JPH03118470A - Blood analyzer - Google Patents

Blood analyzer

Info

Publication number
JPH03118470A
JPH03118470A JP1256459A JP25645989A JPH03118470A JP H03118470 A JPH03118470 A JP H03118470A JP 1256459 A JP1256459 A JP 1256459A JP 25645989 A JP25645989 A JP 25645989A JP H03118470 A JPH03118470 A JP H03118470A
Authority
JP
Japan
Prior art keywords
blood
sample
flow path
measurement
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1256459A
Other languages
Japanese (ja)
Inventor
Kouji Amita
孝司 網田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1256459A priority Critical patent/JPH03118470A/en
Publication of JPH03118470A publication Critical patent/JPH03118470A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to select the groups of measuring items automatically by providing a plurality of additional branched flow paths to the flow path of a blood sample, and connecting specified measuring parts. CONSTITUTION:When a syringe with which blood is collected is used and the blood sample is injected through a sample injecting part 21, the sample is introduced into a sample flow path 2 and moved into the direction of a drain. When the sufficient amount of the sample to fill the flow path 2 up to the position of a liquid sensor 11 at the most downstream part is injected, liquid sensors 9, 10 and 11 for branched flow paths 3, 4 and 5 are in the liquid detecting state. Under this state, a control part 14 judges that the sample can be introduced into all branched flow path sand controls the apparatus so that the introduction and the measurement of the sample are individually conducted by the input of a measurement starting signal. The measurements are performed with a blood-gas measuring part 6, a measuring part 7 for electrolyte in blood and a measuring part 8 for chemical components in blood. When the sample which is not sufficient to fill the flow path 2 to the liquid sensor 11 at the most downstream, the control part 14 automatically sets the measuring items in conformity with the liquid quantity, and the measurement can be performed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、血液分析装置に関する。さらに詳しくは、
全血試料を導入して該試料中の血液ガスを測定すると共
に電解質や血中化学成分ら測定できる血液分析装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a blood analyzer. For more details,
The present invention relates to a blood analyzer that can introduce a whole blood sample and measure blood gases in the sample as well as electrolytes and blood chemical components.

(ロ)従来の技術 患者から採血した血中の溶解ガス成分、電解質、代謝化
学成分等を測定することは、臨床診断ことに緊急検査や
手術管理上極めて重要である。
(B) Conventional technology Measuring dissolved gas components, electrolytes, metabolic chemical components, etc. in blood collected from patients is extremely important for clinical diagnosis, emergency testing, and surgical management.

そのため、従来からこれらの成分を全血の状態で測定す
る研究が種々さされ、現在のところ血液ガス成分として
pco、、PO,(通常、pHも含まれる)電解質とし
てNa、に、CI等、血中化学成分としてグルコース、
BUN(血中尿素窒素)等が電極法によって直接測定で
きる項目として知られている。
Therefore, various studies have been carried out to measure these components in whole blood, and at present, blood gas components such as PCO, PO, electrolytes (which usually also include pH), Na, CI, etc. Glucose as a blood chemical component,
BUN (blood urea nitrogen) and the like are known as items that can be directly measured using the electrode method.

そして、これら各血液ガス成分の測定部、電解質測定部
及び血中化学成分測定部を組合仕てなり、全血試料の一
回の注入により、これらの各項目を測定できろ血液分析
装置が種々開発されるに至っている。
There are various blood analyzers that can measure each of these items with a single injection of a whole blood sample by combining a blood gas component measuring section, an electrolyte measuring section, and a blood chemical component measuring section. It has already been developed.

かかる血液分析装置は、注入された血液試料を細管を通
じて、各測定用電極を配設した血液ガス測定部、電解質
測定部及び血中化学成分測定部へ移送できるように流路
構成されr二らのである。そして、現在のところ、これ
ら各測定部に血液試料が行き口った後に測定が開始され
ろように構成されたものが一般的に使用されている。
Such a blood analyzer has a flow path configured so that an injected blood sample can be transferred through a thin tube to a blood gas measurement section, an electrolyte measurement section, and a blood chemical component measurement section, each of which has measurement electrodes. It is. At present, devices that are configured so that measurement is started after a blood sample reaches each of these measurement sections are generally used.

(ハ)発明が解決しようとする課題 上記のごとき従来の血液分析装置においては、前期3種
の測定部へ血液成分が満たされた後に測定が自動的に開
始されるため、これに見合う量の血液試料を注入する必
要がある。従って、血液試料の量が不充分な場合には、
測定が行われず、再度の採血が必要となる不都合があっ
た。ことに、前期3種の測定項目群の緊急検査における
重要性は異なり、中でら血液ガス成分の測定の重要度は
高く、この血液ガス成分のみあるいは血液ガス成分と電
解質を測定すれば目的を達する場合ら多い。
(c) Problems to be Solved by the Invention In the conventional blood analyzer as described above, measurement is automatically started after the first three types of measurement sections are filled with blood components. A blood sample must be injected. Therefore, if the amount of blood sample is insufficient,
There was an inconvenience that the measurement was not performed and blood sampling was required again. In particular, the importance of the first three measurement item groups in emergency testing is different, and among them, the importance of measuring blood gas components is high, and measuring only these blood gas components or blood gas components and electrolytes can accomplish the purpose. There are many cases where it is reached.

このような場合においては、より少量の血液試料でこれ
ら特定の測定項目の自動測定ができることが望ましいが
、上記従来の装置においてはこのような変則的な自動測
定を行うことができない。
In such cases, it is desirable to be able to automatically measure these specific measurement items using a smaller amount of blood sample, but the conventional apparatus described above cannot perform such irregular automatic measurements.

そのため、かかる血液分析装置において、各測定部側々
に血液試料が切換可能導入されるよう流路構成し、予め
キイ操作等で設定された測定項目の測定部のみに血液試
料を導入し測定できるよう構成された装置も提案されて
いる。
Therefore, in such a blood analyzer, the flow path is configured so that the blood sample can be introduced to each measurement section side by side, and the blood sample can be introduced and measured only to the measurement section of the measurement item set in advance by key operation etc. A device configured as such has also been proposed.

しかし、このような装置においては、煩雑なキイ操作が
必要であるという不都合があった。
However, such a device has the disadvantage that it requires complicated key operations.

この発明は、かかる状況下なされたものであり、ことに
、注入する血液試料の量に応じて、キイ操作を行うこと
なく、自動的に測定可能な測定項目群を選択して測定を
行うことができる血液分析装置を提供しようとするもの
である。
The present invention has been made under such circumstances, and in particular, it is possible to automatically select and measure a group of measurable measurement items according to the amount of blood sample to be injected without performing any key operations. The aim is to provide a blood analyzer that can perform

(ニ)課題を解決するための手段 かくしてこの発明によれば、(a)血液試料注入部から
ドイレンまで延設された試料流路と、(b)上記試料流
路から各々分岐接続された複数の分岐流路と、(c)上
記試料流路の最上流に位置する分岐流路に接続された血
液ガス測定部並びに他の分岐流路に接続された血中電解
質測定部及び/又は血中化学成分測定部と、(d)上記
試料流路における各分岐流路接続位置の下流側に各分岐
流路と対応して配設された′a敗の液センサと、(e)
上記試料流路内に導入された血液試料を、上記各分岐流
路内に個々に導入しうる送液手段と、(「)上記各液セ
ンサの液検知出力によって試料導入可能な分岐流路を決
定し、測定開始信号の入力により当該分岐流路に血液試
料を導入するよう上記送液手段を駆動すると共に導入さ
れた分岐流路の測定部での測定を行うよう制御する制御
部、を備えてなる血液分析装置が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, (a) a sample flow path extending from the blood sample injection section to the drain; and (b) a plurality of sample flow paths each branched from the sample flow path. (c) a blood gas measuring section connected to the branch channel located at the most upstream side of the sample channel, and a blood electrolyte measuring section and/or blood gas measuring section connected to the other branch channel; (d) a liquid sensor disposed downstream of each branch channel connection position in the sample channel in correspondence with each branch channel; (e)
A liquid feeding means that can individually introduce the blood sample introduced into the sample flow path into each of the branch flow paths; and a control unit that drives the liquid feeding means to introduce the blood sample into the branch flow path in response to input of a measurement start signal, and controls the blood sample to be measured in the measurement unit of the introduced branch flow path. A blood analyzer is provided.

この発明の血液分析装置は、血液試料が注入される試料
流路に複数の分岐流路を付設してこれに各々所定の測定
部を接続すると共にこれら各測定部に各々独立して血液
試料を導入できる送液手段を付設し、さらにかかる測定
部への血液試料の導入の可否の判断及び測定の実行を液
センサにより自動的に行えるよう構成したものである。
In the blood analyzer of the present invention, a plurality of branch channels are attached to a sample channel into which a blood sample is injected, a predetermined measuring section is connected to each branch channel, and the blood sample is independently input to each of these measuring sections. The device is equipped with a liquid feeding means that can be introduced into the blood sample, and is configured such that a liquid sensor can automatically determine whether or not a blood sample can be introduced into the measuring section and perform measurement.

この発明における血液ガス測定部は、最も上流の分岐流
路に接続される。これにより血液ガスの測定が他の項目
に比して優先的に行われる。かかる血液ガス測定部は、
フロー流路又はフローセルにpH,PCO*及びPO3
電極を配設構成したものが適している。
The blood gas measuring section in this invention is connected to the most upstream branch flow path. Thereby, blood gas measurement is performed preferentially compared to other items. Such a blood gas measurement unit is
pH, PCO* and PO3 in the flow channel or flow cell
A configuration with electrodes is suitable.

一方、他の分岐流路には血中電解質測定部及び/又は血
中化学成分測定部が接続される。例えば、分岐流路が玉
流路の場合には、その一方には前述のごとく血液ガス測
定部が接続され、他方には血中電解質測定部又は血中化
学成分測定部か接続される。また、分岐流路が玉流路の
場合には、その最上流に血液ガス測定部が接続され、そ
の後段に血中電解質測定部さらにその後段に血中化学成
分測定部が接続されるのが好ましい。また、さらに多く
の分岐流路を設定する場合には、第1段と第2段には、
血液ガス測定部と電解質測定部を接続し、以降の分岐流
路に血中化学成分測定部を各々適当な測定項目毎に分割
して設けるのが好ましい。
On the other hand, a blood electrolyte measuring section and/or a blood chemical component measuring section are connected to the other branch channels. For example, when the branch flow path is a ball flow path, the blood gas measuring section is connected to one side as described above, and the blood electrolyte measuring section or the blood chemical component measuring section is connected to the other side. In addition, when the branch flow path is a ball flow path, the blood gas measurement section is connected to the most upstream side, the blood electrolyte measurement section is connected to the subsequent stage, and the blood chemical component measurement section is connected to the subsequent stage. preferable. In addition, when setting more branch flow paths, the first stage and the second stage are
It is preferable to connect the blood gas measuring section and the electrolyte measuring section, and to provide separate blood chemical component measuring sections for each appropriate measurement item in the subsequent branch channels.

ここで、血中電解質測定部としては、フロー流路又はフ
ローセルにカリウムイオン測定電極、ナトリウムイオン
測定電極及び塩素イオン測定電極を配設構成したものが
適している。また血中化学成分測定部としては、フロー
流路又はフローセルにグルコース電極、BUN(血中尿
素窒素)電極を配設構成したものが好ましい。なお、こ
れらの測定部には液センサ、参照電極、洗浄流路等が適
宜付設されていてもよい。
Here, as the blood electrolyte measuring section, one in which a potassium ion measuring electrode, a sodium ion measuring electrode, and a chloride ion measuring electrode are arranged in a flow channel or a flow cell is suitable. Further, as the blood chemical component measuring section, one in which a glucose electrode and a BUN (blood urea nitrogen) electrode are arranged in a flow channel or a flow cell is preferable. Note that a liquid sensor, a reference electrode, a cleaning channel, etc. may be appropriately attached to these measurement units.

この発明に用いる液センサとしては、公知のものが種々
使用でき、例えば光反射式、吸光度式導電率式等の液検
知センサを用いることができる。
Various known liquid sensors can be used as the liquid sensor used in this invention, and for example, liquid detection sensors such as a light reflection type, an absorbance type, and a conductivity type can be used.

また、この発明における送液手段は、空気導入手段、送
液ポンプ、開閉弁等を適宜組合せて構成することができ
、これらの駆動、停止、開閉等の操作の組合わせによっ
て、少なくとも試料流路内に導入された血液試料が分岐
流路内に別々に導入しうるよう構成されておればよい。
Further, the liquid feeding means in the present invention can be configured by appropriately combining an air introducing means, a liquid feeding pump, an on-off valve, etc., and by a combination of operations such as driving, stopping, opening/closing, etc., at least the sample flow path can be configured. It is sufficient that the blood sample introduced into the branch channel can be separately introduced into the branch channel.

一方、この発明における制御部は、制御回路やマイクロ
コンピュータを用いて構成でき、例えば、液センサの液
検知出力をイネーブル信号として制御され、かつ測定開
始信号の入力によって液導入可能な分岐流路への血液試
料の導入及び測定部のオペレーションの実行を行うよう
に構成されたものが挙げられる。
On the other hand, the control unit in the present invention can be configured using a control circuit or a microcomputer, and for example, is controlled by using the liquid detection output of the liquid sensor as an enable signal, and is connected to a branch flow path into which liquid can be introduced by inputting a measurement start signal. Examples include those configured to introduce a blood sample and execute operations of a measurement unit.

(ホ)作用 最下流の液センサの位置まで試料流路を満たすことがで
きるに足りる充分な量の血液試料が注入部から注入され
た場合には、各分岐流路に対応するすべての液センサか
液検出状態となる。
(E) Operation When a sufficient amount of blood sample is injected from the injection part to fill the sample flow path up to the position of the most downstream liquid sensor, all the liquid sensors corresponding to each branch flow path The liquid will be detected.

この状態において、制御部は、すべての分岐流路に血液
試料導入可能と判断し、測定開始信号の入力によりこの
血液試料の導入及び測定をすべての分岐流路について個
々に実行するよう制御しそれにより、血液ガスと血中電
解質及び/又は血中化学成分が測定されることとなる。
In this state, the control unit determines that it is possible to introduce the blood sample into all branch channels, and controls the blood sample introduction and measurement to be performed individually for all branch channels by inputting the measurement start signal. Accordingly, blood gases, blood electrolytes, and/or blood chemical components will be measured.

一方、最下流の液センサの位置まで試料流路を満たすこ
とができない不足量の血液試料が注入部から注入された
場合には、液未検出状態と検出状態の液センサが生じる
が、この場合においてら制御部は液検出状態となった液
センサに対応する分岐流路については血液試料導入可能
と判断し、測定開始信号の入力により血液試料の導入及
び測定を実行するよう制御する。従って、不足量の血液
試料についても、その液量に見合う測定項目が自動的に
設定されて測定が実行されることとなる。
On the other hand, if an insufficient amount of blood sample is injected from the injection part so that it cannot fill the sample flow path up to the position of the most downstream liquid sensor, the liquid sensor will be in the liquid non-detection state and the liquid sensor in the detection state. The control unit then determines that the blood sample can be introduced into the branch channel corresponding to the liquid sensor in the liquid detection state, and controls the blood sample to be introduced and measured by inputting a measurement start signal. Therefore, even if the amount of blood sample is insufficient, measurement items corresponding to the amount of blood sample are automatically set and the measurement is performed.

(へ)実施例 第1図に示す(1)はこの発明の一実施例の血液分析装
置を示すものである。図に示すごとく、血液分析装置(
1)は、試料注入部21からドイレンまで延設された試
料流路2と、この試料流路2から分岐接続された3本の
分岐流路3.4.5を備えてなる。そして最上流の第1
の分岐流路3には、pH電極、PCOt電極及びPO2
眉並びに参照電極をこの順に配設したフロー流路からな
る血液ガス測定部6が接続されてなり、第2の分岐流路
4には、カリウムイオン測定電極、ナトリウムイオン測
定電極及び塩素イオン測定電極をこの順に配設したフロ
ー流路からなる血中電解質測定部7が接続されてなり、
第3の分岐流路5には、固定化酵素を利用したグルコー
ス電極及びBUN電極をこの順に配設したフロー流路か
らなる血中化学成分測定部8が接続されている。なお、
各測定部6,7゜8には各々ドレイン流路61,71.
81が接続されてなり、ドレイン流路71.81には各
々−方向送液ポンプ72.73が介設されており、ドレ
イン流路61には、両方向送液ポンプ62が介設され、
その後段には三方弁65を介して洗浄液槽64に接続さ
れる洗浄液流路63が接続されてなる。そして各測定部
6.7.8の前後には開閉弁d、e、fが介設されてい
る。
(f) Embodiment (1) shown in FIG. 1 shows a blood analyzer according to an embodiment of the present invention. As shown in the figure, the blood analyzer (
1) includes a sample channel 2 extending from the sample injection section 21 to the drain, and three branch channels 3, 4, and 5 branched from this sample channel 2. and the most upstream first
The branch flow path 3 includes a pH electrode, a PCOt electrode and a PO2
A blood gas measuring section 6 consisting of a flow channel in which an eyebrow and a reference electrode are arranged in this order is connected, and the second branch channel 4 has a potassium ion measuring electrode, a sodium ion measuring electrode, and a chloride ion measuring electrode. A blood electrolyte measuring section 7 consisting of a flow channel arranged in this order is connected to the blood electrolyte measuring section 7,
A blood chemical component measuring section 8 is connected to the third branch channel 5, which is a flow channel in which a glucose electrode using an immobilized enzyme and a BUN electrode are arranged in this order. In addition,
Each measurement section 6, 7.8 has a drain channel 61, 71, respectively.
81 are connected to each other, each of the drain passages 71 and 81 is provided with a -direction liquid feeding pump 72 and 73, and the drain passage 61 is provided with a bidirectional liquid feeding pump 62,
A cleaning liquid flow path 63 connected to a cleaning liquid tank 64 via a three-way valve 65 is connected to the subsequent stage. Opening/closing valves d, e, and f are provided before and after each measuring section 6.7.8.

一方、試料流路2の各分岐流路接続位置の後段には、開
閉弁a、b、cを介して各々光反射式の液センサ9.1
0.11が付設されてなる。そして、液センサ9と第2
の分岐流路4の接続位置との間には、開閉弁g、hを介
して洗浄液槽121及び空気取込器122に接続される
空気/洗浄液供給路I2か接続されてなり、液センサl
Oと第3の分岐流路5の接続位置との間には開閉弁i。
On the other hand, after each branch flow path connection position of the sample flow path 2, a light reflection type liquid sensor 9.1 is installed via on-off valves a, b, and c.
0.11 is attached. Then, the liquid sensor 9 and the second
An air/cleaning liquid supply path I2 connected to the cleaning liquid tank 121 and the air intake device 122 via on-off valves g and h is connected to the connection position of the branch flow path 4, and the liquid sensor l
An on-off valve i is provided between O and the connection position of the third branch flow path 5.

jを介して洗浄液槽131及び空気取込器132に接続
される空気/洗浄液供給路13が接続されている。これ
らの空気/洗浄液供給路12.13は、開閉弁λ〜f及
びポンプ62,72.82の切換及び駆動の組合せによ
り、試料流路2内に導入された血液試料を、各々独立し
て各分岐流路3゜4.5及び測定部6,7.8へ導入及
び移送しうろこの発明の送液手段を構成するものである
An air/cleaning liquid supply path 13 is connected to the cleaning liquid tank 131 and the air intake device 132 via j. These air/cleaning liquid supply paths 12.13 each independently feed the blood sample introduced into the sample flow path 2 by a combination of switching and driving the on-off valves λ to f and the pumps 62, 72.82. The scales for introducing and transferring the liquid to the branch flow path 3°4.5 and the measuring portions 6, 7.8 constitute the liquid feeding means of the present invention.

一方、図中14は、この発明の制gB部を示すものであ
り、測定部6,7.8での測定の実行を制御すると共に
、各開閉弁1〜j1ポンプ62,72.82、三方弁6
5の駆動を制御するようマイクロコンピュータによって
構成されたものである。
On the other hand, numeral 14 in the figure indicates a gB control section of the present invention, which controls the execution of measurement in the measurement sections 6, 7.8, and also controls the on-off valves 1 to j1 pumps 62, 72, 82, and the three-way Valve 6
It is configured by a microcomputer so as to control the driving of 5.

そして、ことに液センナ9.IQ、11の出力が液検知
出力か否かをモニターし、外部から測定開始信号が入力
された際に、液検知出力を確認された液センサの前段の
分岐流路に独立して血液試料を導入するように上記各開
閉弁、ポンプ、三方弁を切換、駆動し、次いで導入され
た血液試料か測定部に供給された状態で測定を開始する
ように制御するよう構成されている。そして、この実施
例においては、測定信号の人力は、試料注入部21の動
作にリンスするよう構成されている。ここで、試料注入
部2Iの具体的構成を第2図に示した。
And especially liquid senna 9. It monitors whether the output of IQ, 11 is a liquid detection output, and when a measurement start signal is input from the outside, it independently supplies a blood sample to the branch flow path in front of the liquid sensor whose liquid detection output has been confirmed. The system is configured to switch and drive each on-off valve, pump, and three-way valve so that the blood sample is introduced, and then to start measurement while the introduced blood sample is being supplied to the measuring section. In this embodiment, the manual input of the measurement signal is configured to rinse the operation of the sample injection section 21. Here, a specific configuration of the sample injection section 2I is shown in FIG.

図中、23は試料注入口24の蓋部であり、これを破線
のように開いた状態で注入口24を採血したシリンジを
挿入して血液試料の注入が行われるが、注入後に蓋部2
3を閉鎖する際に、測定開始信号が入力されるようにス
イッチング構成されている。
In the figure, reference numeral 23 is the lid of the sample injection port 24. With this open as shown by the broken line, a syringe that has collected blood is inserted into the injection port 24 to inject the blood sample.
The switching structure is such that a measurement start signal is input when closing 3.

なお、この実施例において、各流路には内径0.7Hの
ステンレス管及び内径0.8u及び内径1.6Hのポリ
塩化ビニル系プラスチックチューブで構成され、試料注
入部21から液センサ11迄の容量は約600μQ、液
センサ9,10は各々分岐流路接続位置から120μQ
、 360μQ下流の位置に配設されている。
In this embodiment, each flow path is composed of a stainless steel tube with an inner diameter of 0.7H and a polyvinyl chloride plastic tube with an inner diameter of 0.8U and 1.6H, and the flow path from the sample injection part 21 to the liquid sensor 11 is The capacity is approximately 600μQ, and the liquid sensors 9 and 10 each have a capacity of 120μQ from the branch flow path connection position.
, 360μQ downstream.

かかる血液分析装置lの操作及び動作について以下説明
する。
The operation and operation of such a blood analyzer 1 will be explained below.

まず、初期設定状聾においては、開閉弁ユ、b。First, in the initial setting of deafness, the on-off valve y, b.

Cは解放側、開閉弁a、e、f、g、h、t。C is the release side, on-off valves a, e, f, g, h, t.

jは閉鎖側に各々設定される。この状態で採血したシリ
ンジを用いて試料注入部21から血液試料を注入するこ
とにより、この血液試料は試料流路2内に導入され、ド
レインの方向へ移送される。
j is respectively set to the closing side. By injecting a blood sample from the sample injection part 21 using the syringe from which the blood was collected in this state, the blood sample is introduced into the sample flow path 2 and transferred in the direction of the drain.

注入の前後を通じて、制御部は各液センサ9゜10.1
1の出力をモニターし、液検知出力が確認された族セン
サに対応するいずかれの測定項目群、すなわち、血液ガ
ス、血中電解質、血中化学成分の少なくともいずれかを
測定可能として設定する。例えば、液センナ11の位置
迄血液試料が満たされた場合には、液センサ9,10.
11はいずれら液検知状態となり、血液ガス血中電解質
、注入中科学成分のいずれをも測定可能として設定する
。この際、測定可能な測定項目群は、図示しない表示分
析にランプ等で表示されブザー等で報知される。一方、
注入された血液試料の先端が、液センサ10と液センサ
11との間に位置する場合には、同様に血液ガスと血中
電解質とが測定可能として設定されろ。さらに、血液試
料の先端が液センサ9と!0との間に位置するような不
足量の注入の場合には、血液ガスのみが測定可能として
設定される。
Before and after injection, the control unit controls each liquid sensor 9°10.1.
1, and set any measurement item group corresponding to the group sensor whose liquid detection output has been confirmed, that is, at least one of blood gas, blood electrolyte, and blood chemical component, to be measurable. . For example, when the blood sample is filled up to the position of the liquid sensor 11, the liquid sensors 9, 10.
No. 11 is set to be in a liquid detection state, and both blood gas, blood electrolytes, and chemical components being injected can be measured. At this time, the measurable measurement item group is displayed with a lamp or the like on a display analysis (not shown) and notified with a buzzer or the like. on the other hand,
When the tip of the injected blood sample is located between the liquid sensor 10 and the liquid sensor 11, the blood gas and blood electrolytes can be similarly set to be measurable. Furthermore, the tip of the blood sample is the liquid sensor 9! In the case of an under-volume injection, which lies between 0 and 0, only blood gases are set to be measurable.

この状態で、試料注入部21の蓋部23を閉鎖すること
により、測定開始信号が制御部14に入力され、これに
より、測定可能な測定項目群に対応する分岐流路に各々
独立かつ並行して血液試料を導入するよう制御する。す
なわち、まず、開閉弁λ、b、cについて各々閉鎖側に
切換え、開閉弁りを開放側に設定する。そして第1の分
岐流路3については、三方弁65をドレイン側とし、開
閉弁dを開放し、ポンプ62をドレイン方向に駆動して
血液試料を測定部6内へ移送する。第2の分岐流路4に
ついては、開閉弁e及びgを開放しく開閉弁りは閉鎖)
、ポンプ72を駆動して血液試料を測定部7内へ移相す
る。第3の分岐流路5については、開閉弁f及びiを開
放しく開閉弁jは閉り、ポンプ82を駆動して血液試料
を測定部8内へ移送する。
In this state, by closing the lid part 23 of the sample injection part 21, a measurement start signal is input to the control part 14, and thereby the branch channels corresponding to the measurable measurement item groups are independently and parallelly connected. control the introduction of the blood sample. That is, first, the on-off valves λ, b, and c are each switched to the closed side, and the on-off valves are set on the open side. Regarding the first branch flow path 3, the three-way valve 65 is set to the drain side, the on-off valve d is opened, and the pump 62 is driven in the drain direction to transfer the blood sample into the measurement section 6. Regarding the second branch flow path 4, the on-off valves e and g are open and the on-off valve is closed)
, drives the pump 72 to phase-shift the blood sample into the measuring section 7. Regarding the third branch channel 5, the on-off valves f and i are opened and the on-off valve j is closed, and the pump 82 is driven to transfer the blood sample into the measuring section 8.

次いで制御部14は、血液試料が導入され几測定部内で
測定を開始するよう制御し、その測定結果を適宜演算し
て表示部へ表示する。このような一連の動作により、注
入された血液試料の量に応じた測定が行われることとな
る。ことに、少量の血液試料を用いた場合においても、
最も重要な血液ガスの測定を独立して行うことも可能と
なる。
Next, the control unit 14 controls the blood sample to be introduced and starts measurement in the chamber measurement unit, calculates the measurement results as appropriate, and displays them on the display unit. Through this series of operations, measurements are performed according to the amount of injected blood sample. Especially when using small blood samples,
It also becomes possible to independently measure the most important blood gases.

そして、測定項目が血液試料の量によって自動的に決定
されるため、測定項目選択等の煩わしいキイ操作を行う
必要もない。
Furthermore, since the measurement items are automatically determined based on the amount of blood sample, there is no need to perform cumbersome key operations such as selection of measurement items.

なお、この実施例の装置においては、上記測定が行われ
た後、開閉弁a、b、c及びbか開放側、開閉弁e、f
が閉鎖側、開閉弁g、h、t、jが閉鎖側に各々設定さ
れ、三方弁65が流路63側に設定された状態で、ポン
プ62で洗浄液64が流路2内へ導入された洗浄操作が
おこなわれるよう構成されている。そして、測定後ある
いは洗浄後には各流路内に流路12,13から空気が導
入されて残留液は流路内から除去される。
In the apparatus of this example, after the above measurements are performed, the on-off valves a, b, c, and b are on the open side, and the on-off valves e, f are on the open side.
was set to the closed side, on-off valves g, h, t, and j were each set to the closed side, and the three-way valve 65 was set to the flow path 63 side, and the cleaning liquid 64 was introduced into the flow path 2 by the pump 62. The cleaning operation is configured to be performed. Then, after measurement or cleaning, air is introduced into each channel through channels 12 and 13, and residual liquid is removed from the channels.

(ト)発明の効果 この発明の血液分析装置によれば、注入される血液試料
の量に応じて自動的に測定可能な測定項目群か選択され
、この項目群の測定を煩雑なキイ操作を行うことなく簡
便に行うことができる。
(G) Effects of the Invention According to the blood analyzer of the present invention, a measurable measurement item group is automatically selected according to the amount of blood sample injected, and the measurement of this item group can be performed without complicated key operations. It can be easily done without having to do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の血液分析装置の一実施例の構成説
明図、第2図は同じく、部分構成説明図である。 l・・・・・・血液分析装置、2・・・・・・試料流路
、3.4.5・・・・・・分岐流路、 6・・・・・血液ガス測定部、 7・・・・・・血中分解質測定部、 8・・・・・・血中化学成分測定部、 9.10.11・・・・・・液センサ、12.13・・
・・・空気/洗浄液供給路、14・・・・・・制御部、
21・・・・・・試料注入部、22.61,71.81
・・・・・・ドレイン流路、23・・・・・・蓋部、2
4・・・・・・試料注入口、62・・・・・・両方向送
液ポンプ、 63・・・・・・洗浄液流路、 64.121,131・・・・・・洗浄液槽、72.8
2・・・・・・一方向送液ポンプ、122.132・・
・・・・空気取込器、a = h・・・・・・開閉弁。 第 図
FIG. 1 is an explanatory diagram of the configuration of one embodiment of the blood analyzer of the present invention, and FIG. 2 is a partial configuration explanatory diagram of the same. 1...Blood analyzer, 2...Sample channel, 3.4.5...Branch channel, 6...Blood gas measuring section, 7. ...Blood decomposed substance measuring unit, 8...Blood chemical component measuring unit, 9.10.11...Liquid sensor, 12.13...
...Air/cleaning liquid supply path, 14...Control unit,
21...Sample injection part, 22.61, 71.81
...Drain channel, 23... Lid part, 2
4...Sample injection port, 62...Bidirectional liquid feed pump, 63...Cleaning liquid channel, 64.121,131...Cleaning liquid tank, 72. 8
2...One-way liquid pump, 122.132...
...Air intake device, a = h...Opening/closing valve. Diagram

Claims (1)

【特許請求の範囲】[Claims] 1.(a)血液試料注入部からドイレンまで延設された
試料流路と、 (b)上記試料流路から各々分岐接続された複数の分岐
流路と、 (c)上記試料流路の最上流に位置する分岐流路に接続
された血液ガス測定部並びに他の分岐流路に接続された
血中電解質測定部及び/又は血中化学成分測定部と、 (d)上記試料流路における各分岐流路接続位置の下流
側に各分岐流路と対応して配設された複数の液センサと (e)上記試料流路内に導入された血液試料を、上記各
分岐流路内に個々に導入しうる送液手段と、 (f)上記各液センサの液検知出力によって試料導入可
能な分岐流路を決定し、測定開始信号の入力により当該
分岐流路に血液試料を導入するよう上記送液手段を駆動
すると共に導入された分岐流路の測定部での測定を行う
よう制御する制御部、を備えてなる血液分析装置。
1. (a) A sample flow path extending from the blood sample injection part to the drain; (b) A plurality of branch flow paths each branched from the sample flow path; (c) The most upstream of the sample flow path. a blood gas measurement unit connected to the branch flow path located therein, and a blood electrolyte measurement unit and/or blood chemical component measurement unit connected to another branch flow path; (d) each branch flow in the sample flow path; (e) A plurality of liquid sensors arranged in correspondence with each branch channel on the downstream side of the channel connection position; and (e) the blood sample introduced into the sample channel is individually introduced into each of the branch channels. (f) a liquid feeding means capable of determining a branch channel into which a sample can be introduced based on the liquid detection output of each of the liquid sensors, and introducing the blood sample into the branch channel by inputting a measurement start signal; A blood analyzer comprising: a control unit that drives the means and controls the measurement unit of the introduced branch flow path to perform measurement.
JP1256459A 1989-09-29 1989-09-29 Blood analyzer Pending JPH03118470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256459A JPH03118470A (en) 1989-09-29 1989-09-29 Blood analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256459A JPH03118470A (en) 1989-09-29 1989-09-29 Blood analyzer

Publications (1)

Publication Number Publication Date
JPH03118470A true JPH03118470A (en) 1991-05-21

Family

ID=17292933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256459A Pending JPH03118470A (en) 1989-09-29 1989-09-29 Blood analyzer

Country Status (1)

Country Link
JP (1) JPH03118470A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047363U (en) * 1990-05-02 1992-01-23
CN114646679A (en) * 2020-12-21 2022-06-21 豪夫迈·罗氏有限公司 Sensor apparatus and method of use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047363U (en) * 1990-05-02 1992-01-23
CN114646679A (en) * 2020-12-21 2022-06-21 豪夫迈·罗氏有限公司 Sensor apparatus and method of use
EP4016069A1 (en) * 2020-12-21 2022-06-22 F. Hoffmann-La Roche AG Sensor device and method of its use

Similar Documents

Publication Publication Date Title
US3910256A (en) Automated blood analysis system
US3997420A (en) Automatic analyzer
US3838682A (en) Automated blood analysis system
US4109505A (en) Automated blood analysis system
US4535786A (en) Measurement of body fluid chemistry
US6017318A (en) Feedback controlled drug delivery system
EP1099114B1 (en) Portable immediate response medical analyzer having multiple testing modules
US5697366A (en) In situ calibration system for sensors located in a physiologic line
CN107656085A (en) A kind of blood detector
RU2470300C2 (en) Portable device to measure and control analytes in biological liquids
US7790438B2 (en) Apparatuses and methods for detecting an analyte
WO2023134622A1 (en) Blood gas analyzer
US7687272B1 (en) Method and apparatus for determining blood oxygen transport
JPS61200458A (en) Automatic analyser
JPH03118470A (en) Blood analyzer
JPH0222911B2 (en)
CN102507566A (en) Group detection method, reagent box and detection device for clinical biochemical samples
CN202599846U (en) Group detection device and kit for clinical biochemical samples
JPH02939B2 (en)
KR101762877B1 (en) Mixing apparatus of blood and reagent
JP3610111B2 (en) Electrolyte solution analyzer and electrolyte solution analysis method
JPS6197570A (en) In vivo sample analyzer
US20230313108A1 (en) Sampling Device And Cell Culture System
EP4273214A1 (en) Sampling method
EP4273260A1 (en) Sampling method