9, 10, and 11, the movable coil 30 has flat coil members 32A, 32B, and 32C provided on the upper and lower surfaces thereof with a reinforcing plate 32 interposed therebetween. , Are arranged in parallel at a predetermined interval K1. Further, in order to drive by three-phase AC, if each phase is U-phase, W-phase and V-phase, the coil 32A
32A1 is [+ U], 32A2 is [-U], 32B1 is [+ W], 32B2 is [−W], and 3C is 32C.
A current is applied so that 2C1 corresponds to [+ V] and 32C2 corresponds to [-V] phase. As shown in FIG. 8, the movable coil 30 has a dimension T of the magnetic circuit in the longitudinal direction corresponding to four sets of the unit magnets of the north pole and the south pole of the magnets 51 and 52 provided on the side yokes 12 and 14. It is configured to be equal to S.

【0004】ここで、可動コイル30の構造を、詳細に
説明する。
Here, the structure of the movable coil 30 will be described in detail.

【0005】前記可動コイル30のコイル部材32A,
32B,32Cは、ウエッド巻きで作成されているが、
扁平形状であるためにコイルに対する鉛直方向Y及び捻
れ剛性力が弱く、そのため、補強板32を介して組み立
てられている。この補強板32には、予めコイルを補強
板32の上下面の所定の位置に固定するために、コイル
の中空部32A3の形状と一致する凸部42が設けら
れ、コイルの中空部32A3を凸部42に挿通して固定
するようになっている。また、補強板32にはコイルを
補強板32上に実装した場合に、全体として可動コイル
30の水平面に凹凸が出来ないように、コイルの厚さ分
D1と等しい深さD2の溝部44が設けられている。
[0005] The coil member 32A of the movable coil 30,
32B and 32C are made by wet winding,
Due to the flat shape, the coil is weak in the vertical direction Y and the torsional rigidity with respect to the coil, and is therefore assembled via the reinforcing plate 32. The reinforcing plate 32 is provided with a convex portion 42 that matches the shape of the hollow portion 32A3 of the coil in order to fix the coil at a predetermined position on the upper and lower surfaces of the reinforcing plate 32 in advance. It is adapted to be inserted through the portion 42 and fixed. Further, the reinforcing plate 32 is provided with a groove portion 44 having a depth D2 equal to the thickness D1 of the coil so that when the coil is mounted on the reinforcing plate 32, unevenness is not formed on the horizontal surface of the movable coil 30 as a whole. Have been.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記可
動コイル30には、下記のような不都合があった。 1.図9に示すようにコイル部材32A,32B,32
Cの各中空部32A3(水平方向の幅L1=8mm)が磁
気回路に寄与せず、推力に寄与するのは、図中のコイル
幅Fの部分だけで、無駄な部分が多く磁気の利用効率が
悪い。 2.補強板32の非磁性体部分が大きいために、磁石5
1,52からみた磁気抵抗が大きく磁場が弱められる不
都合が生じていた。 3.コイルに生じるN×I[通称:アンペアーターン]
により、磁石51,52による磁場が乱れ、電流−推力
のリニアリティが悪くなり制御性が悪化し、最悪の場合
には振動が起きる事態を招く可能性があった。 4.アンペアーターンにより、ヨーク10内の磁気飽和
を誘起しやすくなり、磁石51,52による磁場が弱ま
る。また、渦電流が発生し、ヨークの温度上昇を招き、
これにより磁石50の温度特性により磁場が弱められる
不都合が生じていた。 5.可動コイル30のコイル部材32A,32B,32
Cは、扁平形状であり、その厚さは2〜3mm程度のた
め、コイル部材32A,32B,32Cだけでは、磁気
回路内における鉛直方向Yに対する剛性力が弱く、ねじ
れを生じるため、非磁性体で構成された補強板32が必
要であり、可動コイル30の軽量化が難しい。 以上により、大推力でかつ、安定した正確な位置決め精
度が必要な、精密機械における読み取りヘッドを実装し
た可動コイル30等では、可動コイル30を大型化し、
大電流を流さなければ必要な推力を得られなかった。本
発明は、このような従来の難点を解決するためになされ
たもので、可動コイルの形状を鋭意研究し、位相制御駆
動リニアモータにおいて、磁場の利用効率が高く、しか
もヨークの発熱を押され、可動コイルを小型化でき安定
した推力を得ることが出来るリニアモータを提供するこ
とを目的とする。
However, the moving coil 30 has the following disadvantages. 1. As shown in FIG. 9, the coil members 32A, 32B, 32
Each hollow portion 32A3 (horizontal width L1 = 8 mm) of C does not contribute to the magnetic circuit, and contributes to the thrust only in the portion of the coil width F in the figure. Is bad. 2. Since the nonmagnetic portion of the reinforcing plate 32 is large, the magnet 5
1,52, there is a problem that the magnetic resistance is large and the magnetic field is weakened. 3. N × I [common name: ampere-turn] generated in coil
As a result, the magnetic field generated by the magnets 51 and 52 is disturbed, the linearity of the current-thrust is deteriorated, the controllability is deteriorated, and in the worst case, there is a possibility that a vibration may occur. 4. By the ampere-turn, magnetic saturation in the yoke 10 is easily induced, and the magnetic field by the magnets 51 and 52 is weakened. Also, an eddy current is generated, which causes the temperature of the yoke to rise,
As a result, there is a disadvantage that the magnetic field is weakened by the temperature characteristics of the magnet 50. 5. Coil members 32A, 32B, 32 of movable coil 30
C has a flat shape and a thickness of about 2 to 3 mm. Therefore, only the coil members 32A, 32B, and 32C have a low rigidity in the vertical direction Y in the magnetic circuit and cause torsion. Is necessary, and it is difficult to reduce the weight of the movable coil 30. As described above, in the movable coil 30 or the like in which a reading head is mounted in a precision machine that requires a large thrust and stable accurate positioning accuracy, the movable coil 30 is increased in size,
The necessary thrust could not be obtained without passing a large current. The present invention has been made to solve such conventional difficulties, and has studied the shape of the moving coil in detail, and in the phase control drive linear motor, the utilization efficiency of the magnetic field is high and the heat of the yoke is suppressed. It is another object of the present invention to provide a linear motor capable of reducing the size of a movable coil and obtaining a stable thrust.

【0007】[0007]

【課題を解決するための手段】このような目的を達成す
るために、本発明は、 1.断面コ字状のサイドヨーク内にセンターヨークを備
え、このセンターヨークをそれ自身の空洞部に挿通し
て、長手方向に自在に可動する可動コイルを設けたリニ
アモータであって、サイドヨークの上下片の内面には、
対向する磁石同士、同一極性の磁石を交互に設け、これ
らを長手方向に隣接する磁石の極性を異なる如く配列
し、前記可動コイルを中空コイル部材を少なくとも複数
連結した構成とした。 2.可動コイルは、中空コイル部材を長手方向に6(6
×n)[nは整数]組配列した場合、その長手方向の寸
法は、サイドヨークの磁石の配列に注目した場合、長手
方向に磁石(4×n)[nは整数]組と同じになる構成
とした。 3.可動コイルは、ウエット巻きにて構成し、隣接する
コイル部材同士を非磁性体からなる絶縁部材を介して連
結した。 4.可動コイルには、補強板を設けた。 5.長手方向に並ぶ磁石4n(nは整数)個を一組とし
て、前記長手方向方向への位置角を4πに設定した場
合、前記複数個の中空コイル部材からなる可動コイルの
長手方向の長さを、前記位置角=4πに設定した。 6.可動コイルには、それ自身の端からの位置角に等し
い位相差の駆動電流を印可する構成とした。 7.4個一組の磁石の長手方向の長さを位置角=4πに
設定し、可動コイルを6個の中空コイル部材で構成し、
長手方向の長さを位置角=4πとし、中空コイル部材に
は、可動コイルの移動方向に向かって三相交流のU相、
−U相,W相、−W相,V相、−V相を印可する構成と
した。 以上のような構成により課題を解決した。
In order to achieve such an object, the present invention provides: A linear motor provided with a center yoke in a side yoke having a U-shaped cross section, and having a movable coil that is freely movable in a longitudinal direction by inserting the center yoke into a cavity of the linear yoke. On the inside of the piece,
Opposing magnets and magnets of the same polarity are alternately provided, and these are arranged so that the magnets adjacent in the longitudinal direction have different polarities, and the movable coil is configured by connecting at least a plurality of hollow coil members. 2. The movable coil moves the hollow coil member 6 (6
× n) [n is an integer] set, the longitudinal dimension is the same as the magnet (4 × n) [n is an integer] set in the longitudinal direction when focusing on the arrangement of the magnets of the side yokes. The configuration was adopted. 3. The movable coil was formed by wet winding, and adjacent coil members were connected to each other via an insulating member made of a non-magnetic material. 4. The movable coil was provided with a reinforcing plate. 5. When 4n (n is an integer) magnets arranged in the longitudinal direction are set as a set and the position angle in the longitudinal direction is set to 4π, the longitudinal length of the movable coil including the plurality of hollow coil members is set as , And the position angle was set to 4π. 6. The drive current having a phase difference equal to the position angle from the end of the movable coil was applied to the movable coil. 7. The longitudinal length of the set of four magnets is set at a position angle of 4π, and the movable coil is constituted by six hollow coil members.
The length in the longitudinal direction is a position angle = 4π, and the hollow coil member has a U-phase of three-phase alternating current in the moving direction of the movable coil,
-U phase, W phase, -W phase, V phase, and -V phase were applied. The problem has been solved by the above configuration.

【0008】[0008]

【発明の実施形態】以下、本発明に係る、位相制御駆動
リニアモータ、特に、三相同期駆動リニアモータの実施
の一形態を図1乃至図4に基づいて説明する。ここで、
前述した図7乃至図11に示した従来技術と同一の部材
には、同一の符号を付すものとする。図1において、本
実施例に係る、リニアモータは、断面略E字状のヨーク
1を備え、上片(サイドヨーク)12,下片(サイドヨ
ーク)13及びセンターヨーク16を具備する構成とな
っている。サイドヨーク12,13の内面には、図1に
示すように、対向する磁石の磁極が同一で、かつ、それ
ぞれ長手方向に隣接する磁石の磁極が異なるように、N
極,S極,N極・・・・・・S極の配列で永久磁石50
が設けられ、磁気回路が構成されている。この磁気回路
内には、センターヨーク16をそれ自身の空洞部に挿通
してなる可動コイル3が設けられており、可動コイル3
を構成する各コイル部材に所定の位相の電流を印可する
ことにより、図中A方向に可動する構成となっている。
可動コイル3は、具体的には、図2に示すように、接着
剤等を塗布した導線を中央部に空洞5を設けた、中空形
状に多層巻きした、通称、ウエッド巻きしたコイル部材
3A1,3A2,・・・・,3C2を6個を非磁性体の
絶縁部材9、例えば、ガラスエポキシ樹脂や絶縁処理
(硬質アルマイト処理)されたアルミ合金で接合して、
一体化した構成となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a phase control drive linear motor, in particular, a three-phase synchronous drive linear motor according to the present invention will be described below with reference to FIGS. here,
The same members as those in the prior art shown in FIGS. 7 to 11 are denoted by the same reference numerals. In FIG. 1, the linear motor according to this embodiment includes a yoke 1 having a substantially E-shaped cross section, and includes an upper piece (side yoke) 12, a lower piece (side yoke) 13, and a center yoke 16. ing. On the inner surfaces of the side yokes 12 and 13, as shown in FIG.
Pole, S pole, N pole ... Permanent magnet 50 in S pole arrangement
Are provided to form a magnetic circuit. The movable coil 3 having the center yoke 16 inserted into its own cavity is provided in the magnetic circuit.
By applying a current of a predetermined phase to each of the coil members constituting the above, the movable member is configured to be movable in the direction A in the drawing.
More specifically, as shown in FIG. 2, the movable coil 3 is formed by winding a conductive wire coated with an adhesive or the like into a hollow shape at a center portion, and is wound in a multilayer shape in a hollow shape. .., 3C2 are joined with a non-magnetic insulating member 9, for example, a glass epoxy resin or an aluminum alloy subjected to an insulating treatment (hard alumite treatment).
It has an integrated configuration.

【0009】この可動コイル3は、図3に示すように、
位相差120度の三相交流で同期駆動されるように構成
するため、各相をU相、W相、V相とし、コイル部材3
A1が[+U],3A2が[−U],3B1が[+
W],3B2が[−W],3C1が[+V],3C2が
[−V]相に対応するように、電流が印可されるように
なっている。
[0009] As shown in FIG.
In order to be configured to be synchronously driven by a three-phase alternating current having a phase difference of 120 degrees, each phase is set to a U phase, a W phase, and a V phase,
A1 is [+ U], 3A2 is [-U], and 3B1 is [+ U].
The current is applied so that [W], 3B2 corresponds to [-W], 3C1 corresponds to [+ V], and 3C2 corresponds to [-V] phase.

【0010】+U相,−U相は位相がπ(180度)異
なる。
The phases of the + U phase and the -U phase are different by π (180 degrees).

【0011】同様に、+W相,−W相及び+V相,−V
相も各々位相が180度異なるように電流が印可される
ようになっている。そして、可動コイル30の長手方向
の寸法Tがサイドヨーク12,14に設けられた磁石5
0のN極,S極の単位磁石4組分の寸法Sと等しくなる
ように構成されている。
Similarly, the + W phase, the -W phase, the + V phase, and the -V
The currents are applied so that the phases are different from each other by 180 degrees. The dimension T of the movable coil 30 in the longitudinal direction is determined by the magnet 5 provided on the side yokes 12 and 14.
It is configured to be equal to the dimension S of four sets of unit magnets having zero and north poles.

【0012】ここで、本実施例の動作原理を説明する。
図5は、三相交流リニアモータの動作原理1であり、図
6は、本発明に係る三相交流リニアモータの動作原理2
を示す図面である。図3に示すように、本発明に用いら
れるリニアモ−タは、4個の永久磁石6と6個の中空コ
イル2を動作単位として構成されている。
Here, the principle of operation of this embodiment will be described.
FIG. 5 shows the operating principle 1 of the three-phase AC linear motor, and FIG. 6 shows the operating principle 2 of the three-phase AC linear motor according to the present invention.
FIG. As shown in FIG. 3, the linear motor used in the present invention is configured with four permanent magnets 6 and six hollow coils 2 as operating units.

【0013】ここでは基本原理を説明するために図5に
示すように永久磁石6を6−2〜6−5の4個、(また
は6−8〜6−11の4個)と、一体となって移動する
3個の中空移動コイル2を動作単位としている。
Here, in order to explain the basic principle, as shown in FIG. 5, four permanent magnets 6-2 to 6-5 or four permanent magnets 6 (or 6-8 to 6-11) are integrally formed. The three hollow moving coils 2 that move as a unit are used as an operation unit.

【0014】図5に示すとおり、永久磁石6−3から出
力された磁束は、センターサイドヨーク5を経由して、
永久磁石6−2又は、永久磁石6−2及び永久磁石6−
4に入力される。また、永久磁石6−9から出力された
磁束は、センターサイドヨーク5を経由して、永久磁石
6−8又は、永久磁石6−8及び永久磁石6−10に入
力される。
As shown in FIG. 5, the magnetic flux output from the permanent magnet 6-3 passes through the center side yoke 5 and
Permanent magnet 6-2 or permanent magnet 6-2 and permanent magnet 6
4 is input. The magnetic flux output from the permanent magnet 6-9 is input to the permanent magnet 6-8 or the permanent magnet 6-8 and the permanent magnet 6-10 via the center side yoke 5.

【0015】同様にして永久磁石6−5から出力された
磁束は、センターサイドヨーク5を経由して、永久磁石
6−4又は、永久磁石6−4及び永久磁石6−6に入力
される。また、永久磁石6−11から出力された磁束
は、センターサイドヨーク5を経由して、永久磁石6−
10又は、永久磁石6−10又は、永久磁石6−12に
入力される。
Similarly, the magnetic flux output from the permanent magnet 6-5 is input to the permanent magnet 6-4 or the permanent magnet 6-4 and the permanent magnet 6-6 via the center side yoke 5. The magnetic flux output from the permanent magnet 6-11 passes through the center side yoke 5 and
10 or the permanent magnet 6-10 or the permanent magnet 6-12.

【0016】永久磁石6−2及び永久磁石6−8の左側
を起点として位置角(磁場の位相角)を設定する。位置
角は、磁極方向に隣接する永久磁石毎にπ進むものと定
める。また、永久磁石6−2及び永久磁石6−8の左側
を起点として右方向(X軸方向)へ一体となって移動す
る3個のコイル部材(中空コイル2)の移動する距離を
xと定める。コイル部材3A1が距離xだけX軸方向へ
移動したときに鎖交する磁束数を Ba=Bm・sin(x)・・・(1式) コイル部材3B1が距離xだけX軸方向へ移動したとき
に鎖交する磁束数を Bb=Bm・sin(x−4π/3)・・・(2式) コイル部材3C1が距離xだけX軸方向へ移動したとき
に鎖交する磁束数を Bc=Bm・sin(x−8π/3)=Bm・sin(x−2π/3) ・・・(3式) とおく。ここでBmは永久磁石の最大磁束密度とし、各
コイル部材の位置ズレを上記位置角で表す。上記図3に
示すコイル部材に3A1に三相交流の+U相、コイル部
材3B1に+W、コイル部材3C1に+Vがそれぞれ供
給されている。したがって、コイル部材3A1に流れる
電流は、 Ia=Im・sin(ωt) ・・・(4式) コイル部材3A1に流れる電流は、 Ib=Im・sin(ωt−4π/3)・・・(5式) コイル部材3A1に流れる電流は、 Ic=Im・sin(ωt−2π/3)・・・(6式) となる。以上求めた(1式)から(6式)より永久磁石
6−1〜6−6の界磁磁束とコイル部材に流れる電流が
鎖交することによって3個のコイル部材(3A1,3B
1,3C1に働く推力Fは次式で表される。 F=Ba・Ia+Bb・Ib+Bc・Ic =Bm・Im・{sin(x)・sin(ωt)+sin(x−4π/3)・ sin(ωt−4π/3)+sin(x−2π/3)・ sin(ωt−2π/3)} 同期の場合 ωt=xであるから F=Bm・Im・{sin2(x)+sin2(x−4π/3)+sin2 (x−2π/3) =(3/2)・Bm・Im−(1/2)・Bm・Im・{cos(2x)+ cos(2x−8π/3)+cos(2x−4π/3)} =(3/2)・Bm・Im−(1/2)・Bm・Im・{cos(2x)+ cos(2x−2π/3)+cos(2x−4π/3)} =(3/2)・Bm・Im・−(1/2)・Bm・Im・{cos(2x)+ [cos(2x)・cos(2π/3)+sin(2x)・sin (2π/3)]+[cos(2x)・cos(4π/3)+sin(2x) ・sin(4π/3)]} =(3/2)・Bm・Im−(1/2)・Bm・Im・{cos(2x)− (1/2)・cos(2x)+(√3/2)・sin(2x)−(1/2) ・cos(x)−(√3/2)・sin(2x)} =(3/2)・Bm・Im・・・(7式) 以上、永久磁石6−1〜6−6の界磁磁束と3個のコイ
ル部材3A1,3B1,3C1に働く推力Fについて説
明した。また、3個のコイル部材3A1,3B1,3C
1には、永久磁石6−7〜6−12の界磁磁束との鎖交
によっても推力Fが同一方向に働くが、上述と同様の理
論なので説明を省略する。
A position angle (phase angle of a magnetic field) is set starting from the left side of the permanent magnets 6-2 and 6-8. The position angle is determined to advance by π for each adjacent permanent magnet in the magnetic pole direction. In addition, the moving distance of three coil members (hollow coils 2) that move integrally (rightward in the X-axis direction) starting from the left side of the permanent magnets 6-2 and 6-8 is defined as x. . When the coil member 3A1 moves in the X-axis direction by the distance x, the number of magnetic fluxes interlinked is Ba = Bm · sin (x) (1) When the coil member 3B1 moves in the X-axis direction by the distance x Bb = Bm · sin (x−4π / 3) (Equation 2) The number of magnetic fluxes that interlink when the coil member 3C1 moves the distance x in the X-axis direction is Bc = Bm. Sin (x−8π / 3) = Bm · sin (x−2π / 3) (Equation 3) Here, Bm is the maximum magnetic flux density of the permanent magnet, and the positional deviation of each coil member is represented by the above positional angle. 3A1, + U phase of three-phase alternating current, + W is supplied to the coil member 3B1, and + V is supplied to the coil member 3C1 shown in FIG. Therefore, the current flowing through the coil member 3A1 is Ia = Im · sin (ωt) (Equation 4) The current flowing through the coil member 3A1 is Ib = Im · sin (ωt−4π / 3) (5) Equation) The current flowing through the coil member 3A1 is as follows: Ic = Im · sin (ωt−2π / 3) (Equation 6) From Equations (1) to (6) obtained above, the three magnetic field coils of the permanent magnets 6-1 to 6-6 interlink with the current flowing through the coil members to link the three coil members (3A1, 3B).
The thrust F acting on 1,3C1 is expressed by the following equation. F = Ba · Ia + Bb · Ib + Bc · Ic = Bm · Im · {sin (x) · sin (ωt) + sin (x−4π / 3) · sin (ωt−4π / 3) + sin (x−2π / 3) sin (ωt−2π / 3)} In the case of synchronization Since ωt = x, F = Bm · Im · {sin 2 (x) + sin 2 (x−4π / 3) + sin 2 (x−2π / 3) = ( 3/2) · Bm · Im- (1/2) · Bm · Im · {cos (2x) + cos (2x−8π / 3) + cos (2x−4π / 3)} = (3/2) · Bm Im- (1/2) BmIm {cos (2x) + cos (2x-2.pi./3) + cos (2x-4.pi./3)} = (3/2) Bm.Im- (1 / 2) · Bm · Im · {cos (2x) + [cos (2x) · cos (2π / 3) + sin (2x) · sin (2 / 3)] + [cos (2x) · cos (4π / 3) + sin (2x) · sin (4π / 3)]} = (3/2) · Bm · Im− (1/2) · Bm · Im・ {Cos (2x)-(1 /) ・ cos (2x) + (√3 / 2) ・ sin (2x)-(1 /) ・ cos (x)-(√3 / 2) ・ sin ( 2x)} = (3/2) · Bm · Im (Equation 7) As described above, the field magnetic flux of the permanent magnets 6-1 to 6-6 and the thrust F acting on the three coil members 3A1, 3B1, and 3C1 Was explained. Also, three coil members 3A1, 3B1, 3C
In No. 1, the thrust F acts in the same direction by the linkage with the field magnetic fluxes of the permanent magnets 6-7 to 6-12, but the description is omitted because it is the same theory as described above.

【0017】ここで、留意すべき点は以下の通りであ
る。すなわち、4個の永久磁石6−2〜6−5に対して
3個のコイル部材3A1,3B1,3C1が一組となっ
て動作する。これ以外の組み合わせでは、駆動電流の位
相角とコイル部材の位置角が一致しないので推力リップ
ルが大きくなる。次に、本発明に係る三相同期リニアモ
ータの動作原理を図6に示す基本原理2に基づいて詳細
に説明する。上述した基本原理1は、位置角にして2π
/3の長さをもつ3個のコイル部材3A1,3B1,3
C1がそれぞれお互いに位置角=4π/3の間隔をおい
て配置されていたのに対し、本実施例(基本原理2)で
は、その間隔の中に位置角にして2π/3の長さをも
つ、3個のコイル部材3A2,3B2,3C2が配置さ
れている。さらに、図3に示すように、コイル部材3A
1に+U相、コイル部材3A2に−U相、同様に、コイ
ル部材3B1に+W相、コイル部材3B2に−W相、コ
イル部材3A3に+V相、コイル部材3B3に−V相の
電流が印可されるように接続されている。
Here, points to be noted are as follows. That is, three coil members 3A1, 3B1, and 3C1 operate as a set with respect to the four permanent magnets 6-2 to 6-5. In other combinations, since the phase angle of the drive current does not match the position angle of the coil member, the thrust ripple increases. Next, the operation principle of the three-phase synchronous linear motor according to the present invention will be described in detail based on the basic principle 2 shown in FIG. The basic principle 1 described above has a position angle of 2π
Three coil members 3A1, 3B1, 3 having a length of / 3
Whereas C1 is arranged at an interval of 4π / 3 from each other, in the present embodiment (basic principle 2), the length of 2π / 3 is set as the position angle within the interval. And three coil members 3A2, 3B2, 3C2. Further, as shown in FIG.
1, a + U phase current is applied to the coil member 3A2, and similarly, a + W phase current is applied to the coil member 3B1, a -W phase current is applied to the coil member 3B2, a + V phase current is applied to the coil member 3A3, and a -V phase current is applied to the coil member 3B3. Connected so that

【0018】本実施例の場合、同一コイル部材3A1,
3A2,・・,3C2は同一方向巻きの同一コイル部材
からなり、これらを巻き方向が同じになるように図3の
ように配列して、例えば隣接するコイル部材3A1と3
A2の場合には、コイル部材3A1の巻きはじめの端を
KS1,巻き終わりの端をKE1,同様にコイル部材3
A2の巻き始めの端をKS2,巻き終わりの端をKE2
とすれば、コイル部材3A1,3A2の接続は、KE1
−KE2を接続するようになっている。回路的には、K
S1−KE1−KE2−KS2で電気回路が成立してい
る。これによって、三相交流のU相の場合、コイル部材
3A1に+U相、コイル部材3A2に−U相を印可した
のと同様になる。以下、W相,V相も同様である。ここ
で三相交流の+U,−U相は逆相を意味しており、位相
差π(180度)である。同様に+W,−W相及び+V
相,−V相も同様である。かかる接続を採用することに
よりコイル部材3A2,3B2,3C2に印可される駆
動電流の位相は2π/3遅れる。一方、コイル部材3A
2,3B2,3C2は、コイル部材3A1,3B1,3
C1の後ろに接続されるので、位置角も2π/3遅れ
る。したがって,上記(7式)を満足する。その結果コ
イル部材3A1,3B1,3C1に働く推力とコイル部
材3A2,3B2,3C2に働く推力は同一方向とな
る。
In the case of this embodiment, the same coil member 3A1,
, 3C2 are made of the same coil members wound in the same direction, and are arranged as shown in FIG. 3 so that the winding directions are the same. For example, adjacent coil members 3A1 and 3A3
In the case of A2, the winding start end of the coil member 3A1 is KS1, the winding end is KE1, and the coil member 3A1 is similarly wound.
The start end of winding of A2 is KS2 and the end of winding end is KE2
Then, the connection of the coil members 3A1 and 3A2 is KE1
-KE2 is connected. In terms of circuit, K
An electric circuit is established by S1-KE1-KE2-KS2. Thereby, in the case of the U phase of the three-phase alternating current, it is the same as applying the + U phase to the coil member 3A1 and applying the -U phase to the coil member 3A2. Hereinafter, the same applies to the W phase and the V phase. Here, the + U and -U phases of the three-phase alternating current mean opposite phases, and have a phase difference of π (180 degrees). Similarly, + W, -W phase and + V
The same applies to the phase and the -V phase. By employing such a connection, the phase of the drive current applied to the coil members 3A2, 3B2, 3C2 is delayed by 2π / 3. On the other hand, the coil member 3A
2, 3B2, 3C2 are coil members 3A1, 3B1, 3
Since it is connected after C1, the position angle is also delayed by 2π / 3. Therefore, the above (Equation 7) is satisfied. As a result, the thrust acting on the coil members 3A1, 3B1, 3C1 and the thrust acting on the coil members 3A2, 3B2, 3C2 are in the same direction.

【0019】すなわち、本実施例のリニアモータは、上
記基本原理1で説明した3個のコイル部材3A1,3B
1,3C1からなるリニアモータの可動コイルの容積を
増加させることなく、2組の可動コイルを直列接続した
のと等価となる。
That is, the linear motor according to the present embodiment has the three coil members 3A1, 3B described in the basic principle 1.
This is equivalent to connecting two sets of movable coils in series without increasing the volume of the movable coils of the linear motor composed of 1,3C1.

【0020】この構成は、課題3,4を解決するために
採用した構成で、主に、可動コイルに生じるN×I[通
称:アンペアーターン]により、不要な方向の磁場を抑
制し、磁気回路内の推力発生磁場の乱れを小さくすると
共に、アンペアーターンによる、ヨーク10内に発生す
る渦電流を抑制して、ヨークの温度上昇を防ぎ、磁石5
0の温度特性により磁場の低下を防ぐ効果がある。
This configuration is adopted to solve the problems 3 and 4. The magnetic circuit in an unnecessary direction is suppressed mainly by N × I (commonly called “ampere turn”) generated in the movable coil. The turbulence of the magnetic field generated in the thrust is reduced, the eddy current generated in the yoke 10 due to the ampere turn is suppressed, and the temperature of the yoke is prevented from rising.
The temperature characteristic of 0 has the effect of preventing the magnetic field from lowering.

【0021】つまり、コイル部材3A1の駆動電流Im
sin(ωt)によって励起される磁束をHA1とする
と、コイル部材3A2の駆動電流は、−I・sin(ω
t)によって励起される磁束をHA2となり磁束の向き
が反転してうち消し合うことになる。同様に、コイル部
材3B1,3B2及び3C1と3C2に励起される磁束
も同様の結果となり、ヨーク内に発生する渦電流の発生
を抑制できる。
That is, the driving current Im of the coil member 3A1
Assuming that the magnetic flux excited by sin (ωt) is HA1, the driving current of the coil member 3A2 is −I · sin (ω
The magnetic flux excited by t) becomes HA2, and the direction of the magnetic flux is reversed and cancels out. Similarly, the magnetic flux excited by the coil members 3B1, 3B2 and 3C1 and 3C2 has the same result, and the generation of the eddy current generated in the yoke can be suppressed.

【0022】尚、上記の説明では、4個の永久磁石6−
2〜6−5に対して6個のコイル部材3A1,3A2,
3B1,3B2,3C1,3C2を一組としたが、本発
明はこれに限るものではない。
In the above description, four permanent magnets 6-
Six coil members 3A1, 3A2 for 2-6-5
3B1, 3B2, 3C1, and 3C2 are set as one set, but the present invention is not limited to this.

【0023】すなわち、上記(7式)を満足するのは、
4個の永久磁石に対して6個のコイル部材が一組となる
場合に限らない。(7式)を満足するためには、コイル
部材に印可される駆動電流の位相角と、そのコイル部材
の位置角が等しければよい。
That is, the above equation (7) is satisfied.
The invention is not limited to the case where six coil members form one set for four permanent magnets. In order to satisfy Equation (7), it is only necessary that the phase angle of the drive current applied to the coil member is equal to the position angle of the coil member.

【0024】つまり、移動方向(X方向)に並ぶ永久磁
石4n個(nは整数)を一組として、上記移動方向への位
置角4πを設定したときに、複数個のコイル部材の上記
移動方向への長さが永久磁石4N個の長さに等しければ
よい。
That is, when 4n permanent magnets (n is an integer) arranged in the moving direction (X direction) are set as a set and the position angle 4π in the moving direction is set, the moving direction of a plurality of coil members in the moving direction is set. It is only necessary that the length to be equal to the length of 4N permanent magnets.

【0025】但し、複数個のコイル部材の各々の位置角
に相当する位相角の駆動電流を各々のコイル部材に印可
する必要がある。
However, it is necessary to apply a drive current having a phase angle corresponding to the position angle of each of the plurality of coil members to each of the coil members.

【0026】尚、この場合においても、複数個のコイル
部材の数量を適宜設定することにより上記漏洩磁束を低
減させることも可能になる。ここで基本原理2の説明を
終わる。尚、各コイル部材3A1,・・・・3C2は、
それぞれ同一の巻数で、同一の仕様となっている。
In this case as well, the leakage magnetic flux can be reduced by appropriately setting the number of the plurality of coil members. Here, the explanation of the basic principle 2 ends. Note that each of the coil members 3A1,.
Each has the same number of turns and the same specifications.

【0027】隣接する各コイル部材3A1,3A2の接
合寸法dは、小さい方が好ましいが、本実施例では、2
mm程度となっている。また、この可動コイル3は、多層
巻きされ接着剤などの接合部材で矩形状に固められてい
るため、従来例に比べ、鉛直方向Yに対する剛性力が強
く、可動コイル3の変形が皆無である。また、隣接する
各コイル部材3A1,3A2,・・・・,3C2には、
それぞれ逆方向の電流が印可され、かつ、非常に密に隣
接して配列されているので、コイル部材3A1,3A
2,・・・,3C2の各コイルのアンペアターン(N:
巻数,I:電流)により発生する磁束を相互に、打ち消
し合うことができるので、ヨーク1内に発生する[鉄
損]を限りなく[0]にすることができる。このこと
は、ヨークの磁気飽和を抑え、磁場の変化をなくし、熱
性能が向上することにつながり、磁石50の磁束の温度
変化による磁束の変化を抑え、安定した推力を得る効果
がある。
It is preferable that the joining dimension d of each of the adjacent coil members 3A1 and 3A2 is small.
mm. Further, since the movable coil 3 is wound in multiple layers and is fixed in a rectangular shape by a joining member such as an adhesive, the rigidity in the vertical direction Y is higher than in the conventional example, and the movable coil 3 is not deformed at all. . In addition, each of the adjacent coil members 3A1, 3A2,.
Since currents in opposite directions are applied and are arranged very closely adjacent to each other, the coil members 3A1, 3A
Ampere turn of each coil of N2, ..., 3C2 (N:
Since the magnetic flux generated by the number of turns (I: current) can be canceled each other, [iron loss] generated in the yoke 1 can be reduced to [0] without limit. This suppresses the magnetic saturation of the yoke, eliminates the change in the magnetic field, and improves the thermal performance. This has the effect of suppressing the change in the magnetic flux of the magnet 50 due to the temperature change of the magnetic flux and obtaining a stable thrust.

【0028】図4は、本実施例に係る、リニアモータの
構成説明図で、3Aは、可動コイル3に設けた部品部材
である。また、可動コイル3には補強板を取り付けても
よい。
FIG. 4 is an explanatory view of the configuration of the linear motor according to the present embodiment. Reference numeral 3A denotes a component member provided on the movable coil 3. Further, a reinforcing plate may be attached to the movable coil 3.

【0029】このようにすれば、可動コイル3の剛性が
さらに大きくなる。
In this way, the rigidity of the movable coil 3 is further increased.

【0030】尚、本発明はこれに限らず、可動コイル3
のコイル部材3A1〜3A6と磁石50の関係を、長手
方向に6(6×n)[nは整数]組配列し、その長手方
向の寸法は、サイドヨークの磁石の配列に注目した場
合、長手方向に磁石(4×n)[nは整数]組と同じに
なる構成とすれば、可動コイル3を水平方向にn組連結
して駆動することも出来る。このような構成にすれば、
より大きな推力を容易に得ることが出来る。
The present invention is not limited to this.
The relationship between the coil members 3A1 to 3A6 and the magnet 50 is arranged in a set of 6 (6 × n) [n is an integer] pairs in the longitudinal direction. If the configuration is the same as the magnet (4 × n) [n is an integer] set in the direction, the movable coil 3 can be driven by connecting n sets in the horizontal direction. With such a configuration,
A larger thrust can be easily obtained.

【0031】尚、本実施例では6個のコイル部材3A
1,3A2,・・,3C2は同一方向巻きとして、+
U,−U,+W,−W,+V,−V相を印可したが、隣
接するコイル部材3A1,3A2,・・,3C2の巻き
方向を相互に逆巻きにして配列すれば、+U,+V,+
W,+U,+V,+W相を印可しても駆動できる。但し
この場合には、隣接するコイル部材3A1,3A2,・
・,3C2からの漏洩磁束をうち消す効果はない。
In this embodiment, six coil members 3A are used.
1, 3A2, ..., 3C2 are wound in the same direction, and +
Although the U, -U, + W, -W, + V, and -V phases were applied, if the winding directions of the adjacent coil members 3A1, 3A2,.
Driving is possible even when the W, + U, + V, and + W phases are applied. However, in this case, the adjacent coil members 3A1, 3A2,.
・ There is no effect of canceling out the leakage magnetic flux from 3C2.

【0032】[0032]

【発明の効果】本発明は、以上のように構成されている
ので、位相制御駆動リニアモータにおいて、磁場の利用
効率が高く、しかもヨークの発熱を押され、可動コイル
を小型化でき安定した推力を得ることが出来るリニアモ
ータを提供できる。
Since the present invention is constructed as described above, the phase control drive linear motor has a high magnetic field utilization efficiency, is pressed by the heat of the yoke, and can reduce the size of the movable coil and achieve a stable thrust. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の位相制御駆動リニアモータ概要を示す
説明図。
FIG. 1 is an explanatory diagram showing an outline of a phase control drive linear motor of the present invention.

【図2】本発明の可動コイルの構成説明図。FIG. 2 is a diagram illustrating the configuration of a movable coil according to the present invention.

【図3】本発明の磁気回路の説明図。FIG. 3 is an explanatory diagram of a magnetic circuit according to the present invention.

【図4】本発明のヨークと可動コイルの関係を示す説明
図。
FIG. 4 is an explanatory diagram showing a relationship between a yoke and a movable coil according to the present invention.

【図5】本発明にかかるリニアモータの基本動作原理1
を示す説明図。
FIG. 5 shows the basic operating principle 1 of the linear motor according to the present invention.
FIG.

【図6】本発明にかかるリニアモータの基本動作原理2
を示す説明図。
FIG. 6 shows a basic operation principle 2 of the linear motor according to the present invention.
FIG.

【図7】従来の位相制御駆動リニアモータ概要を示す説
明図。
FIG. 7 is an explanatory view showing an outline of a conventional phase control drive linear motor.

【図8】従来の磁気回路の説明図。FIG. 8 is an explanatory diagram of a conventional magnetic circuit.

【図9】従来の可動コイルの平面説明図。FIG. 9 is an explanatory plan view of a conventional movable coil.

【図10】従来のヨークと可動コイルの関係を示す説明
図。
FIG. 10 is an explanatory view showing a relationship between a conventional yoke and a movable coil.

【図11】従来の可動コイルの構成を示す組立説明図。 1・・・・・・・ ヨーク 3・・・・・・・ 可動コイル 5・・・・・・・ 空洞 12,14・・・ サイドヨーク 16・・・・・・ センターヨーク 3A1,3A2,3B1,3B2,3C1,3C2・・
コイル部材(中空コイル部材) 50・・・・・・ 永久磁石
FIG. 11 is an assembly explanatory view showing a configuration of a conventional movable coil. 1 ... Yoke 3 ... Movable coil 5 ... Cavity 12,14 ... Side yoke 16 ... Center yoke 3A1,3A2,3B1 , 3B2,3C1,3C2 ...
Coil member (hollow coil member) 50 Permanent magnet

フロントページの続き (72)発明者 成吉 郁馬 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 赤間 助広 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 横山 照晃 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 村上 昇 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 Fターム(参考) 5H633 BB02 GG03 GG04 GG06 GG07 GG13 HH02 HH05 HH09 HH13 HH16 HH24 HH25 5H641 BB10 GG03 GG04 GG12 HH02 HH14 JA05 JA07 JA09 Continued on the front page (72) Inventor Ikuma Nariyoshi 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Showa Electric Wire & Cable Co., Ltd. (72) Inventor Sukehiro Akama 2-1-1 Oda Ei, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture No. 1 Inside Showa Electric Wire & Cable Co., Ltd. (72) Inventor Teruaki Yokoyama 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Showa Electric Wire & Cable Co., Ltd. (72) Inventor Noboru Murakami Sakae Oda, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture 2-1-1, Showa Electric Wire & Cable Co., Ltd. F-term (reference) 5H633 BB02 GG03 GG04 GG06 GG07 GG13 HH02 HH05 HH09 HH13 HH16 HH24 HH25 5H641 BB10 GG03 GG04 GG12 HH02 HH14 JA05 JA07 JA09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】断面コ字状のサイドヨーク内にセンターヨ
ークを備え、このセンターヨークをそれ自身の空洞部に
挿通して、長手方向に自在に可動する可動コイルを設け
たリニアモータであって、 サイドヨークの上下片の内面には、対向する磁石同士、
同一の極性の磁石を交互に設け、これらを長手方向に隣
接する磁石の極性を異なる如く配列し、前記可動コイル
は、中空コイル部材を少なくとも複数連結した構成とし
たことを特徴とするリニアモータ。
1. A linear motor comprising a center yoke in a side yoke having a U-shaped cross section, and a movable coil which is freely movable in a longitudinal direction by inserting the center yoke into its own cavity. On the inner surface of the upper and lower pieces of the side yoke, facing magnets,
A linear motor, wherein magnets having the same polarity are alternately provided, and these magnets are arranged so that the magnets adjacent to each other in the longitudinal direction have different polarities, and the movable coil is configured by connecting at least a plurality of hollow coil members.
【請求項2】前記可動コイルの長手方向の長さは、中空
コイル部材を長手方向に(6×n)[nは整数]組配列
した場合、その長手方向の寸法は、サイドヨークの磁石
の配列に注目した時、長手方向に磁石(4×n)[nは
整数]組と同じになる構成とされていることを特徴とす
る請求項1記載のリニアモータ。
2. The length of the movable coil in the longitudinal direction is such that when (6 × n) [n is an integer] pairs of hollow coil members are arranged in the longitudinal direction, the dimension in the longitudinal direction is equal to that of the magnet of the side yoke. 2. The linear motor according to claim 1, wherein, when attention is paid to the arrangement, the configuration is the same as the set of magnets (4 × n) [n is an integer] in the longitudinal direction.
【請求項3】前記可動コイルは、ウエット巻きにて構成
し、隣接するコイル部材同士を非磁性体からなる絶縁部
材を介して連結したことを特徴とする請求項1または2
の何れか一項記載のリニアモータ。
3. The moving coil according to claim 1, wherein the movable coil is formed by wet winding, and adjacent coil members are connected via an insulating member made of a non-magnetic material.
A linear motor according to any one of the preceding claims.
【請求項4】前記可動コイルには、補強板を設けたこと
を特徴とする請求項1,2乃至3の何れか一項記載のリ
ニアモータ。
4. The linear motor according to claim 1, wherein a reinforcing plate is provided on the movable coil.
【請求項5】前記長手方向に並ぶ磁石4n(nは整数)
個を一組として、前記長手方向への位置角を4πに設定
した場合、前記複数個の中空コイル部材からなる可動コ
イルの長手方向の長さが、前記位置角=4πに設定され
ていることを特徴とする請求項1乃至請求項4の何れか
一項に記載のリニアモータ。
5. A magnet 4n (n is an integer) arranged in the longitudinal direction.
When the position angle in the longitudinal direction is set to 4π as one set, the length in the longitudinal direction of the movable coil including the plurality of hollow coil members is set to the position angle = 4π. The linear motor according to any one of claims 1 to 4, wherein:
【請求項6】請求項5記載のリニアモータにおいて、可
動コイルには、それ自身の端からの位置角に等しい位相
差の駆動電流が印加されることを特徴とするリニアモー
タ。
6. A linear motor according to claim 5, wherein a drive current having a phase difference equal to a position angle from an end of the movable coil is applied to the movable coil.
【請求項7】請求項6記載のリニアモータにおいて、長
手方向に4個一組の磁石の長さを位置角=4πに設定
し、可動コイルを6個の中空コイル部材で構成し、長手
方向の長さを位置角=4πとし、前記中空コイル部材に
は、可動コイルの移動方向に向かって三相交流のU相、
−U相,W相、−W相,V相、−V相が印可されている
ことを特徴とするリニアモータ。
7. A linear motor according to claim 6, wherein the length of a set of four magnets in the longitudinal direction is set at a position angle = 4π, and the movable coil is constituted by six hollow coil members. The position angle = 4π, and the hollow coil member has a U-phase of three-phase alternating current in the moving direction of the movable coil,
A linear motor to which -U, W, -W, V, and -V phases are applied.
JP2001049625A 2000-12-05 2001-02-26 Linear motor Expired - Lifetime JP5005131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049625A JP5005131B2 (en) 2000-12-05 2001-02-26 Linear motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000369748 2000-12-05
JP2000-369748 2000-12-05
JP2000369748 2000-12-05
JP2001049625A JP5005131B2 (en) 2000-12-05 2001-02-26 Linear motor

Publications (2)

Publication Number Publication Date
JP2002238240A true JP2002238240A (en) 2002-08-23
JP5005131B2 JP5005131B2 (en) 2012-08-22

Family

ID=26605252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049625A Expired - Lifetime JP5005131B2 (en) 2000-12-05 2001-02-26 Linear motor

Country Status (1)

Country Link
JP (1) JP5005131B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374096A (en) * 2001-06-14 2002-12-26 Showa Electric Wire & Cable Co Ltd Electronic component mounting apparatus
WO2005057763A1 (en) * 2003-12-09 2005-06-23 Toshiba Kikai Kabushiki Kaisha Coreless linear motor
JP2005176464A (en) * 2003-12-09 2005-06-30 Toshiba Mach Co Ltd Linear motor
JP2005176465A (en) * 2003-12-09 2005-06-30 Toshiba Mach Co Ltd Linear motor
JP2005192322A (en) * 2003-12-25 2005-07-14 Toshiba Mach Co Ltd Linear synchronous motor
JP2005237078A (en) * 2004-02-18 2005-09-02 Toshiba Mach Co Ltd Linear synchronous motor
JP2005237081A (en) * 2004-02-18 2005-09-02 Toshiba Mach Co Ltd Linear synchronous motor
JP2005237079A (en) * 2004-02-18 2005-09-02 Toshiba Mach Co Ltd Linear synchronous motor
JP2012147517A (en) * 2011-01-07 2012-08-02 Toshiba Mach Co Ltd Linear motor device and linear motor
KR101784460B1 (en) * 2015-11-06 2017-10-11 한국기계연구원 Stack type linear synchronous motor
WO2024046445A1 (en) * 2022-08-31 2024-03-07 Tethr Limited Improved linear actuator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151261A (en) * 1981-03-13 1982-09-18 Nec Corp Linear motor
JPS589086U (en) * 1981-07-09 1983-01-20 日本電気株式会社 Moving coil type linear motor
JPS58127873U (en) * 1982-02-18 1983-08-30 日本電気株式会社 brushless linear motor
JPS6281966A (en) * 1985-10-02 1987-04-15 Hitachi Ltd Linear dc motor
JPS63293807A (en) * 1987-05-26 1988-11-30 Hitachi Cable Ltd Wet winding automatic aligned-winding machine
JPH0311971A (en) * 1989-06-06 1991-01-21 Sharp Corp Linear reciprocating shift scanner
JP2001333567A (en) * 2000-05-20 2001-11-30 Mirae Corp Linear motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151261A (en) * 1981-03-13 1982-09-18 Nec Corp Linear motor
JPS589086U (en) * 1981-07-09 1983-01-20 日本電気株式会社 Moving coil type linear motor
JPS58127873U (en) * 1982-02-18 1983-08-30 日本電気株式会社 brushless linear motor
JPS6281966A (en) * 1985-10-02 1987-04-15 Hitachi Ltd Linear dc motor
JPS63293807A (en) * 1987-05-26 1988-11-30 Hitachi Cable Ltd Wet winding automatic aligned-winding machine
JPH0311971A (en) * 1989-06-06 1991-01-21 Sharp Corp Linear reciprocating shift scanner
JP2001333567A (en) * 2000-05-20 2001-11-30 Mirae Corp Linear motor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610125B2 (en) * 2001-06-14 2011-01-12 Juki株式会社 Electronic component mounting device
JP2002374096A (en) * 2001-06-14 2002-12-26 Showa Electric Wire & Cable Co Ltd Electronic component mounting apparatus
JP4721211B2 (en) * 2003-12-09 2011-07-13 東芝機械株式会社 Coreless linear motor
JP2005176464A (en) * 2003-12-09 2005-06-30 Toshiba Mach Co Ltd Linear motor
DE112004002360B4 (en) * 2003-12-09 2017-12-14 Toshiba Kikai K.K. Coreless linear motor
JP2005176465A (en) * 2003-12-09 2005-06-30 Toshiba Mach Co Ltd Linear motor
US8110950B2 (en) 2003-12-09 2012-02-07 Toshiba Kikai Kabushiki Kaisha Coreless linear motor having a non-magnetic reinforcing member
KR100844759B1 (en) * 2003-12-09 2008-07-07 도시바 기카이 가부시키가이샤 Coreless linear motor
WO2005057763A1 (en) * 2003-12-09 2005-06-23 Toshiba Kikai Kabushiki Kaisha Coreless linear motor
JP2005192322A (en) * 2003-12-25 2005-07-14 Toshiba Mach Co Ltd Linear synchronous motor
JP2005237081A (en) * 2004-02-18 2005-09-02 Toshiba Mach Co Ltd Linear synchronous motor
JP4563046B2 (en) * 2004-02-18 2010-10-13 東芝機械株式会社 Linear synchronous motor
JP4563047B2 (en) * 2004-02-18 2010-10-13 東芝機械株式会社 Linear synchronous motor
JP2005237079A (en) * 2004-02-18 2005-09-02 Toshiba Mach Co Ltd Linear synchronous motor
JP2005237078A (en) * 2004-02-18 2005-09-02 Toshiba Mach Co Ltd Linear synchronous motor
JP2012147517A (en) * 2011-01-07 2012-08-02 Toshiba Mach Co Ltd Linear motor device and linear motor
KR101784460B1 (en) * 2015-11-06 2017-10-11 한국기계연구원 Stack type linear synchronous motor
WO2024046445A1 (en) * 2022-08-31 2024-03-07 Tethr Limited Improved linear actuator

Also Published As

Publication number Publication date
JP5005131B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
KR100844759B1 (en) Coreless linear motor
JP2019140892A (en) Magnet and dynamo-electric machine
US20070103024A1 (en) Embedded magnet type motor
US8901785B2 (en) Electric motor comprising iron core having primary teeth and secondary teeth
KR20080018207A (en) Motor and control device thereof
US7994676B2 (en) Reluctance motor rotor and reluctance motor equipped with the same
JP2002238240A (en) Linear motor
JP3360606B2 (en) Linear motor
JPWO2017183162A1 (en) Electric motor and air conditioner
US20120187779A1 (en) Linear motor
JPH09163710A (en) Motor structure
JP2005176464A (en) Linear motor
JPWO2012008012A1 (en) Permanent magnet type rotating electric machine
US20080290754A1 (en) AC Motor
JP3539493B2 (en) Canned linear motor armature and canned linear motor
JP4610125B2 (en) Electronic component mounting device
JPH1023735A (en) Linear motor
JP2002171743A (en) Linear motor
JP2003116262A (en) Linear synchronous motor
JP6190694B2 (en) Rotor, stator, and motor
WO2020133875A1 (en) Low-inertia interior flat permanent magnet servo motor
JP2003134791A (en) Permanent magnet synchronous linear motor
JP4711160B2 (en) Linear motor armature and linear motor
He et al. Design and Analysis of Two Degree-of-Freedom Rotary-Linear Machines with Hybrid Permanent Magnets for Robotic Applications
JP4578819B2 (en) Linear motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5005131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term