JPH03118421A - Method and apparatus for controlling temperature of heated measuring resistor - Google Patents

Method and apparatus for controlling temperature of heated measuring resistor

Info

Publication number
JPH03118421A
JPH03118421A JP2242822A JP24282290A JPH03118421A JP H03118421 A JPH03118421 A JP H03118421A JP 2242822 A JP2242822 A JP 2242822A JP 24282290 A JP24282290 A JP 24282290A JP H03118421 A JPH03118421 A JP H03118421A
Authority
JP
Japan
Prior art keywords
operating temperature
temperature
measurement
resistor
measuring resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2242822A
Other languages
Japanese (ja)
Other versions
JP2958085B2 (en
Inventor
Karl Gmelin
カール・ゲメーリン
Hans-Peter Stiefel
ハンス・ペーター・シュティーフェル
Wolfgang Ketterer
ヴォルフガンク・ケッテラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPH03118421A publication Critical patent/JPH03118421A/en
Application granted granted Critical
Publication of JP2958085B2 publication Critical patent/JP2958085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE: To improve the accuracy and the resolution of a measurement result by changing the operating temperature of a measurement resistor to a different value according to a reference amount and considering the operating temperature when processing the measurement result. CONSTITUTION: A measurement resistor RH heated to a specific operating temperature TB by current flow is cooled according to each air flow rate (m). As a result, the resistance changes so that a bridge is detuned, a signal is generated at an output 8 of an operational amplifier 7, the operating temperature is adjusted via a conductor 10, and the resistor RH is maintained at an original temperature TB. The difference in the temperature in sucked air flow may affect a measurement result, but a temperature-sensitive resistor RK arranged in the air flow similarly can compensate for the influence. Also, the value of a variable resistor R2 can be changed, thus causing a temperature TB of the resistor RH to change also, thus adjusting temperature to a high value TB and increasing a voltage change width regardless of whether the change in air flow rate is small in a measurement voltage U.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、加熱される測定抵抗の温度制御方法及び装置
に関し、さらに詳細には流体の流量を検出する測定抵抗
、特に測定中電流により流体の温度より高い動作温度に
加熱される内燃機関の空気量測定器の熱線等の測定抵抗
の温度制御方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and apparatus for controlling the temperature of a heated measuring resistor, and more particularly to a measuring resistor for detecting the flow rate of a fluid, and in particular for a measuring resistor that detects the flow rate of a fluid during measurement. The present invention relates to a method and apparatus for controlling the temperature of a measuring resistor such as a hot wire of an air amount measuring device for an internal combustion engine that is heated to an operating temperature higher than that of the internal combustion engine.

[従来の技術] 自動車技術においては電流を流すことによってし 温度制御が行なわれる測定抵抗、特に熱線あるは熱薄膜
を用いて、内燃機関が吸引した空気量の検出を行ってい
る。吸気流は加熱された熱線を通過する。この熱線は好
ましくは電気的なブリッジ回路の一部を構成し、好まし
くは電流を流すことによって吸気温度より高い一定の動
作温度に維持される。この原理によって、必要とした加
熱電流を用いて内燃機関が吸引した空気量を求めること
ができる。加熱電流はブリッジの抵抗で電圧信号に変換
され、この電圧信号が内燃機関の制御装置によって最適
な動作点に調節するための入力量として用いられる。熱
線の表面が汚れると測定結果に誤りが生じるので、内燃
機関を遮断した後に電流を上昇させて熱線を灼熱し、で
きるだけ汚れを取り去ることが行われている。内燃機関
は排ガス値及び負荷値が低い場合には、それぞれの燃焼
点において該当するパラメータを正確に検出しないと、
最適な出力は出せないので、この種の空気量測定器の精
度及び測定結果の分解能を向上させることが必要である
BACKGROUND OF THE INVENTION In automotive technology, measuring resistors, in particular hot wires or thin films, whose temperature is controlled by passing an electric current through them, are used to detect the amount of air drawn in by an internal combustion engine. The inlet air flow passes through the heated hot wire. This hot wire preferably forms part of an electrical bridge circuit and is maintained at a constant operating temperature above the intake air temperature, preferably by passing an electric current through it. Based on this principle, the amount of air drawn in by the internal combustion engine can be determined using the required heating current. The heating current is converted into a voltage signal by the resistance of the bridge, which voltage signal is used by the control unit of the internal combustion engine as an input variable for adjusting the optimum operating point. If the surface of the hot wire becomes dirty, the measurement results will be erroneous, so after the internal combustion engine is shut off, the current is increased to scorch the hot wire to remove as much dirt as possible. When the exhaust gas value and load value of an internal combustion engine are low, it is necessary to accurately detect the relevant parameters at each combustion point.
Since the optimum output cannot be produced, it is necessary to improve the accuracy of this type of air quantity measuring device and the resolution of the measurement results.

[発明が解決しようとする課題] 本発明は、上記の欠点を解決するために提案されたもの
で、精度及び測定結果の分解能を向上させることのでき
る冒頭で述べた種類の加熱される測定抵抗の温度制置方
法及び装置を提供することを課題としている。
[Problem to be Solved by the Invention] The present invention has been proposed to solve the above-mentioned drawbacks and provides a heated measuring resistor of the type mentioned at the beginning, which makes it possible to improve the accuracy and the resolution of the measurement results. The object of the present invention is to provide a temperature control method and device.

[課題を解決するための手段] 上記の課題は本発明方法においては、請求項第1項に記
載の特徴によって解決される。
[Means for Solving the Problems] The above problems are solved in the method of the present invention by the features set forth in claim 1.

[作用] 請求項第1項に記載の特徴を有する本発明方法によれば
、吸気量が少ない場合、特にアイドリンクや部分負荷の
領域においても、高い分解能の測定結果が得られる。従
って測定抵抗は内燃機関の小さい負荷領域において空気
流量が少ない場合でも使用可能な特性を有する。このこ
とは特に空気量測定器を内燃機関のバイパス路に配置す
る場合に重要である。さらに、吸気量を検出する測定領
域を太き(すること亡=と、ができるので、高い分解能
が得られる。この利点は、少なくとも1つの基準量に従
って測定抵抗の動作温度を異なる値に変化させ、それに
従って動作温度の変化を考慮して測定結果を処理するこ
とにより得られる。従って動作温度は測定動作中自動的
に変化する。この変化は、好ましくは測定抵抗に流れる
電流を変化させることにより行われる。動作温度の変化
は少なくとも1つの基準量に従って行われ、基準量とし
てはそれぞれの運転状態に応じた量を使用することがで
きる。動作温度の変化によって測定結果も変化するので
、本発明によれば測定結果の処理時に動作温度の変化を
考慮して適合化処理が行われる。
[Operation] According to the method of the present invention having the features set forth in claim 1, high resolution measurement results can be obtained when the amount of intake air is small, especially in the idle link and partial load regions. Therefore, the measuring resistor has characteristics that allow it to be used even in the low load range of the internal combustion engine and at low air flow rates. This is particularly important when the air quantity measuring device is arranged in the bypass path of the internal combustion engine. Furthermore, the measurement area for detecting the intake air volume can be widened, so that a high resolution can be obtained.The advantage of this is that the operating temperature of the measuring resistor can be varied to different values according to at least one reference quantity. , by processing the measurement results taking into account changes in the operating temperature accordingly.The operating temperature therefore changes automatically during the measurement operation.This change is preferably effected by changing the current flowing through the measuring resistor. The change in operating temperature is performed according to at least one reference quantity, and an amount corresponding to each operating state can be used as the reference quantity.Since the measurement result also changes depending on the change in operating temperature, the present invention According to , when processing measurement results, an adaptation process is performed taking into account changes in the operating temperature.

好ましくは動作温度は段階的、あるいは連続的に変化さ
れる。その場合には測定結果の処理の際にそれに応じた
適合化処理を行わなければならない。
Preferably, the operating temperature is changed stepwise or continuously. In that case, an appropriate adaptation process must be performed when processing the measurement results.

好ましくは基準量として、測定によって求められる量が
用いられる。従って測定によって求めた量の値に従って
測定抵抗の動作温度が設定される。
Preferably, an amount determined by measurement is used as the reference amount. The operating temperature of the measuring resistor is therefore set according to the value of the quantity determined by measurement.

基準量として、好ましくは内燃機関の回転数が用いられ
る。測定抵抗の動作温度は、測定された回転数に従って
連続的に調節される。また測定され回転数が所定のしき
い値を越えた場合は、段階的に調節させることもできる
。基準量として内燃機関の絞り弁角度を用いる場合にも
、同様である。特にまた、測定結果自体の量(測定電圧
)を用いて測定抵抗の動作温度を調節することも可能で
ある。その場合にも段階的あるいは連続的に調節させる
ことが可能である。
Preferably, the rotational speed of the internal combustion engine is used as the reference variable. The operating temperature of the measuring resistor is continuously adjusted according to the measured rotational speed. Further, if the measured rotational speed exceeds a predetermined threshold value, the rotational speed can be adjusted in stages. The same applies when the throttle valve angle of the internal combustion engine is used as the reference quantity. In particular, it is also possible to use the measurement result itself (measured voltage) to adjust the operating temperature of the measuring resistor. In that case as well, it is possible to adjust stepwise or continuously.

測定抵抗の動作温度を高(する場合には、空気流量の変
化が僅かでも、測定結果として大きな電圧幅が得られる
。測定抵抗の動作温度が低くなっても、大きな測定領域
を使用することができる。
If the operating temperature of the measuring resistor is set to a high temperature, a large voltage range can be obtained as a measurement result even with a small change in the air flow rate. Even if the operating temperature of the measuring resistor is low, a large measuring area can be used. can.

従って好ましくは最適な測定結果を得るためにそれに応
じた動作温度を設定するようにする。正確な測定結果を
得るために測定結果に所定の大きさの変化幅(特に電圧
の変化幅)が必要な場合には、この必要量に従って動作
温度を設定するようにする。
Therefore, it is preferable to set the operating temperature accordingly in order to obtain optimal measurement results. If a predetermined variation width (particularly voltage variation width) is required in the measurement results in order to obtain accurate measurement results, the operating temperature is set according to this required amount.

本発明はさらに、流体の流量を検出する測定抵抗、特に
測定中電流により流体の温度より高い動作温度に加熱さ
れる内燃機関の空気量測定器の熱線等の測定抵抗の温度
制御装置に関するものであって、動作温度を少なくとも
1つの基準量に従って異なる値に変化させ、それに従っ
て測定結果(測定電圧)を処理するときに、動作温度の
変化を考慮するようにしている。特に分圧器として形成
された2つのブリッジ分岐路を有するブリッジ回路が使
用され、ブリッジ分岐路には測定抵抗と動作温度の調節
に用いられる抵抗値が可変な可変抵抗が設けられる6従
って可変抵抗の調節は前述の基準量に従って行われる。
The invention further relates to a temperature control device for a measuring resistor for detecting the flow rate of a fluid, in particular a measuring resistor such as a hot wire of an air flow measuring device of an internal combustion engine, which is heated by a current to an operating temperature higher than the temperature of the fluid during measurement. The operating temperature is varied to different values according to at least one reference quantity, and the variation in the operating temperature is taken into account when processing the measurement result (measured voltage) accordingly. In particular, a bridge circuit with two bridge branches configured as a voltage divider is used, in which a measuring resistor and a variable resistor with a variable resistance for adjusting the operating temperature are provided6. Adjustments are made according to the aforementioned reference quantities.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は自動車の不図示の内燃機関の空気流量を検出す
る熱線式空気量測定mlの原理を示すブロック回路図で
ある。熱線式空気量測定Htはブリッジ回路2を有し、
ブリッジ回路には分圧器として形成された2つのブリッ
ジ分岐路3と4が設けらδでる6ブリツジ分岐路3の分
圧器は、抵抗R1,感温抵抗RKの直列回路と可変抵抗
R2から形成されている。ブリッジ分岐路4の分圧器は
測定抵抗RHと抵抗R3から形成されている。測定抵抗
RHは熱線式空気量測定器lの熱線あるいは熱薄膜であ
る0両分圧器の電圧タップ5と6は演算増幅器7の2つ
の入力端子に接続されている。演算増幅器7の出力8は
端子9に接続されており、さらに導線lOを介して測定
抵抗RH及び抵抗RKと接続されている。端子11はア
ース12と接続され、かつ抵抗R2及びR3と接続され
ている。端子9と11間で測定結果、特に測定電圧Uを
取り出すことができる。測定抵抗RH(熱線)と感温抵
抗RKは内燃機関の吸気管13の内部に設けられている
。吸気管13は空気流量m[kg/h]を有する。
FIG. 1 is a block circuit diagram showing the principle of hot-wire air flow measurement ml for detecting the air flow rate of an internal combustion engine (not shown) of an automobile. The hot wire air amount measurement Ht has a bridge circuit 2,
The bridge circuit is provided with two bridge branches 3 and 4 formed as voltage dividers.The voltage divider of the six bridge branches 3 is formed by a series circuit of a resistor R1, a temperature-sensitive resistor RK, and a variable resistor R2. ing. The voltage divider of bridge branch 4 is formed by measuring resistor RH and resistor R3. The measuring resistor RH is a hot wire or a hot thin film of the hot wire air flow meter l.The voltage taps 5 and 6 of the voltage divider are connected to the two input terminals of the operational amplifier 7. The output 8 of the operational amplifier 7 is connected to a terminal 9 and further connected to a measuring resistor RH and a resistor RK via a conductor IO. Terminal 11 is connected to ground 12 and to resistors R2 and R3. The measurement result, in particular the measurement voltage U, can be taken out between terminals 9 and 11. The measuring resistor RH (hot wire) and the temperature-sensitive resistor RK are provided inside the intake pipe 13 of the internal combustion engine. The intake pipe 13 has an air flow rate m [kg/h].

次にこのような構成の動作を説明する。Next, the operation of such a configuration will be explained.

電流を流すことによって所定の動作温度TBまで熱せら
れた測定抵抗(RH)は、それぞれ空気流、1mの大き
さに従って冷却される。それによって抵抗値が変化する
ので、ブリッジは離調する。
The measuring resistor (RH), which has been heated to a predetermined operating temperature TB by passing an electric current, is cooled in accordance with the air flow, the size of which is 1 m, respectively. This changes the resistance value and thus detunes the bridge.

それによって演算増幅器7の出力8に信号が発生し導線
IOを介して動作温度の調節が行われ、測定抵抗RHを
元の動作温度TOに維持する。吸弓された空気流の温度
の違いによって測定結果に影響を及ぼす慣れがあるが、
同様に空気流内に配置されている感温抵抗RKによって
この影響が補償することができる。端子9と11間の測
定電圧Uは空気流imの大きさを示す。
As a result, a signal is generated at the output 8 of the operational amplifier 7 which causes an adjustment of the operating temperature via the line IO and maintains the measuring resistor RH at the original operating temperature TO. Differences in the temperature of the sucked airflow are used to affect the measurement results, but
This effect can be compensated for by a temperature-sensitive resistor RK which is likewise arranged in the air stream. The measured voltage U between terminals 9 and 11 indicates the magnitude of the air flow im.

本発明では、可変抵抗R2の値を変化させることができ
るので、測定抵抗RHの動作温度TBを変化させること
ができる。それによって本発明によれば、例えば高い動
作温度THに調節して、測定電圧Uにおいて空気流量の
変化Δmが小さいにも拘らず電圧変化幅をできるだけ大
きなものにすることができる。その場合もちろんそのよ
うにできる測定領域は比較的小さいが、本発明手段によ
れば測定中に測定抵抗RHの動作温度TBを変化させて
(本実施例では減少して)、個々に調節を行うことがで
きる。例えば、測定中所定の空気流E1mを越えると、
自動的に測定抵抗RHはより低い動作温度TBに切り換
えられ、それにより測定領域が拡大するので、発生する
電圧変化幅ΔUはより大きい空気流量領域Δmにまたが
っており、分解能が向上する。すなわち、分解能は測定
抵抗RHの動作温度TBが変化しない場合に比較してず
っと大きくなる。
In the present invention, since the value of the variable resistor R2 can be changed, the operating temperature TB of the measuring resistor RH can be changed. As a result, according to the invention, it is possible, for example, to adjust to a high operating temperature TH and to make the voltage change width as large as possible despite the small change Δm in air flow rate at the measured voltage U. In that case, of course, the measuring range that can be made in this way is relatively small, but according to the means of the invention, the operating temperature TB of the measuring resistor RH can be varied (in this example reduced) during the measurement and adjusted individually. be able to. For example, if a predetermined air flow E1m is exceeded during measurement,
Automatically the measuring resistor RH is switched to the lower operating temperature TB, thereby expanding the measuring range, so that the generated voltage change width ΔU spans a larger air flow range Δm, improving the resolution. That is, the resolution is much greater than if the operating temperature TB of the measuring resistor RH did not change.

この状況が第2図に示されている。同図においては測定
電圧Uは空気流Jimの関数として示されている。カー
ブaは測定抵抗RHの動作温度TBが高い場合を示し、
カーブbは動作温度TBが低い場合の状態を示している
。比較的空気流量mが少ない領域Iにおいては(特に内
燃機関のアイドリンク駆動あるいは部分負荷駆動がこの
場合に当たる)、測定電圧Uに対して比較的大きい変化
幅が得られる。空気流量mが所定のしきい値を越えると
(これは測定電圧Uが所定の値を越えるのと同じことを
意味する)、自動的にカーブaより小さい勾配を有する
カーブbに切り替えられる。従って比較的空気流量mが
大きい領域IIにおいても測定電圧Uに対してかなり大
きい変化幅が得られるので、領域IにおいてもIIにお
いても大きな分解能が保証される。すでに説明したよう
に、この実施例では、カーブaからカーブbへの切り換
えは測定電圧Uの大きさそのものに従って行われる。そ
のために不図示の当業者によく知られた種々の処理回路
が使用される。
This situation is illustrated in FIG. In the figure, the measured voltage U is shown as a function of the air flow Jim. Curve a shows the case where the operating temperature TB of the measuring resistor RH is high,
Curve b shows the state when the operating temperature TB is low. In region I where the air flow rate m is relatively small (this applies in particular to idle-link drive or part-load drive of the internal combustion engine), a relatively large range of change in the measured voltage U is obtained. If the air flow rate m exceeds a predetermined threshold value (which means that the measured voltage U exceeds a predetermined value), a switch is automatically made to curve b, which has a slope smaller than curve a. Therefore, even in region II where the air flow rate m is relatively large, a fairly large variation range for the measured voltage U can be obtained, so that a large resolution is guaranteed in both regions I and II. As already explained, in this embodiment the switching from curve a to curve b takes place in accordance with the magnitude of the measured voltage U itself. For this purpose, various processing circuits, not shown and well known to those skilled in the art, are used.

上述した実施例においては動作温度TBが段階的に変化
する例が示されている。しかしその代わりに動作温度T
Bを連続的に変化させるようにしてもよい。その場合に
は他のカーブが得られる。
In the embodiments described above, an example is shown in which the operating temperature TB changes stepwise. However, instead of operating temperature T
B may be changed continuously. In that case, other curves are obtained.

すでに説明したように、測定抵抗RHの動作温度TBは
測定結果、すなわち測定電圧に従って調節される。従っ
て(本実施例においては)、動作温度は測定によって求
めた所定の基準量Gに関係する。本発明の種々の実施例
によれば、基準量Gとして、種々の量が用いられる。す
なわち、測定結果(測定電圧)の代わりに、基準量Gと
して内燃機関の回転数を用いることも可能である。例え
ばまた内燃機関の絞り弁角度を基準ff1Gとすること
もできる。
As already explained, the operating temperature TB of the measuring resistor RH is adjusted according to the measurement result, ie the measured voltage. Therefore (in this embodiment) the operating temperature is dependent on a predetermined reference quantity G determined by measurement. According to various embodiments of the invention, different quantities are used as the reference quantity G. That is, it is also possible to use the rotational speed of the internal combustion engine as the reference amount G instead of the measurement result (measured voltage). For example, it is also possible to set the throttle valve angle of the internal combustion engine to the reference ff1G.

どのような方法で可変抵抗R2を調節するか(例えば機
械的に)について苦の詳細な説明は省略する。当業者が
良く知っている方法がいくつかあって、いずれにしても
基準量の変化によって可変抵抗R2の抵抗値を変化させ
ることができる。
A detailed explanation of how to adjust the variable resistor R2 (eg, mechanically) will be omitted. There are several methods well known to those skilled in the art, in which case the resistance value of the variable resistor R2 can be varied by varying the reference quantity.

この抵抗値の変化はすでに説明したように、所定のしき
い値を越えた場合に段階的にあるいは連続的に行われる
As described above, this change in resistance value is performed stepwise or continuously when a predetermined threshold value is exceeded.

従って本発明によれば、測定動作中熱線の温度が可変な
熱線式空気量測定器が得られる。これは、熱線の動作温
度TBが変化した場合に、それに応じて測定結果を処理
することが前提となっている6というのは、そうしない
と測定量が歪曲されてしまうからである。基準NGの変
化によって測定抵抗RHの動作温度TBが変化するだけ
でなく、同時に測定結果により得られる値もそれに応じ
て変化することになる。これを補償する方法については
種々のハードウェア的な方法が考えられるが、いずれも
当業者には周知のものであるので、詳しい説明は行わな
い。
Therefore, according to the present invention, a hot wire type air amount measuring device is obtained in which the temperature of the hot wire is variable during the measurement operation. This is because it is assumed that if the operating temperature TB of the hot wire changes, the measurement results should be processed accordingly6, because otherwise the measured quantity would be distorted. Not only does the operating temperature TB of the measuring resistor RH change due to a change in the reference NG, but the value obtained from the measurement result also changes accordingly. Various hardware methods can be considered to compensate for this, but since they are all well known to those skilled in the art, detailed explanations will not be provided.

[発明の効果] 以上の説明から明らかなように本発明によれば、精度及
び測定結果の分解能を向上させることのできる冒頭で述
べた種類の加熱される測定抵抗の温度制御方法及びそれ
を実施する装置を得ることができる。
[Effects of the Invention] As is clear from the above description, the present invention provides a temperature control method for a heated measuring resistor of the type mentioned at the beginning, which can improve the accuracy and resolution of measurement results, and its implementation. You can get equipment to do that.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はブリッジ回路で構成した熱線式空気量測定装置
の原理を示すブロック回路図、第2図は空気流量と測定
結果の関係を示す線区である。 ■・・・熱線式空気量測定器 2・・・ブリッジ回路 3.4・・−ブリッジ分岐路 5.6・・・電圧取り出しタップ 7・・−演算増幅器 フ〉
FIG. 1 is a block circuit diagram showing the principle of a hot wire air flow rate measuring device configured with a bridge circuit, and FIG. 2 is a line section showing the relationship between air flow rate and measurement results. ■...Hot wire air flow meter 2...Bridge circuit 3.4...-Bridge branch 5.6...Voltage extraction tap 7...-Operation amplifier fan>

Claims (1)

【特許請求の範囲】 1)流体の流量を検出する測定抵抗、特に測定中電流に
より流体の温度より高い動作温度に加熱される内燃機関
の空気量測定器の熱線等の測定抵抗の温度制御方法にお
いて、 測定抵抗の動作温度(TB)を基準量(G)に従って異
なる値に変化させ、 測定結果を処理する際に動作温度(TB)の変化を考慮
することを特徴とする加熱される測定抵抗の温度制御方
法。 2)動作温度(TB)が段階的あるいは連続的に変化さ
れることを特徴とする請求項第1項に記載の方法。 3)基準量(G)が測定によって得られる量であること
を特徴とする請求項第1項あるいは第2項に記載の方法
。 4)基準量(G)が内燃機関の回転数、内燃機関の絞り
弁角度、あるいは流量の測定電圧(U)であることを特
徴とする請求項第1項から第3項のいずれかに記載の方
法。 5)動作温度(TB)が測定領域に従って変化されるこ
とを特徴とする請求項第1項から第4項のいずれかに記
載の方法。 6)動作温度(TB)が測定電圧の変化幅に従って変化
されることを特徴とする請求項第1項から第5項のいず
れかに記載の方法。 7)動作温度(TB)が測定分解能に従って変化される
ことを特徴とする請求項第1項から第6項のいずれかに
記載の方法。 8)流体の流量を検出する測定抵抗、特に測定中電流に
より流体の温度より高い動作温度に加熱される内燃機関
の空気量測定器の熱線等の測定抵抗の温度制御装置にお
いて、 動作温度(TB)を少なくとも1つの基準量(G)に従
って異なる値に変化させ、 測定結果を処理するときに動作温度の変化を考慮するこ
とを特徴とする加熱される測定抵抗の温度制御装置。 9)分圧器として形成された2つのブリッジ分岐路(3
、4)を有するブリッジ回路(2)が設けられ、前記ブ
リッジ分岐路に測定抵抗(RH)と動作温度(TB)の
調節に用いられる抵抗値が可変な可変抵抗(R2)が設
けられることを特徴とする請求項第8項に記載の装置。
[Claims] 1) A method for controlling the temperature of a measuring resistor that detects the flow rate of a fluid, particularly a measuring resistor such as a hot wire of an air flow measuring device for an internal combustion engine that is heated to an operating temperature higher than the temperature of the fluid by a current during measurement. A heated measuring resistor, characterized in that the operating temperature (TB) of the measuring resistor is varied to different values according to the reference quantity (G), and the variation in the operating temperature (TB) is taken into account when processing the measurement results. temperature control method. 2) A method according to claim 1, characterized in that the operating temperature (TB) is changed stepwise or continuously. 3) The method according to claim 1 or 2, characterized in that the reference amount (G) is an amount obtained by measurement. 4) According to any one of claims 1 to 3, wherein the reference amount (G) is the rotational speed of the internal combustion engine, the throttle valve angle of the internal combustion engine, or the measurement voltage (U) of the flow rate. the method of. 5) A method according to any one of claims 1 to 4, characterized in that the operating temperature (TB) is varied according to the measurement area. 6) A method according to any one of claims 1 to 5, characterized in that the operating temperature (TB) is changed in accordance with the range of change in the measured voltage. 7) A method according to any one of claims 1 to 6, characterized in that the operating temperature (TB) is varied according to the measurement resolution. 8) In a temperature control device for a measuring resistor that detects the flow rate of a fluid, especially a measuring resistor such as a hot wire of an air quantity measuring device of an internal combustion engine that is heated to an operating temperature higher than the temperature of the fluid by the current during measurement, the operating temperature (TB ) to different values according to at least one reference quantity (G), and taking into account changes in the operating temperature when processing the measurement results. 9) Two bridge branches (3) configured as voltage dividers
, 4), and a variable resistor (R2) with a variable resistance value used for adjusting the measuring resistor (RH) and the operating temperature (TB) is provided in the bridge branch path. 9. Apparatus according to claim 8, characterized in that:
JP2242822A 1989-09-20 1990-09-14 Method and apparatus for controlling temperature of measured resistance Expired - Fee Related JP2958085B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3931308.5 1989-09-20
DE19893931308 DE3931308C2 (en) 1989-09-20 1989-09-20 Method and device for temperature control of a heated measuring resistor

Publications (2)

Publication Number Publication Date
JPH03118421A true JPH03118421A (en) 1991-05-21
JP2958085B2 JP2958085B2 (en) 1999-10-06

Family

ID=6389763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2242822A Expired - Fee Related JP2958085B2 (en) 1989-09-20 1990-09-14 Method and apparatus for controlling temperature of measured resistance

Country Status (2)

Country Link
JP (1) JP2958085B2 (en)
DE (1) DE3931308C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092385A (en) * 2007-10-03 2009-04-30 Hitachi Ltd Thermal flow meter, thermal flow meter control method, and sensor element of thermal flow meter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682348B2 (en) * 1992-09-17 1997-11-26 株式会社日立製作所 Air flow meter and air flow detection method
DE4404506A1 (en) * 1994-02-12 1995-08-17 Deutsche Automobilgesellsch Temperature compensation for mass flow sensors based on the principle of the hot wire anemometer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2750050C2 (en) * 1977-11-09 1983-12-08 Robert Bosch Gmbh, 7000 Stuttgart Device for air volume measurement
DE2843019A1 (en) * 1978-10-03 1980-04-24 Bosch Gmbh Robert METHOD AND DEVICE FOR MEASURING THE AIR MASS SUPPLIED TO AN INTERNAL COMBUSTION ENGINE
DE2927378A1 (en) * 1979-07-06 1981-01-29 Bosch Gmbh Robert DEVICE FOR BURNING A RESISTANCE TO MEASURE
DE3309404A1 (en) * 1983-03-16 1984-09-20 Robert Bosch Gmbh, 7000 Stuttgart Device for measuring the mass flow rate of a flowing medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092385A (en) * 2007-10-03 2009-04-30 Hitachi Ltd Thermal flow meter, thermal flow meter control method, and sensor element of thermal flow meter

Also Published As

Publication number Publication date
JP2958085B2 (en) 1999-10-06
DE3931308A1 (en) 1991-03-28
DE3931308C2 (en) 1997-02-20

Similar Documents

Publication Publication Date Title
US4283944A (en) Apparatus for measuring the mass of a fluid medium
US4311042A (en) Fuel control measuring apparatus for internal combustion engine
US4468963A (en) Method and apparatus for measuring the mass of a pulsating medium flowing in a flow cross section
US4291572A (en) Method and system for controlling the temperature of a heat measuring sensor especially in motor vehicles
US4318385A (en) Exhaust gas recirculation control system
JPH0820292B2 (en) Intake air flow rate measuring device for internal combustion engine
JPH03118421A (en) Method and apparatus for controlling temperature of heated measuring resistor
US5355723A (en) Method and apparatus for controlling the temperature of a heated measuring resistor
JPH0584851B2 (en)
JPWO2019225072A1 (en) Physical quantity detector
JPH04279804A (en) Sensor for varying amount
JPH064139A (en) Flow rate controller
JP2929950B2 (en) Control device for internal combustion engine
JPH0718380B2 (en) Internal combustion engine with air flow meter
JP3195244B2 (en) Flow detector
JPH0765914B2 (en) Air mass flow velocity measurement method and device
JPH0230949A (en) Duty solenoid control device
JPS59103938A (en) Idle automatic governor
JPH04501154A (en) resistance temperature control device
JPS5828621A (en) Thermal flow meter
JPH0623946Y2 (en) Hot wire flow meter for internal combustion engine
JPH0138534Y2 (en)
JPH0143883B2 (en)
JPH02259427A (en) Heating element type apparatus for measuring flow rate
JPH10267718A (en) Air flow rate measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees