JPH03118813A - Production of paperlike material made of regeneration type ion exchange fiber - Google Patents

Production of paperlike material made of regeneration type ion exchange fiber

Info

Publication number
JPH03118813A
JPH03118813A JP25964689A JP25964689A JPH03118813A JP H03118813 A JPH03118813 A JP H03118813A JP 25964689 A JP25964689 A JP 25964689A JP 25964689 A JP25964689 A JP 25964689A JP H03118813 A JPH03118813 A JP H03118813A
Authority
JP
Japan
Prior art keywords
fiber
exchange
paper
ion
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25964689A
Other languages
Japanese (ja)
Inventor
Makoto Kurimoto
誠 栗本
Katsuo Baba
馬場 勝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP25964689A priority Critical patent/JPH03118813A/en
Publication of JPH03118813A publication Critical patent/JPH03118813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To obtain paperlike material made of regeneration type ion exchange fiber without impairing an original ion exchange function by making the mixture of regeneration type ion exchange fiber material and a thermally adhesive fibrous binder into sheets while utilizing pure water and heat-treating the sheets. CONSTITUTION:Unregenerated cellulose-based fiber of an alkali type such as K and Na wherein a carboxylic group is introduced thereinto is regenerated by strong acid. On the other hand, unregenerated cellulosebased fiber of an inorganic salt type such as Br wherein an amino group is introduced is regenerated by strong base. These both are mixed and this mixture is made into sheets. At this time, a thermally adhesive fibrous binder constituted of composite fiber is added which has organic synthetic fiber of high m.p. as a core component and organic synthetic fiber of low m.p. as a sheath component. Then the sheets are shaped and worked into a paper shape and dried. Thereby the paperlike material in which regenerated fiber is mixed and incorporated obtained from the unregenerated type cation exchange fiber material and unregenerated type anion exchange fiber material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は塩類を固体または溶液微粒子として含有する空
気の浄化用ろ過材等に適した再生型イオン交換繊細の紙
状物の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a recycled ion-exchange paper-like material suitable for use as a filter medium for air purification, etc., containing salts as solid or solution fine particles.

(従来の技術) 一般にイオン交換繊維の紙状物は空気浄化用ろ過等に使
用できることが知られている(特開昭68−24091
1、同6B−90541)。しかしながら、再生型イオ
ン交換繊維の紙状物を工業的に有利に製造する方法は知
られていない。
(Prior Art) It is generally known that paper-like materials made of ion-exchange fibers can be used for air purification filtration, etc. (Japanese Patent Laid-Open No. 68-24091
1, 6B-90541). However, there is no known method for industrially advantageously producing paper-like materials made of recycled ion-exchange fibers.

(発明が解決すべき課題) イオン交換繊維の紙状物を上記のような用途に用いる場
合、カチオン型イオン交換繊維はH型に、アニオン交換
繊維はOH型に再生を行う必要がある。カチオン型イオ
ン交換la紬は通常、その安定性の為にNa型(未再生
型)で出荷されている。これをH型にする為には塩酸等
の強酸を用いて、イオン交換官能基中のNaと酸の持つ
Hを置換してやらなければならない。また同様にアニオ
ン型イオン交換、amは通常、製品荷姿でCI型(未再
生型)である。これをOH型にする為には苛性ソーダ等
の強塩基を用いて、イオン交換官能基中の01と塩基の
持つOHを置換してやらなければならない。
(Problems to be Solved by the Invention) When using paper-like ion-exchange fibers for the above-mentioned purposes, it is necessary to regenerate the cation-type ion-exchange fibers into H-type and the anion-exchange fibers into OH-type. Cation type ion exchange la pongee is usually shipped in Na type (unregenerated type) for its stability. In order to convert this into H type, it is necessary to use a strong acid such as hydrochloric acid to replace Na in the ion exchange functional group with H in the acid. Similarly, anion type ion exchange, am, is usually CI type (unregenerated type) in product packaging. In order to make this into an OH type, it is necessary to use a strong base such as caustic soda to replace 01 in the ion exchange functional group with the OH possessed by the base.

これらの操作を抄紙後に行うと、薬剤を紙状物中の繊維
にムラなくいきわたらせることが技術的に困難であり、
再生を充分に行うことができない。
If these operations are performed after the paper is made, it is technically difficult to spread the chemicals evenly over the fibers in the paper-like material.
Regeneration cannot be performed sufficiently.

そればかりでなく、処理後の薬剤を完全に取り除くこと
は不可能に近い。従ってこの方法では本来のイオン交換
機能を持つ紙状物が得られない。また予め再生型とした
イオン交換繊維材料を通常の工業用水を用いる方法で抄
紙すると、その工程中にイオン交換機能が低下し、使用
できなくなる場合が多い。
Not only that, but it is nearly impossible to completely remove the chemicals after treatment. Therefore, with this method, a paper-like material having the original ion exchange function cannot be obtained. Furthermore, when paper is made from pre-regenerated ion-exchange fiber materials using ordinary industrial water, the ion-exchange function often deteriorates during the process and the paper becomes unusable.

また、イオン交換繊維の紙状物が未再生のカチオン交換
繊維とアニオン交換繊維の両方を含む場合、抄紙後の再
生が不可能である。すなわちこの場合、酸によってカチ
オン交換繊細を再生するとアニオン交換繊維の交換能力
が無くなる。逆に塩基によってアニオン交換繊維を再生
すると、カチオン交換繊維の交換能力が無くなってしま
う。
Furthermore, if the paper-like material of ion exchange fibers contains both unregenerated cation exchange fibers and anion exchange fibers, it is impossible to recycle the paper after papermaking. That is, in this case, when the cation exchange fiber is regenerated by acid, the exchange capacity of the anion exchange fiber is lost. Conversely, when anion exchange fibers are regenerated with a base, the exchange ability of the cation exchange fibers is lost.

本発明の目的は、未再生型イオン交換繊維材料から再生
型イオン交換繊維の紙状物を工業的に有利に製造する方
法を提供することである。本発明者らは、上記のような
問題が、未再生型イオン交換vA維を予め再生処理し、
ついで得られる再生型繊維を特定の方法で抄紙すること
によって解決できることを見いだした。
An object of the present invention is to provide an industrially advantageous method for producing paper-like materials of recycled ion-exchange fibers from unrecycled ion-exchange fiber materials. The present inventors have discovered that the above-mentioned problems can be solved by regenerating unregenerated ion-exchanged vA fibers in advance.
We have discovered that this problem can be solved by paper-making the recycled fibers obtained using a specific method.

(課題を解決するための手段) 本発明は、再生型イオン交換繊維材料と熱接着性繊維バ
インダーを純水を用いて抄紙する方法、及び再生型カチ
オン交換mM材料と再生型アニオン交換繊維材料と熱接
着性la紬状状バインダー純水を用いて抄紙し、熱処理
する方法に関する。
(Means for Solving the Problems) The present invention provides a method for making paper using a recycled ion exchange fiber material and a thermal adhesive fiber binder using pure water, and a method for making paper using a recycled ion exchange fiber material and a recycled anion exchange fiber material. This invention relates to a method of making paper using a heat-adhesive la pongee-like binder and pure water, and then heat-treating it.

本発明に用いられるイオン交換繊維材料は、セルロース
系、ポリスチレン系、ビニロン系、フェノール系、ニト
リル系等の繊維にイオン交換機能を与える官能基を導入
したものであり、従来、種々のものが公知である。
The ion-exchange fiber material used in the present invention is a cellulose-based, polystyrene-based, vinylon-based, phenol-based, nitrile-based, etc. fiber into which a functional group imparting an ion-exchange function is introduced, and various materials are known in the art. It is.

カチオン交換基の代表的なものとしては、弱酸基である
カルボン酸基、強酸であるスルホン酸基ある4級ア電ノ
基等が挙げられる。
Typical examples of the cation exchange group include a carboxylic acid group which is a weak acid group, a sulfonic acid group which is a strong acid, and a quaternary aelectronic group.

本発明において、未再生型とはカチオン交換基において
はLi 、 K、 Na、 Ca、 Sr、 Ba等(
7) 7 /l/ カリあるいはアルカリ土類金属塩型
のものをいい、アニオン交換基においてはCI、Sr 
等のハロゲン等の無機塩型をいう。また再生型とはカチ
オン交換基においてはH型をいい、アニオン交換基にお
いてはOH型をいう。未再生型のアニオン交換繊維の再
生処理は、塩酸、硝酸等の強酸を用いて公知の方法で行
われる。未再生型アニオン交換繊維の再生処理は、苛性
ソーダ等の強塩基を用いて公知の方法で行われる。
In the present invention, the unregenerated type refers to cation exchange groups such as Li, K, Na, Ca, Sr, Ba, etc.
7) 7 /l/ Refers to potash or alkaline earth metal salt type, and in anion exchange groups CI, Sr
Refers to inorganic salt types such as halogens. Moreover, the regenerated type refers to the H type in the case of a cation exchange group, and the OH type in the case of an anion exchange group. The unregenerated anion exchange fiber is regenerated by a known method using a strong acid such as hydrochloric acid or nitric acid. The regeneration treatment of unregenerated anion exchange fibers is carried out by a known method using a strong base such as caustic soda.

再生処理を行うで得られる再生型イオン交換繊維は抄紙
を行うにあたって必要に応じて切断される。繊維が長す
ぎると繊維の配向によって強度のムラが発生しやすい。
The recycled ion-exchange fibers obtained through the recycling process are cut as necessary during papermaking. If the fibers are too long, uneven strength tends to occur due to fiber orientation.

また短すぎると、紙状物からの抜は出しによる発塵の原
因となる。よってその長さは8m〜101mが適当であ
る。
Also, if it is too short, it may cause dust to be generated when the paper material is removed. Therefore, the appropriate length is 8 m to 101 m.

本発明1ζおいて用いられるイオン交換繊維の径は通常
1μm100μである。
The diameter of the ion exchange fiber used in the present invention 1ζ is usually 1 μm and 100 μm.

カチオン交換繊維とアニオン交換繊維の混合された再生
型イオン交換繊維の紙状物を製造する場合は、未再生型
のカチオン交換繊維及びアニオン交換aUaを予めそれ
ぞれ再生処理し、ついで両者を混合し、抄紙される。本
発明に於いて、抄紙に供される再生型イオン交換繊維材
料には、熱接着性繊維状バインダーが加えられる。この
熱接着性繊維状バインダーの例としては、比較的高融点
を持った有機合成a紬を芯成分に、それに比べて低融点
である有機合成繊維を鞘成分とした複合繊維があげられ
る。
When producing a paper-like product made of recycled ion-exchange fibers in which cation-exchange fibers and anion-exchange fibers are mixed, unregenerated cation-exchange fibers and anion-exchange aUa are each recycled in advance, and then the two are mixed. Paper is made. In the present invention, a thermoadhesive fibrous binder is added to the recycled ion exchange fiber material used for paper making. An example of this heat-adhesive fibrous binder is a composite fiber in which a core component is organic synthetic a pongee having a relatively high melting point, and a sheath component is an organic synthetic fiber having a relatively low melting point.

また本発明において、抄紙に供される再生型イオン交換
繊維材料には、必要に応じてイオン交換性の官能基を有
しない天然繊維、有機合成繊維、無機繊維等が加えられ
る。例えば、再生型イオン交換繊維材料に比べて繊維径
の細い繊維を加えると、得られる紙状物を空気浄化用ろ
過材に使用する場合、空気中の微小粒子を捕集する能力
を向上させることができる。この目的の為に加えられる
材料として、ガラス!a紬がサブミクロン径のものを容
易に製造でき、かつ良好な強度、剛性、加工性を有する
点で好ましい。この目的で加えられる繊維の径は、0.
1〜10μが望ましい。
Further, in the present invention, natural fibers, organic synthetic fibers, inorganic fibers, etc. that do not have ion-exchangeable functional groups are added to the recycled ion-exchange fiber material used for paper making, as necessary. For example, adding fibers with a smaller diameter than recycled ion-exchange fiber materials can improve the ability to capture microparticles in the air when the resulting paper-like material is used as a filter material for air purification. I can do it. As a material added for this purpose, glass! A pongee is preferred because it can be easily produced with a submicron diameter and has good strength, rigidity, and workability. The diameter of the fibers added for this purpose is 0.
1 to 10μ is desirable.

本発明において、抄紙は、基本的に湿式の合成繊維紙の
製法に準じて行われる。すなわち、適当な長さに調整さ
れたaI#材料を水中に分散し、ろ過捕集、乾燥、熱処
理により熱接着性Ji5Il##iを部分的に接着させ
、所定の厚さの紙状物を製造する方法である。
In the present invention, paper making is basically carried out in accordance with a wet synthetic fiber paper manufacturing method. That is, aI# material adjusted to an appropriate length is dispersed in water, and heat-adhesive Ji5Il##i is partially adhered through filtration collection, drying, and heat treatment, and a paper-like material of a predetermined thickness is formed. This is a method of manufacturing.

本発明の製造法に於いて使用される純水はイオン交換、
蒸留、膜分離等の方法によって製造されるものである。
The pure water used in the production method of the present invention is ion exchanged,
It is manufactured by methods such as distillation and membrane separation.

もっとも経済的に純水を得る方法として、イオン交換法
が挙げられる。この場合、純水はカチオン交換樹脂相、
脱炭酸相、アニオン交換樹脂相に、効果的に接触させる
ことによりて得られる。本発明の主旨に従えば、抄紙時
に繊維に接触する純水には、実質的にイオン性の物質が
含まれていないことが望ましい。しかるに、工業的には
、繊維類、環境、装置壁等からのイオン溶出、混入によ
って水質の低下が起りうる。その対策としては、たとえ
ば、製造ライン中にイオン交換樹脂、吸着材等のイオン
物質捕捉材を導入する方法等により一定水質を維持する
ことができる。
The most economical method for obtaining pure water is the ion exchange method. In this case, pure water has a cation exchange resin phase,
It is obtained by effectively bringing the decarboxylation phase into contact with the anion exchange resin phase. According to the gist of the present invention, it is desirable that the pure water that comes into contact with the fibers during papermaking does not substantially contain ionic substances. However, industrially, water quality may deteriorate due to ion elution or contamination from fibers, the environment, equipment walls, etc. As a countermeasure, for example, a constant water quality can be maintained by introducing an ionic substance trapping material such as an ion exchange resin or an adsorbent into the production line.

そのようにしてもなお、場合により、再生型イオン交換
繊維にイオン成分が吸着し、その性能の損失が起ること
がある。その損失は、できるだけ低く、たとえば、6%
程度に抑えることが望ましい。
Even so, in some cases, ionic components may be adsorbed to the regenerated ion-exchange fiber, resulting in a loss of its performance. The loss is as low as possible, for example 6%
It is desirable to keep it to a moderate level.

本発明による紙状物でつくったフィルターの空気等の流
体清浄機能は、フィルター中のイオン交換繊維中の官能
基の5%程度が飽和されてもほとんど損なわれない。
The ability of the filter made of the paper-like material of the present invention to clean fluids such as air is hardly impaired even if about 5% of the functional groups in the ion exchange fibers in the filter are saturated.

本発明の製造法において使用される純水の水質は、抄紙
時に実際にイオン交換繊維に触れる水の上限許容イオン
濃度を計算によって定め、その水質が維持できるような
水質とすることが望ましい。
The quality of the pure water used in the production method of the present invention is preferably such that the upper limit permissible ion concentration of the water that actually comes into contact with the ion-exchange fibers during paper making is determined by calculation, and the water quality is such that this water quality can be maintained.

抄紙水の上限許容イオン濃度は以下のようにして求める
ことができる。上限許容イオン濃度−(分散液中のイオ
ン交換繊維の量)×(イオン交換繊維単位量あたりの総
交換容量)x(0,05)/(分散液量) 抄紙装置内に分散液と繊維類、各穏添加物を入れた状態
でのイオン濃度が上記の上限許容イオン濃度以下1ζな
るように給水の水質を決定すれば良い。
The upper limit permissible ion concentration of papermaking water can be determined as follows. Upper limit permissible ion concentration - (amount of ion exchange fibers in the dispersion liquid) x (total exchange capacity per unit amount of ion exchange fibers) x (0,05) / (amount of dispersion liquid) Dispersion liquid and fibers in the paper machine The quality of the water supply may be determined so that the ion concentration with each moderating additive added is 1ζ below the upper limit allowable ion concentration.

これらの水質決定の具体的な例は実施例によって説明す
る。本発明において使用する純水には、上記程度のイオ
ンを含む水も含まれる。
Specific examples of these water quality determinations will be explained by examples. The pure water used in the present invention also includes water containing ions at the above level.

本製造方法を実施するにあたって、使用する抄紙機を給
水に用いる純水によって洗浄することが必要である。洗
浄方法としては化学洗浄の後に純水を用いて洗浄を行う
方法、純水によるウォーターフラッシング等の方法が考
えられる。また使用中の純水の水質は電気伝導度計、シ
リカメーター等で常時監視することが必要である。そし
て水質が上限濃度に近づいてきた場合は、分散液を再び
イオン交換装置によって処理するかもしくは、純度の高
い純水の添加によってイオン濃度を薄める等の適切な処
置を行うことが必要である。
In carrying out this manufacturing method, it is necessary to wash the paper machine used with pure water used for water supply. Possible cleaning methods include chemical cleaning followed by cleaning using pure water, water flushing with pure water, and the like. Additionally, the quality of pure water in use must be constantly monitored using an electrical conductivity meter, silica meter, etc. If the water quality approaches the upper limit concentration, it is necessary to take appropriate measures such as treating the dispersion again with an ion exchange device or diluting the ion concentration by adding highly purified water.

本発明の抄紙法に於いては、まずm細長の調整された、
イオン交換繊維、熱接着性m細状バインダー、必要に応
じてその他のm紬を入れ、分散させる。再生型繊維は再
生時に用いた薬剤が残っていないように上記の純水によ
って充分に洗浄しておくことが必要である。また同様に
イオン交換繊維以外の繊維、添加物等にもイオン性物質
が付着していないことを確認することが肝要である。こ
こで、イオン性の物質が付着している場合は、同様に充
分に洗浄を行う必要がある。
In the paper making method of the present invention, firstly, a paper having an adjusted length of m,
Add ion-exchange fibers, a heat-adhesive thin binder, and other pongee as necessary and disperse. It is necessary to thoroughly wash the regenerated fiber with the above-mentioned pure water so that no chemicals used during regeneration remain. Similarly, it is important to confirm that ionic substances are not attached to fibers other than ion exchange fibers, additives, etc. Here, if ionic substances are attached, it is necessary to perform thorough cleaning as well.

繊維分散時に、有機系等の分散剤を用いることは地合の
良好な紙状物を得るために有効である。
When dispersing the fibers, it is effective to use an organic dispersant or the like to obtain a paper-like material with good texture.

たとえば、非イオン系界面活性剤が用いられる。For example, nonionic surfactants are used.

非イオン系界面活性剤としては現在、ポリオキシエチレ
ン誘導体のものが入手しやすい。
Polyoxyethylene derivatives are currently readily available as nonionic surfactants.

分散液中に充分に分散された繊維材料は、公知の方法で
ろ過捕集(抄紙)され、紙状に整形、加工され、乾燥さ
れる。乾燥温度が上昇しすぎると、イオン交換繊維の分
解、変質が始まることがある。
The fiber material sufficiently dispersed in the dispersion liquid is collected by filtration (paper making) by a known method, shaped and processed into a paper shape, and dried. If the drying temperature rises too high, the ion exchange fibers may begin to decompose and change in quality.

その為に加熱箸こは、精密に制御された電気熱を利用す
る方法、蒸気などの一定温度を持った熱媒によっておこ
なう方法が望ましい。望ましい乾燥温度は100℃〜1
80℃である。
For this reason, it is desirable to heat chopsticks using a method that uses precisely controlled electric heat, or a method that uses a heating medium such as steam that has a constant temperature. Desirable drying temperature is 100℃~1
The temperature is 80°C.

本製造方法に用いる抄紙機械の材質は問わないが、充分
に防食処理が行われていることが必要である。これは金
属の腐食生成物イオンがイオン交換mMの機能を阻害す
ることがある為である。対策トしてはステンレススチー
ルの使用、樹脂、ガラス、はうろう等のライニングを行
うなどの方法が考えられる。
Although the material of the paper machine used in this manufacturing method does not matter, it is necessary that the material be sufficiently anti-corrosive. This is because metal corrosion product ions may inhibit the function of ion exchange mM. Possible countermeasures include using stainless steel, lining with resin, glass, wax, etc.

(本発明の効果) 本発明によれば、本来のイオン交換機能を損なうこと無
く再生型イオン交換繊維の紙状物を得ることができる。
(Effects of the Present Invention) According to the present invention, a paper-like material made of recycled ion exchange fibers can be obtained without impairing the original ion exchange function.

又、本発明によれば、未再生型カチオン交換繊維材料と
未再生型アニオン交換繊維材料から、両者の再生*、i
l@を混合含有する紙状物を得ることができる。
Further, according to the present invention, both recycled *, i
A paper-like material containing a mixture of l@ can be obtained.

本発明方法によって得られる再生型イオン交換m維紙状
物は、種々の用途に用いられるが、特にカチオンとアニ
オンの両方の再生型イオン交換繊維を含むものは、塩類
を固体または溶液微粒子として含有する空気の浄化用材
として適している。
The regenerated ion-exchange fiber paper obtained by the method of the present invention is used for various purposes, but especially those containing both cationic and anionic regenerated ion-exchange fibers contain salts as solid or solution fine particles. It is suitable as an air purification material.

(実施例) 以下の実施例によって本発明を具体的に説明するが、本
発明はこれらに限定される物ではない。
(Examples) The present invention will be specifically explained with reference to the following examples, but the present invention is not limited thereto.

実施例1 再生されたアニオン、カチオン両繊維を含有する紙状物
の製造 丸網単網コンビネーシ、ン型抄紙機を用い、イオン交換
繊維の紙状物の抄紙を行った。使用した繊維の種類と量
は以下のようである。
Example 1 Production of Paper-like Material Containing Regenerated Both Anionic and Cationic Fibers A paper-like material made of ion-exchange fibers was produced using a round-mesh and single-mesh combination paper machine. The types and amounts of fibers used are as follows.

再生型アニオン型イオン交換am    8.54再生
型カチオン型イオン交換a維   8,5#熱接着性繊
維状バインダー(ポリビニルアルコール系)0.7# ガラス繊m               2.8#こ
れらの繊維と若干量の分散剤(非イオン系)と粘剤(高
分子系)を加え、2mの純水Iζ分散させた。その後こ
の液を純水で5倍に薄めながら抄紙を行った。紙状物の
日付量は約180 Si/m2であった。
Regenerated anion type ion exchange am 8.54 Regenerated cation type ion exchange a fiber 8.5# Heat adhesive fibrous binder (polyvinyl alcohol type) 0.7# Glass fiber m 2.8# These fibers and some amount A dispersant (nonionic type) and a sticky agent (polymer type) were added, and 2 m of pure water Iζ was dispersed. Thereafter, paper making was performed while diluting this liquid 5 times with pure water. The paper content was approximately 180 Si/m2.

ここでイオン交換繊維の交換容量はアニオン、カチオン
ともに約4mol/#であるので、許容される最大のイ
オン濃度は (4mol/#)X (8,5+8.51)X (0,
05)/(2X5L)−1,4x l Q  mol/
L となる。この水質の電気伝導度は約10μS/3である
と考えられる。
Here, since the exchange capacity of the ion exchange fiber is approximately 4 mol/# for both anions and cations, the maximum allowable ion concentration is (4 mol/#)X (8,5+8.51)X (0,
05)/(2X5L)-1,4x l Q mol/
It becomes L. The electrical conductivity of this water quality is considered to be about 10 μS/3.

給水にはJIS  B8228rボイラ給水及びボイラ
水の水質」に規定される、最高使用圧カフ5Kg f 
/ s2の貫流ボイラーの給水の水質と同等の脱イオン
水を用いた。この給水の電気伝導度は約0.8μ5yc
xである。
For water supply, the maximum working pressure cuff 5kg f is specified in JIS B8228r Boiler Supply Water and Boiler Water Quality.
/ s2 deionized water of the same quality as the feed water of a once-through boiler was used. The electrical conductivity of this water supply is approximately 0.8μ5yc
It is x.

乾燥はスチームを熱源とした乾燥機で、120℃で行っ
た。また分散液の電気伝導度は抄紙終了時点で約7μS
 / ts  であり、上限許容イオン濃度を越えてい
なかったことが明らかにされた。
Drying was performed at 120° C. using a dryer using steam as a heat source. Furthermore, the electrical conductivity of the dispersion liquid is approximately 7 μS at the end of paper making.
/ts, and it was revealed that the upper limit permissible ion concentration was not exceeded.

原料に用いたイオン交換繊維及び完成した紙状物の総交
換容量をNaC1の交換で測定したところ以下のように
、交換能力が保存されていることがわかった。
When the total exchange capacity of the ion-exchange fiber used as a raw material and the completed paper-like material was measured by exchange of NaCl, it was found that the exchange capacity was preserved as shown below.

アニオン繊維、抄紙前      4.2 meq15
1カチオン繊維、抄紙前      8.9 m697
9紙状物アニオン交換容量     4.1 meq1
51紙状物カチオン交換容量     8.7 meq
/y8
Anion fiber, before paper making 4.2 meq15
1 cationic fiber, before paper making 8.9 m697
9 Paper-like anion exchange capacity 4.1 meq1
51 Paper-like material cation exchange capacity 8.7 meq
/y8

Claims (2)

【特許請求の範囲】[Claims] (1)再生型イオン交換繊維材料と熱接着性繊維状バイ
ンダーを純水を用いて抄紙し、熱処理する紙状物の製造
方法。
(1) A method for producing a paper-like product in which a recycled ion-exchange fiber material and a heat-adhesive fibrous binder are made into paper using pure water and then heat-treated.
(2)再生型カチオン交換繊維材料と再生型アニオン交
換繊維と熱接着性繊維状バインダーを純水を用いて抄紙
し、熱処理する請求項(1)記載の方法。
(2) The method according to claim (1), wherein the recycled cation exchange fiber material, the recycled anion exchange fiber, and the heat-adhesive fibrous binder are made into paper using pure water and then heat treated.
JP25964689A 1989-10-03 1989-10-03 Production of paperlike material made of regeneration type ion exchange fiber Pending JPH03118813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25964689A JPH03118813A (en) 1989-10-03 1989-10-03 Production of paperlike material made of regeneration type ion exchange fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25964689A JPH03118813A (en) 1989-10-03 1989-10-03 Production of paperlike material made of regeneration type ion exchange fiber

Publications (1)

Publication Number Publication Date
JPH03118813A true JPH03118813A (en) 1991-05-21

Family

ID=17336943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25964689A Pending JPH03118813A (en) 1989-10-03 1989-10-03 Production of paperlike material made of regeneration type ion exchange fiber

Country Status (1)

Country Link
JP (1) JPH03118813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621072A2 (en) * 1993-04-21 1994-10-26 Nippon Rensui Co. Demineralization apparatus comprising a diluting chamber packed with a cloth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621072A2 (en) * 1993-04-21 1994-10-26 Nippon Rensui Co. Demineralization apparatus comprising a diluting chamber packed with a cloth
EP0621072A3 (en) * 1993-04-21 1994-12-28 Nippon Rensui Kk Demineralization apparatus and cloth for packing diluting chamber of the demineralization apparatus.

Similar Documents

Publication Publication Date Title
JP6805658B2 (en) Manufacturing method of fine fibrous cellulose redispersion slurry and fine fibrous cellulose redispersion slurry
CN101484636B (en) Sheetlike products and works
HRP20200576T1 (en) Method for forming a fire resistant cellulose product, and associated apparatus
WO2000007696A1 (en) Chemical filter unit and gas purification system
JP2013234405A (en) Radioactive nuclide adsorptive regenerated cellulosic fiber, method for producing the same, fiber structure, and filtering material
JPH03118813A (en) Production of paperlike material made of regeneration type ion exchange fiber
CN102912687B (en) A kind of fuel filter filter paper containing modification infusorial earth
CA1265535A (en) Removal of impurities from amines
JPH04244289A (en) Treatment of washing water
JP6239836B2 (en) Radioactive cesium adsorbent and method for purifying radioactive polluted water using the same
JP2020164725A (en) Coating peeling agent and coating peeling method
JP7346878B2 (en) Method for producing phosphorus oxo-oxidized pulp
KR102044218B1 (en) Heat Exchange Element For Exhaust Heat Recovery Device
JPH07204457A (en) Desulfurization of exhaust gas
RU2050362C1 (en) Method for production of cellulose powder material
JPH06116893A (en) Production of paper of inorganic fiber
US2573743A (en) Method of manufacturing colloidal inorganic oxide aquasols
JP2020019859A (en) Method for producing cellulose nanofiber
JPS6219247A (en) Method for eliminating colloidal substance
JPS62247820A (en) Method for filtering gas
JPH03294342A (en) Production of sheet-shaped material containing recyclable type cation-exchange fiber
TW419421B (en) Ionic substance removing material for use in super-clean room and method of manufacturing the material
JPH03151050A (en) Ion exchangeable sheet-like material
JP7441429B2 (en) Ion exchange fiber and ion exchange filter containing the fiber
JP2000044705A (en) Preparation of ion-exchange sheet