JPH03118549A - Production of organic photosensitive body for electrophotography - Google Patents

Production of organic photosensitive body for electrophotography

Info

Publication number
JPH03118549A
JPH03118549A JP25657389A JP25657389A JPH03118549A JP H03118549 A JPH03118549 A JP H03118549A JP 25657389 A JP25657389 A JP 25657389A JP 25657389 A JP25657389 A JP 25657389A JP H03118549 A JPH03118549 A JP H03118549A
Authority
JP
Japan
Prior art keywords
resin
heat treatment
drying
thermosetting resin
reactive groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25657389A
Other languages
Japanese (ja)
Inventor
Yasushi Mizuta
泰史 水田
Takeshi Arakawa
健 荒川
Narishira Tanaka
作白 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP25657389A priority Critical patent/JPH03118549A/en
Priority to EP19900310488 priority patent/EP0420580A3/en
Priority to KR1019900015256A priority patent/KR910006787A/en
Publication of JPH03118549A publication Critical patent/JPH03118549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To assure the drying conditions under which the photosensitive body having excellent characteristics is obtainable and to know the conditions in a short period of time by investigating the decrease in the reactive groups possessed by a thermosetting resin contained in a resin by using an IR absorption spectrum method. CONSTITUTION:The resin layer formed by applying a coating liquid contg. a binder resin consisting of a thermoplastic resin or thermosetting resin and a solvent and drying the coating is progressed in crosslinking by a heat treatment at the time of drying, by which the cured film is formed. The completion of the heat treating conditions is known by using the IR absorption spectrum method as the means of knowing the above-mentioned conditions. Namely, the drying conditions are set by investigating the decrease of the reactive groups possessed by the thermosetting resin included in the resin layer by using the IR absorption spectrum method. The measurement of the decrease of the reactive groups is preferably executed by comparing the reactive groups with the other groups, the IR absorption of which is not influenced by the heat treatment, for example, alkyl groups, such as methyl groups.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子写真用有機感光体や製造方法に関し、詳
しくは外層に有機感光層が形成されている電子写真用有
機感光体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an electrophotographic organic photoreceptor and a manufacturing method, and more specifically, a method for manufacturing an electrophotographic organic photoreceptor in which an organic photosensitive layer is formed as an outer layer. Regarding.

(従来の技術) この種の感光体は、一般に導電性基体の表面に、結着樹
脂、顔料、溶媒等を混合して調製される塗布液を塗布、
乾燥することにより作製されている。
(Prior Art) This type of photoreceptor generally involves coating the surface of a conductive substrate with a coating liquid prepared by mixing a binder resin, a pigment, a solvent, etc.
It is made by drying.

ところで、上記塗布液を塗布、乾燥して形成される感光
層の層構造としては従来より種々のものが提案されてお
り、例えば、電荷発生材料を含む電荷発生層と電荷輸送
材料を含む電荷輸送層とを積層し、さらにその外面に表
面保護層を設けた構成のものが提案されている。
By the way, various layer structures have been proposed for the photosensitive layer formed by coating and drying the above coating solution. A structure has been proposed in which a layer is laminated and a surface protective layer is further provided on the outer surface of the layer.

そして、上記した積層型の感光層を有する感光体におい
て、表面保護層は例えば、熱硬化性シリコーン樹脂を主
成分とする塗布液を塗布し、加熱硬化させことにより形
成されている。ここで、塗布液の熱処理工程は、熱硬化
性樹脂を充分に硬化させるために行われるもので、この
熱処理が不十分であると表面硬度が低下するばかりか、
得られる感光体の感度、繰り返し特性等種々の特性が低
下するものである。
In the photoreceptor having the laminated type photoreceptor layer described above, the surface protective layer is formed, for example, by applying a coating liquid containing a thermosetting silicone resin as a main component and curing it by heating. Here, the heat treatment process of the coating liquid is performed to sufficiently harden the thermosetting resin, and if this heat treatment is insufficient, not only will the surface hardness decrease,
Various properties such as sensitivity and repeatability of the resulting photoreceptor are deteriorated.

従って、熱処理は充分行われる必要があり、従来ではそ
の熱処理時間を決定するために、主に熱処理時間と表面
保護層の鉛筆硬度との関係を測定することによって行っ
ていた。すなわち、熱処理によって樹脂組成物は架橋が
進み、その架橋程度と表面保護層の硬度との間には相関
関係があると思われるので、熱処理時間と表面保護層の
鉛筆硬度との相関関係を予め求めておき、所定の鉛筆硬
度を有する時点で熱処理は充分であると判断していたの
である。
Therefore, the heat treatment must be carried out sufficiently, and conventionally, the heat treatment time has been determined mainly by measuring the relationship between the heat treatment time and the pencil hardness of the surface protective layer. In other words, crosslinking of the resin composition progresses through heat treatment, and there seems to be a correlation between the degree of crosslinking and the hardness of the surface protective layer. It was determined that the heat treatment was sufficient when the pencil hardness reached a predetermined value.

(発明が解決しようとする課題) しかしながら、所定時間熱処理を行い、表面保護層の鉛
筆硬度が安定したと判断される場合でも、得られた感光
体の特性を測定すると劣っている場合があり、従って、
感度特性等に優れた感光体を得るためには、鉛筆硬度の
他に、熱処理時間と感度との関係及び熱処理時間と繰り
返し特性との関係をも測定する必要があって面倒である
と共に、生産性に劣っていた。
(Problems to be Solved by the Invention) However, even if it is determined that the pencil hardness of the surface protective layer is stable after heat treatment for a predetermined period of time, the characteristics of the obtained photoconductor may be inferior when measured. Therefore,
In order to obtain a photoconductor with excellent sensitivity characteristics, it is necessary to measure not only the pencil hardness but also the relationship between heat treatment time and sensitivity and the relationship between heat treatment time and repeatability characteristics, which is troublesome and reduces production time. It was inferior in sex.

本発明は、上記の実状に着目してなされたものであり、
その目的とすることろは、熱処理の完了を確実に知るこ
とができる方法を用いることによって、感度、繰り返し
特性等の特性がばらつくことなく安定して、しかも生産
性よく電子写真用有機感光体を製造することができる方
法を提供することにある。
The present invention has been made focusing on the above-mentioned actual situation,
The purpose of this is to produce electrophotographic organic photoreceptors with high productivity and stability without variations in characteristics such as sensitivity and repeatability by using a method that can reliably determine the completion of heat treatment. The purpose of the invention is to provide a method for manufacturing the same.

(課題を解決するための手段) 本発明の電子写真用有機感光体の製造方法は、導電性基
体の表面に、熱硬化性樹脂からなる結着樹脂及び溶媒を
含む塗布液を塗布、乾燥することにより形成される樹脂
層が設けられている電子写真用有機感光体の製造方法で
あって、該熱硬化性樹脂が有する反応性基の減少を赤外
吸収スペクトル法を使用して調べることにより、該乾燥
条件を設定することを特徴とし、そのことにより上記目
的が達成される。上記熱硬化性樹脂は、シリコーンオリ
ゴマーを主成分とするシリコーン樹脂であることが好ま
しい。
(Means for Solving the Problems) The method for producing an electrophotographic organic photoreceptor of the present invention includes applying a coating solution containing a binder resin made of a thermosetting resin and a solvent to the surface of a conductive substrate and drying the coating solution. A method for producing an electrophotographic organic photoreceptor provided with a resin layer formed by , the drying conditions are set, thereby achieving the above object. The thermosetting resin is preferably a silicone resin containing silicone oligomer as a main component.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は種々の積層型の感光体の製造方法に適用でき、
例えば、導電性基体の表面に電荷輸送層、電荷発生層、
表面保護層をこの順で積層して形成される感光体に適用
することができる。
The present invention can be applied to various methods of manufacturing laminated photoreceptors,
For example, a charge transport layer, a charge generation layer,
It can be applied to a photoreceptor formed by laminating surface protective layers in this order.

それぞれの樹脂層は、熱可塑性樹脂又は熱硬化性樹脂か
らなる結着樹脂及び溶媒を含む塗布液を塗布、乾燥する
ことにより形成されている。本発明では、複数層の樹脂
層のうちいずれかの樹脂層が熱硬化性樹脂を含む塗布液
を塗布、乾燥して形成されるものに適用される。上記塗
布液の乾燥は、通常塗布液が塗布された導電性基体を乾
燥炉中に放置することにより行われる。熱処理温度は通
常60〜130’Cである。
Each resin layer is formed by applying and drying a coating liquid containing a binder resin made of a thermoplastic resin or a thermosetting resin and a solvent. The present invention is applied to a resin layer in which one of a plurality of resin layers is formed by applying and drying a coating liquid containing a thermosetting resin. The coating liquid is usually dried by leaving the conductive substrate coated with the coating liquid in a drying oven. The heat treatment temperature is usually 60-130'C.

そして、その乾燥時の熱処理によって各樹脂層は架橋が
進行し硬化被膜が形成される。本発明では、熱処理条件
の完了を知る手段として、赤外吸収スペクトル法を使用
して行うものである。すなわち、樹脂層に含まれる熱硬
化性樹脂が有する反応性基の減少を赤外吸収スペクトル
法を使用して調べることにより、該乾燥条件を設定する
ものである。反応性基の減少の測定は、熱硬化性樹脂が
有する他の基(赤外吸収スペクトル法によって検出可能
な基)と比較して行うのが好ましい。熱硬化性樹脂が有
する他の基としては、熱処理によってその赤外吸収が影
響されない基、例えば、メチル基等のアルキル基が好ま
しい。
Then, crosslinking progresses in each resin layer by heat treatment during drying, and a cured film is formed. In the present invention, infrared absorption spectroscopy is used as a means of determining the completion of heat treatment conditions. That is, the drying conditions are determined by examining the reduction in reactive groups contained in the thermosetting resin contained in the resin layer using infrared absorption spectroscopy. The reduction in reactive groups is preferably measured by comparing with other groups (groups detectable by infrared absorption spectroscopy) possessed by the thermosetting resin. Other groups included in the thermosetting resin are preferably groups whose infrared absorption is not affected by heat treatment, for example, alkyl groups such as methyl groups.

熱硬化性樹脂としてシリコーンオリゴマーを主成分とす
るシリコーン樹脂を用いて形成される表面保護層につい
て例示すると、樹脂層の一3iOHの吸収ピーク(34
00cm” )と−CH3の吸収ピーク(2900cm
−’)の比をとり、その比の熱処理時間の経時変化を測
定し、その比がほぼ一定となった時点を熱処理の完了時
期と判断すればよい。すなわち、シリコーン樹脂は3官
能のアルキルシランを主な出発原料としているためシラ
ノール基(−3iQH)を有しており、このシラノール
基が熱処理時に、脱水縮合することにより−3to S
 i−となるため水酸基(−OH)の赤外吸収が減少し
、方メチル基(−CH3)は熱処理によってその赤外吸
収は変化することがないので、両者の比を求めることに
より樹脂の硬化が完了した時点を確実に知ることができ
るのである。
To exemplify a surface protective layer formed using a silicone resin containing silicone oligomer as a main component as a thermosetting resin, the absorption peak of 3iOH (34
00cm”) and -CH3 absorption peak (2900cm
-'), measure the change in the heat treatment time over time, and determine the time when the heat treatment is completed when the ratio becomes approximately constant. That is, since silicone resin uses trifunctional alkylsilane as the main starting material, it has a silanol group (-3iQH), and this silanol group undergoes dehydration condensation during heat treatment to form -3toS.
The infrared absorption of the hydroxyl group (-OH) decreases because it becomes i-, and the infrared absorption of the methyl group (-CH3) does not change due to heat treatment. It is possible to know with certainty when the process has been completed.

このようにして樹脂層の熱処理時間を決定することがで
き、熱処理時間を予め設定することによって所望の特性
を有する感光体を比較的短時間で作製することができる
In this way, the heat treatment time of the resin layer can be determined, and by setting the heat treatment time in advance, a photoreceptor having desired characteristics can be produced in a relatively short time.

なお、上記ではシリコーン樹脂を含有する樹脂層につい
て例示したが、これに限定されず、他の熱硬化性樹脂を
含有する樹脂層についても同様に実施することができ、
その場合樹脂層の反応性基の吸収ピークと、−CH3等
の赤外スペクトル法によって測定可能な他の基の吸収ピ
ークの比を求めることにより同様に行うことができる。
In addition, although the resin layer containing a silicone resin was illustrated above, it is not limited to this, and the same method can be applied to a resin layer containing other thermosetting resins.
In this case, the same method can be carried out by determining the ratio of the absorption peak of the reactive group in the resin layer to the absorption peak of another group such as -CH3 that can be measured by infrared spectroscopy.

他の結着樹脂としては従来より感光体塗布液に使用され
ている全てのものが使用可能であり、例えば、ポリエス
テル、アルキッド樹脂、ポリアミド、ポリウレタン、ア
クリル変性ウレタン樹脂、エポキシ樹脂、ポリカーボネ
ート、ボリアリレート、ポリスルホン、ジアリルフタレ
ート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポ
リエーテルm脂・フェノール樹脂等があげられ、その場
合反応性基としでは水酸基、カルボキシル基、アミ7基
、インシアネート基、エポキシ基等である。また、複数
種の熱硬、化性樹脂を併用してもよく、その場合には、
熱処理時間が長(かかる樹脂について上記のように測定
するのが好ましい。
As other binder resins, all those conventionally used in photoreceptor coating solutions can be used, such as polyester, alkyd resin, polyamide, polyurethane, acrylic modified urethane resin, epoxy resin, polycarbonate, and polyarylate. , polysulfone, diallyl phthalate resin, ketone resin, polyvinyl butyral resin, polyether resin, phenol resin, etc. In such cases, the reactive groups include hydroxyl group, carboxyl group, amide group, incyanate group, epoxy group, etc. be. In addition, multiple types of thermosetting and curing resins may be used in combination, in which case,
The heat treatment time is long (preferably such resins are measured as described above).

また、表面保護層に限らず、電荷輸送層、電荷発生層の
熱処理時間を決定する場合にも本発明は適用できる。ま
た、上記のように熱処理時間を決定するにあたっては、
感光体と同様な構成の試験片を別途作製しておき、この
試験片について上記のように試験してもよい。さらに、
FT−IRのRAS法を利用することにより本発明は製
品検査としても利用できる。
Further, the present invention is applicable not only to the case of determining the heat treatment time of the charge transport layer and the charge generation layer, but also to the case of determining the heat treatment time of the charge transport layer and the charge generation layer. In addition, when determining the heat treatment time as mentioned above,
A test piece having a configuration similar to that of the photoreceptor may be prepared separately, and this test piece may be tested as described above. moreover,
By using the FT-IR RAS method, the present invention can also be used for product inspection.

(実施例) 以下、本発明を実施例に基づいて具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained based on Examples.

大迦l引と ボリアリレート(ユニチカ社製、商品名U−100)1
00重量m、4− (N、 N−ジエチルアミノ)ベン
ズアルデヒド−N、 N−ジフェニルヒドラゾン100
重量部及び塩化メチレン(CH2CI2) 900重量
部を混合して電荷輸送層用塗布液を調製し、この塗布液
を外径78111111X長さ340mmのアルミニウ
ム管上に塗布した後、100°Cで30分間加熱乾燥さ
せて膜厚20μmの電荷輸送層を形成した。
Ohka lubricant and boria arylate (manufactured by Unitika, product name U-100) 1
00 weight m, 4-(N, N-diethylamino)benzaldehyde-N, N-diphenylhydrazone 100
A charge transport layer coating solution was prepared by mixing parts by weight and 900 parts by weight of methylene chloride (CH2CI2), and this coating solution was coated on an aluminum tube with an outer diameter of 78111111 x a length of 340 mm, and then heated at 100°C for 30 minutes. A charge transport layer having a thickness of 20 μm was formed by heating and drying.

次に、上記電荷輸送層上に、2.7−ジブロモアンサン
スロン(IC1社製) 80重ffi部、メタルフリー
フタロシアニン(BASF社製)20重量部、ポリ酢酸
ビニル(日本合成化学社製、商品名YS−N) 50重
量部及びジアセトンアルコール2000重量部を混合し
て得られる電荷発生層用塗布液を塗布し、上記と同様の
条件で乾燥させて膜厚0.5μmの電荷発生層を形成し
た。
Next, on the charge transport layer, 80 parts by weight of 2,7-dibromoanthanthrone (manufactured by IC1), 20 parts by weight of metal-free phthalocyanine (manufactured by BASF), and polyvinyl acetate (manufactured by Nippon Gosei Kagaku Co., Ltd., commercially available) A charge generation layer coating solution obtained by mixing 50 parts by weight of YS-N) and 2000 parts by weight of diacetone alcohol was applied and dried under the same conditions as above to form a charge generation layer with a thickness of 0.5 μm. Formed.

次に、0.02N塩酸s7.4重ffi部とイソプロピ
ルアルコール86重量部とを混合し、上記混合液の液温
を20〜25°Cに保ちつつ攪拌しながら、メチルトリ
メトキンシラン80重量部及びグリシドキシプロビルト
リメトキシシラン20重量部を少しづつ滴下した後、室
温に1時間放置することによってシラン加水分解物溶液
を得た。
Next, 7.4 parts by weight of 0.02N hydrochloric acid s and 86 parts by weight of isopropyl alcohol were mixed, and while stirring and maintaining the temperature of the mixture at 20 to 25°C, 80 parts by weight of methyltrimethquine silane was mixed. After dropping 20 parts by weight of glycidoxypropyltrimethoxysilane little by little, the mixture was left to stand at room temperature for 1 hour to obtain a silane hydrolyzate solution.

そして、このシラン加水分解物溶液に、平均重合度20
00のポリ酢酸ビニル10重量部、酢酸20重量部、硬
化剤としてのトリエチルアミン0.5重を部、導電性付
与剤としてのアンチモンドープ酸化錫微分末(住友セメ
ント社製)50重量部及びシリコーン系界面活性剤0.
3重量部を添加して表面保護層用塗布液を調製し、この
表面保護層用塗布液を上記電荷輸送層上に塗布し、12
0°Cで表1に示す所定時間加熱硬化させて膜厚2.5
μmのシリコーン樹脂製表面保護層を形成し、積層型感
光層を有するドラム型の電子写真用有機感光体を作製し
た。
Then, this silane hydrolyzate solution was added with an average polymerization degree of 20
00 polyvinyl acetate, 20 parts by weight of acetic acid, 0.5 parts by weight of triethylamine as a hardening agent, 50 parts by weight of antimony-doped tin oxide differential powder (manufactured by Sumitomo Cement Co., Ltd.) as a conductivity imparting agent, and silicone-based Surfactant 0.
3 parts by weight was added to prepare a surface protective layer coating solution, and this surface protective layer coating solution was coated on the charge transport layer, and 12 parts by weight were added.
Cured by heating at 0°C for the predetermined time shown in Table 1 to obtain a film thickness of 2.5
A drum-shaped electrophotographic organic photoreceptor having a laminated photosensitive layer was prepared by forming a surface protective layer made of silicone resin with a thickness of μm.

ナオ、ポリ酢酸ビニルは、酢酸ビニルモノマーをメチル
アルコールで希釈し、重合開始剤としてアゾビスイソブ
チロニトリル(AIBN)を使用して、溶液重合法によ
って作製した。平均重合度の調整は、触媒量、溶媒量等
を適宜コントロールすることにより行った。
Polyvinyl acetate was produced by a solution polymerization method by diluting vinyl acetate monomer with methyl alcohol and using azobisisobutyronitrile (AIBN) as a polymerization initiator. The average degree of polymerization was adjusted by appropriately controlling the amount of catalyst, amount of solvent, etc.

上記表面保護層を熱処理する際に、熱処理時間と表面保
護層の一〇Hの吸収ピーク(3400cm−’ )と−
CH3の吸収ピーク(2900cm−’)をそれぞれ赤
外吸収スペクトル法により測定して、−OHの吸収ピー
ク(3400cn+−’) / −CH3の吸収ピーク
(2900cm”’)を計算により求め、両者の関係を
調べた。
When heat treating the above surface protective layer, the heat treatment time and the absorption peak (3400 cm-') of 10H of the surface protective layer and -
The absorption peak of CH3 (2900cm-') was measured by infrared absorption spectroscopy, and the absorption peak of -OH (3400cn+-')/-absorption peak of -CH3 (2900cm"') was determined by calculation, and the relationship between the two was calculated. I looked into it.

その結果を表1及び第1図に示す。The results are shown in Table 1 and FIG.

K皿匠主 実施例1において、ポリ酢酸ビニルに代えて、ビニルブ
チラール(電気化学社製、デンカブチラール5000A
)を用いた以外は、実施例1と同様に処理してシリコー
ン樹脂製表面保護層を形成し、積層型感光層を有するド
ラム型の電子写真用有機感光体を作製した。
In Example 1, vinyl butyral (manufactured by Denki Kagaku Co., Ltd., Denka Butyral 5000A) was used instead of polyvinyl acetate.
) was used in the same manner as in Example 1 to form a silicone resin surface protective layer, thereby producing a drum-shaped electrophotographic organic photoreceptor having a laminated photosensitive layer.

上記表面保護層を熱処理する際に、実施例1と同様に、
熱処理時間と一〇Hの吸収ピーク(3400am−’)
 /−CH3の吸収ピーク(2900cm−’)との関
係を調べた。その結果を表1及び第2図に示す。
When heat-treating the surface protective layer, as in Example 1,
Heat treatment time and absorption peak of 10H (3400am-')
The relationship with the /-CH3 absorption peak (2900 cm-') was investigated. The results are shown in Table 1 and FIG.

支皿五主 実施例1において、ポリ酢酸ビニルに代えて、ブチル化
メラミン樹脂(三井サイナミド、ニーパン128)を用
いた以外は、実施例1と同様に処理してシリコーン樹脂
製表面保護層を形成し、積層型感光層を有するドラム型
の電子写真用有機感光体を作製した。
A silicone resin surface protective layer was formed in the same manner as in Example 1, except that in Example 1, butylated melamine resin (Mitsui Cyinamide, Kneepan 128) was used instead of polyvinyl acetate. Then, a drum-shaped electrophotographic organic photoreceptor having a laminated photosensitive layer was produced.

上記表面保護層を熱処理する際に、実施例1と同様に、
熱処理時間と一〇Hの吸収ピーク(3400cn+−’
) / −CH3の吸収ピーク(2900cm−’)と
の関係を調べた。その結果を表1及び第3図に示す。
When heat-treating the surface protective layer, as in Example 1,
Heat treatment time and absorption peak of 10H (3400cn+-'
) / -CH3 absorption peak (2900 cm-') was investigated. The results are shown in Table 1 and FIG.

ルy上目。Ruy upper rank.

実施例1と同様の処方において、表面保護層を熱処理す
る際に、熱処理時間と表面保護層の鉛筆硬度との関係を
調べた。鉛筆硬度の測定は、三田工業■製の鉛筆硬度試
験機を用いて行った。その結果、熱処理時間5分:H1
熱処理時間10分:3H1熱処理時間15分:4H1熱
処理時間30分: 5Hであり、それらの関係を第4図
に示す。第4図の結果から、熱処理時間が30分以上で
鉛筆硬度は一定に達しているので、30分で熱処理時間
は充分であると思われる。
In the same formulation as in Example 1, when the surface protective layer was heat treated, the relationship between the heat treatment time and the pencil hardness of the surface protective layer was investigated. The pencil hardness was measured using a pencil hardness tester manufactured by Sanda Kogyo ■. As a result, heat treatment time: 5 minutes: H1
Heat treatment time: 10 minutes: 3H1 Heat treatment time: 15 minutes: 4H1 Heat treatment time: 30 minutes: 5H, and their relationship is shown in FIG. From the results shown in FIG. 4, the pencil hardness reached a certain level when the heat treatment time was 30 minutes or more, so it seems that 30 minutes is sufficient for the heat treatment time.

次に、実施例1及び比較例1で得られた熱処理時間が異
なる感光体について、感度と繰り返し特性を測定した。
Next, the sensitivity and repeatability of the photoreceptors obtained in Example 1 and Comparative Example 1 with different heat treatment times were measured.

感光体の感度及び繰り返し特性の測定方法を以下に示す
The method for measuring the sensitivity and repeatability of the photoreceptor is shown below.

感光体の感度: 感光体を、静電複写試験装置(ジエンチック社製、ジエ
ンチックシンシア 3(IM型機)に装填し〜その表面
を正に帯電させて表面電位V +、s、p、(V)を測
定した。次に、上記帯電状態の感光体を、上記静電複写
試験装置の露光光源であるハロゲンランプを用いて、露
光強度0.92W/cm2、露光時間60m5eC1の
条件で露光し、表面電位VIS、ρ、が1/2となるま
での時間を求め、半減露光ff1l/2(μJ/am2
)を算出した。その結果を表2と第5図に示す。
Sensitivity of photoreceptor: The photoreceptor was loaded into an electrostatic copying tester (manufactured by Zientic Co., Ltd., Zientic Sincere 3 (IM model)) and its surface was positively charged to give a surface potential of V +, s, p, ( Next, the charged photoreceptor was exposed to light using a halogen lamp, which is the exposure light source of the electrostatic copying tester, at an exposure intensity of 0.92 W/cm2 and an exposure time of 60 m5eC1. , find the time until the surface potential VIS, ρ becomes 1/2, and calculate the half-reduction exposure ff1l/2 (μJ/am2
) was calculated. The results are shown in Table 2 and FIG.

繰り返し特性: 上記感光体を複写機(三田工業社製、DC−111型機
)に装填して500枚の複写処理を行った後、表面電位
を、繰り返し露光後の表面電位V2S、ρ、(V)とし
て測定した。また、上記表面電位VIS、P、値と表面
電位V2 s、p、値との差を、表面電位変化値△■と
して算出した。その結果を表3に示す。
Repetition characteristics: After loading the above photoreceptor into a copying machine (manufactured by Mita Kogyo Co., Ltd., model DC-111) and copying 500 sheets, the surface potential after repeated exposure was determined as V2S, ρ, ( V). Further, the difference between the surface potential VIS,P, value and the surface potential V2s,p, value was calculated as a surface potential change value Δ■. The results are shown in Table 3.

表2 表3 以上の結果から、赤外吸収スペクトル法による熱硬化性
樹脂の反応性基の減少と、感光体の感度及び繰り返し特
性との間には相関関係があることが確認され、例えば、
実施例1においては第1図から熱処理時間は90分が最
適であることがわかった。これに対し、比較例1では第
4図から熱処理時間が30分でその鉛筆硬度が安定して
いる。しかし、表2、表3より、感光体の感度及び繰り
返し特性は熱処理時間90分以上で最適であり、鉛筆硬
度が安定する熱処理時間30分では不十分であった。
Table 2 Table 3 From the above results, it was confirmed that there is a correlation between the reduction of reactive groups in the thermosetting resin by infrared absorption spectroscopy and the sensitivity and repeatability of the photoreceptor.
In Example 1, it was found from FIG. 1 that the optimum heat treatment time was 90 minutes. On the other hand, in Comparative Example 1, the pencil hardness is stable after a heat treatment time of 30 minutes as shown in FIG. However, from Tables 2 and 3, the sensitivity and repetition characteristics of the photoreceptor were optimal when the heat treatment time was 90 minutes or more, and the heat treatment time of 30 minutes, which stabilized the pencil hardness, was insufficient.

なお、第1図〜第4図中(a)は最適な乾燥条件を示し
ている。
Note that (a) in FIGS. 1 to 4 shows optimal drying conditions.

(発明の効果) 本発明によれば、樹脂層に含まれる熱硬化性樹脂が有す
る反応性基の減少を赤外吸収スペクトル法を使用して調
べることにより、特性に優れた感光体が得られる乾燥条
件を確実に、しかも短時間で知ることができ、従来のよ
うに感光体の感度及び繰り返し特性を測定する必要がな
くて生産性を高めることができる。
(Effects of the Invention) According to the present invention, a photoreceptor with excellent properties can be obtained by examining the reduction of reactive groups in the thermosetting resin contained in the resin layer using infrared absorption spectroscopy. The drying conditions can be known reliably and in a short time, and there is no need to measure the sensitivity and repeatability of the photoreceptor as in the past, thereby increasing productivity.

4      の    な! 8 第1図〜第3図は熱処理時間と一〇Hの吸収ピーク(3
400cm−’) / −CH30)吸収ピーク、 (
2900cm−1)との関係を示した図、第4図は熱処
理時間と鉛筆硬度との関係を示した図、第5図は熱処理
時間と半減露光ffi 1/2 (μJ/cm2)との
関係を示した図である。
4 no na! 8 Figures 1 to 3 show the heat treatment time and the 10H absorption peak (3
400cm-') / -CH30) absorption peak, (
2900cm-1), Figure 4 is a diagram showing the relationship between heat treatment time and pencil hardness, and Figure 5 is the relationship between heat treatment time and half-exposure ffi 1/2 (μJ/cm2). FIG.

以上that's all

Claims (2)

【特許請求の範囲】[Claims] 1.導電性基体の表面に、熱硬化性樹脂からなる結着樹
脂及び溶媒を含む塗布液を塗布、乾燥することにより形
成される樹脂層が設けられている電子写真用有機感光体
の製造方法であって、該熱硬化性樹脂が有する反応性基
の減少を赤外吸収スペクトル法を使用して調べることに
より、該乾燥条件を設定することを特徴とする電子写真
用有機感光体の製造方法。
1. A method for producing an organic photoreceptor for electrophotography, in which a resin layer is formed by applying and drying a coating liquid containing a binder resin made of a thermosetting resin and a solvent on the surface of a conductive substrate. A method for producing an organic photoreceptor for electrophotography, characterized in that the drying conditions are determined by examining the reduction of reactive groups in the thermosetting resin using infrared absorption spectroscopy.
2.前記熱硬化性樹脂がシリコーンオリゴマーを主成分
とするシリコーン樹脂であることを特徴とする請求項1
記載の電子写真用有機感光体の製造方法。
2. Claim 1, wherein the thermosetting resin is a silicone resin containing silicone oligomer as a main component.
The method for producing the electrophotographic organic photoreceptor described above.
JP25657389A 1989-09-27 1989-09-29 Production of organic photosensitive body for electrophotography Pending JPH03118549A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25657389A JPH03118549A (en) 1989-09-29 1989-09-29 Production of organic photosensitive body for electrophotography
EP19900310488 EP0420580A3 (en) 1989-09-27 1990-09-25 A method for manufacturing an electrophotographic organic photoconductor
KR1019900015256A KR910006787A (en) 1989-09-27 1990-09-26 Electrophotographic organic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25657389A JPH03118549A (en) 1989-09-29 1989-09-29 Production of organic photosensitive body for electrophotography

Publications (1)

Publication Number Publication Date
JPH03118549A true JPH03118549A (en) 1991-05-21

Family

ID=17294517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25657389A Pending JPH03118549A (en) 1989-09-27 1989-09-29 Production of organic photosensitive body for electrophotography

Country Status (1)

Country Link
JP (1) JPH03118549A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743629A (en) * 1971-07-12 1973-07-03 D Fraga Polymerization monitoring process
JPS6151155A (en) * 1984-08-21 1986-03-13 Mitsubishi Chem Ind Ltd Electrophotographic sensitive body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743629A (en) * 1971-07-12 1973-07-03 D Fraga Polymerization monitoring process
JPS6151155A (en) * 1984-08-21 1986-03-13 Mitsubishi Chem Ind Ltd Electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
JP6353285B2 (en) Method for producing electrophotographic photosensitive member
JPH0610655B2 (en) Nondestructive method for determining the degree of cure of polymers
JP2000321789A (en) Processing solution for forming resist pattern and resist pattern forming method
US7560217B2 (en) Method of forming electrophotographic photoreceptor and method of drying coating film
JPH05313387A (en) Electrophotographic sensitive body
JP6317597B2 (en) Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface
JPH03118549A (en) Production of organic photosensitive body for electrophotography
US5273583A (en) Fabrication of electrophotographic imaging members
JP3444818B2 (en) Inspection method and management method of coating liquid for electrophotographic photoreceptor
JPH0519518A (en) Production of electrophotographic image holding member
EP0420580A2 (en) A method for manufacturing an electrophotographic organic photoconductor
JP3015074B2 (en) Electrophotographic photoreceptor paint and method of forming electrophotographic photoreceptor coating film using the same
JPH0313960A (en) Electrophotographic sensitive body
JP2006337545A (en) Method for manufacturing film covered substrate and method for manufacturing electrophotographic photoreceptor
JPS58113933A (en) Resist material and formation of resist micropattern using it
US3671234A (en) Process of forming an electrophotographic element
US4191567A (en) Procedure for making a reusable photoconducting charge image carrier and charge image carriers prepared by this method
JPH03145652A (en) Electrophotographic sensitive body
JPH0772637A (en) Laminated electrophotographic photoreceptor and its production
JP5294788B2 (en) Method for producing electrophotographic photosensitive member
JP2000010303A (en) Electrophotographic photoreceptor and its production
JPH10123739A (en) Electrophotographic photoreceptor
JP2582793B2 (en) Electrophotographic photoreceptor
JPH0772638A (en) Laminated electrophotographic photoreceptor and its production
JPH10221867A (en) Measuring method of film thickness of electrophotographic photoreceptor and its production