JPH0311750A - Sample suction holder - Google Patents

Sample suction holder

Info

Publication number
JPH0311750A
JPH0311750A JP1145469A JP14546989A JPH0311750A JP H0311750 A JPH0311750 A JP H0311750A JP 1145469 A JP1145469 A JP 1145469A JP 14546989 A JP14546989 A JP 14546989A JP H0311750 A JPH0311750 A JP H0311750A
Authority
JP
Japan
Prior art keywords
sample
holder
insulating dielectric
component
electrostatic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1145469A
Other languages
Japanese (ja)
Inventor
Misao Sekimoto
関本 美佐雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1145469A priority Critical patent/JPH0311750A/en
Publication of JPH0311750A publication Critical patent/JPH0311750A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the cooling power of a holder and to enhance the electrostatic force annihilation characteristic of the holder by a method wherein an insulating dielectric part constituting the holder is constituted into a composite structure consisting of a first insulator component for covering integrally all the peripheries of electrodes and a second insulator component for forming a sample suction part. CONSTITUTION:Electrodes 21 for applying a DC voltage are completely covered and insulated with a first insulating dielectric component 22 consisting of a sintered Al oxide. Moreover, a second high-insulating dielectric component 23, which has an elasticity and a flexibility and consists of a capton film, is arranged on the upper surface of the component 22 and the surface of the component 23 is used as a sample suction surface. In order to use a suction holder, a sample S is placed on lift pins 25, the pins 25 are made to descend and the sample S is transferred on the suction surface. After that, desired positive and negative voltages are applied to the electrodes 21 to generate an electrostatic charge in the sample suction surface and the sample S is sucked by an electrostatic force and is cooled. After that, the sample S is recovered. Thereby, both conditions of a securement of a high cooling power and a fast electrostatic force annihilation characteristic can be simultaneously satisfied and the throughput of a device can be improved.

Description

【発明の詳細な説明】 (1)  発明の属する技術分野 本発明は、LSI製造装置等に不可欠な試料を固定・冷
却するための試料吸着ホルダに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field to which the invention pertains The present invention relates to a sample suction holder for fixing and cooling a sample essential for LSI manufacturing equipment and the like.

(2)従来の技術とその問題点 LSI等の生産コストを低減するためには、短時間に大
量の試料を処理できる装置が必要である。
(2) Conventional technology and its problems In order to reduce the production cost of LSI, etc., an apparatus that can process a large amount of samples in a short time is required.

例えば、エツチング装置では、■エツチング速度が高い
こと、■試料交換時間が短いことの両条件を満足するこ
とが要求される。
For example, an etching apparatus is required to satisfy the following conditions: (1) high etching speed, and (2) short sample exchange time.

しかし、高いエツチング速度を確保するには高密度プラ
ズマを試料に照射してエツチングする必要があり、試料
冷却が悪いと試料温度が著しく上昇しレジストの熱ダメ
ージを発生するという問題を生ずる。従って、この問題
を解決するためには冷却能の高い試料吸着ホルダが必要
となり、最近では印加電圧(直流)に比例した密着力が
得られる静電力を利用した試料吸着ホルダが使用される
ようになってきた。
However, in order to ensure a high etching rate, it is necessary to irradiate the sample with high-density plasma for etching, and if the sample is poorly cooled, the sample temperature will rise significantly, causing thermal damage to the resist. Therefore, in order to solve this problem, a sample suction holder with high cooling capacity is required, and recently, sample suction holders that utilize electrostatic force, which can obtain an adhesion force proportional to the applied voltage (DC), have been used. It has become.

しかし、従来の静電式試料吸着ホルダは、■高電圧印加
が困難で十分な冷却能を確保することが困難であったり
、または、■印加電圧解除後の静電力残留時間が非常に
長く試料交換に長い時間を要するなどの欠点を持ってい
た。
However, with conventional electrostatic sample suction holders, ■ it is difficult to apply high voltage and it is difficult to ensure sufficient cooling capacity, or ■ the electrostatic force remains on the sample for a very long time after the applied voltage is removed. It had drawbacks such as requiring a long time to replace it.

以下に、従来の静電吸着試料ホルダの構造及びその冷却
性能・静電力残留特性に関する実験結果について述べる
Below, we will discuss the structure of a conventional electrostatic adsorption sample holder and experimental results regarding its cooling performance and residual electrostatic force characteristics.

実験は、自動ウェハ搬送機構を有するECR放電式エツ
チング装置に2枚電極型静電式試料吸着ホルダを設置し
、μ波パワー及び試料吸着用印加電圧をパラメータとし
てレジストをマスクにStをエツチングし、各ホルダの
冷却能及び静電力残留特性を評価した。
In the experiment, a two-electrode electrostatic sample suction holder was installed in an ECR discharge type etching device equipped with an automatic wafer transfer mechanism, and St was etched using the resist as a mask using the μ-wave power and the applied voltage for sample suction as parameters. The cooling capacity and residual electrostatic force characteristics of each holder were evaluated.

冷却能の評価はレジストの熱ダメージなしにエツチング
できる投入可能パワーの限界を調べることによって評価
した。また、静電力残留特性の評価は、印加電圧解除か
ら試料回収が可能になるまでの待機時間の大小で評価し
た。
The cooling capacity was evaluated by examining the limit of the power that can be input without causing thermal damage to the resist. In addition, the electrostatic force residual characteristics were evaluated based on the waiting time from when the applied voltage was removed to when the sample collection became possible.

図1に、従来の静電式試料吸着ホルダの構造の一例を示
す。静電力を発生させるのに必要な絶縁誘電体部品とし
てカプトン膜3のみを直流電圧印加用電極(Ar1)1
と試料5(Siウェハ)の間に配置したものである。A
!電極1間及び電極下部と冷却水路部品5との間の絶縁
には別の単なる絶縁物2を用いている。6はリフトピン
である。
FIG. 1 shows an example of the structure of a conventional electrostatic sample suction holder. Only the Kapton film 3 is used as the insulating dielectric component necessary to generate electrostatic force.
and sample 5 (Si wafer). A
! Another simple insulator 2 is used for insulation between the electrodes 1 and between the lower part of the electrodes and the cooling channel component 5. 6 is a lift pin.

このホルダの欠点は、電極上部と試料の間に配置した絶
縁誘電体部品と他の絶縁部品が一体の部品として形成さ
れていないため、電極間を結ぶ接合面4が存在するとい
う点である。このような構造であるため、電極間に正負
の高電圧を印加すると部品接合面に沿って異常放電が発
生し電極間が短絡し試料吸着ホルダ自体がすぐに使用不
能になるという欠点があった。このため、試料冷却能も
制限されレジストの熱ダメージなしにエツチングできる
投入可能パワーは600Wに制限された。
A drawback of this holder is that the insulating dielectric component placed between the electrode top and the sample and other insulating components are not formed as an integral component, so that a bonding surface 4 exists that connects the electrodes. Due to this structure, when a positive and negative high voltage is applied between the electrodes, an abnormal discharge occurs along the joint surface of the parts, causing a short circuit between the electrodes, and the sample suction holder itself becomes unusable immediately. . For this reason, the sample cooling capacity was also limited, and the power that could be inputted to allow etching without thermal damage to the resist was limited to 600W.

図2に、上記試料ホルダの欠点を解決するために開発さ
れたもう1つの従来の試料吸着ホルダの例を示す。電極
11(W)の全周囲を焼結アルミニウム酸化物で作られ
た1つの高絶縁誘電体部品12で包みこんだものである
。13は冷却水路部品、14はリフトピンである。この
ような構造にしたことによって電極間を結ぶような部品
接合面も存在しなくなり、各部品間で十分な絶縁耐圧が
確保できたため、高電圧印加も可能となった。その結果
、高電圧印加による大きな静電密着力の確保、及び冷却
水路部品13による高冷却能の確保により、レジストの
熱ダメージ無しに1200W以上の大きなパワーを投入
することが可能となり、前記ホルダ(図1)に比べて約
2倍以上の高いエツチング速度が得られるようになった
FIG. 2 shows an example of another conventional sample suction holder developed to solve the drawbacks of the sample holder described above. The entire periphery of the electrode 11 (W) is surrounded by one highly insulating dielectric component 12 made of sintered aluminum oxide. 13 is a cooling channel component, and 14 is a lift pin. With this structure, there is no component bonding surface that connects the electrodes, and sufficient dielectric strength can be ensured between each component, making it possible to apply high voltage. As a result, by securing a large electrostatic adhesion force by applying a high voltage and securing a high cooling capacity by the cooling channel component 13, it is possible to apply a large power of 1200 W or more without thermal damage to the resist, and the holder ( It is now possible to obtain an etching rate that is approximately twice as high as that in Figure 1).

しかし、同ホルダでは大きな静電力による高い冷却能の
確保が可能になった反面、静電力残留時間も非常に長(
、例えば±1.5KVの直流電圧印加条件では試料と静
電式試料吸着ホルダの間の静電力が5分以上も消滅せず
試料交換に長い時間を要するという欠点があらたに発生
してしまった。
However, although this holder has made it possible to ensure high cooling performance due to large electrostatic force, the electrostatic force remains for a very long time (
For example, under the condition of applying a DC voltage of ±1.5 KV, the electrostatic force between the sample and the electrostatic sample suction holder does not disappear for more than 5 minutes, resulting in a new drawback that it takes a long time to exchange the sample. .

以上のように、従来の静電式試料吸着ホルダでは、高い
冷却能と速い静電力消滅特性という両条件を同時に満足
できないという欠点をもっていた。
As described above, the conventional electrostatic sample suction holder has the disadvantage that it cannot simultaneously satisfy both the requirements of high cooling capacity and fast electrostatic force dissipation characteristics.

(3)発明の目的 本発明の目的は、高い冷却能と速い静電力消滅特性とい
う両条件を同時に満足できないという従来の静電式試料
吸着ホルダの欠点を解決し、両条件を同時に満足する実
用的な試料吸着ホルダを提供することにある。
(3) Purpose of the Invention The purpose of the present invention is to solve the drawback of the conventional electrostatic sample suction holder that it cannot simultaneously satisfy both conditions of high cooling capacity and fast electrostatic force dissipation property, and to put it into practical use that satisfies both conditions at the same time. The object of the present invention is to provide a sample adsorption holder.

(4)発明の構成 (4−1)発明の特徴と従来技術との差異本発明は、静
電式試料吸着ホルダにおいて、絶縁誘電体部構造を工夫
することによって、■高冷却能の確保と、■静電残留時
間の短縮による試料交換の効率化という両条件を同時に
満足できることを特徴とする試料吸着ホルダを実現した
ことにある。
(4) Structure of the Invention (4-1) Characteristics of the Invention and Differences from the Prior Art The present invention achieves ■ ensuring high cooling performance by devising the structure of the insulating dielectric part in an electrostatic sample suction holder. The object of the present invention is to realize a sample suction holder that is characterized by simultaneously satisfying both of the following conditions: (1) Improving the efficiency of sample exchange by shortening the electrostatic residual time.

具体的には、静電式試料吸着ホルダにおける直流電圧印
加電極と試料との間に配置する絶縁誘電体部品を複合構
造とすることを特徴とし、一方の絶縁誘電体材料で2つ
の電極全体を完全に包み込み電極間の異常放電を防止し
て高電圧印加を可能にし、他方の弾力性・可撓性のある
絶縁誘電体材料で試料吸着面を構成することによって試
料回収時の正負の残留電荷の結合・消滅を効率的に行わ
せて、静電力残留時間を短くし試料交換効率を向上する
ものである。すなわち、本発明は、冷却能が高く、かつ
、静電力残留時間も短い試料ホルダであることを主要な
特徴とする。従来の静電式試料吸着ホルダとは両条件を
同時に満足できるという点が大きく異なる。
Specifically, the insulating dielectric component placed between the DC voltage applying electrode and the sample in the electrostatic sample suction holder has a composite structure, and one insulating dielectric material covers the entire two electrodes. Completely enveloping the electrodes prevents abnormal discharge between the electrodes, making it possible to apply high voltage, while configuring the sample adsorption surface with an elastic and flexible insulating dielectric material to prevent positive and negative residual charges when collecting the sample. The purpose is to efficiently combine and eliminate the electrostatic force, shorten the electrostatic force residual time, and improve sample exchange efficiency. That is, the main feature of the present invention is that it is a sample holder with high cooling ability and short electrostatic force residual time. It differs greatly from conventional electrostatic sample suction holders in that both conditions can be met at the same time.

(4−2)実施例 図3は、本発明の静電式試料吸着ホルダの構造図であっ
て、21は直流電圧印加電極、22は直流電圧印加電極
と他の部品と間の絶縁を確保するための一体形成した第
一の高絶縁誘電体部品、23は第一の高絶縁誘電体部品
と試料との間に配置した試料吸着面を成す第二の高絶縁
誘電体部品、24は冷却水路部品、25はリフトビン、
Sは試料である。
(4-2) Example Figure 3 is a structural diagram of the electrostatic sample adsorption holder of the present invention, in which 21 is a DC voltage applying electrode, 22 is ensuring insulation between the DC voltage applying electrode and other parts. 23 is a second highly insulating dielectric component forming a sample adsorption surface disposed between the first highly insulating dielectric component and the sample; 24 is a cooling component; Waterway parts, 25 is a lift bin,
S is a sample.

静電式試料吸着ホルダ中央にある直流電圧印加用電極2
1は高温焼結処理に耐えるタングステン(−)からなり
、電極の全周囲を高絶縁誘電体材料である焼結アルミニ
ウム酸化物から成る第一の絶縁誘電体部品22で完全に
被覆・絶縁している。また、この第一の絶縁誘電体部品
22の上面に弾性・可撓性のあるカプトン膜からなる第
二の高絶縁誘電体部品23を配置しその表面を試料吸着
面としている。
DC voltage application electrode 2 located in the center of the electrostatic sample adsorption holder
1 is made of tungsten (-) that can withstand high-temperature sintering, and the entire periphery of the electrode is completely covered and insulated with a first insulating dielectric part 22 made of sintered aluminum oxide, which is a highly insulating dielectric material. There is. Further, a second highly insulating dielectric component 23 made of an elastic and flexible Kapton film is disposed on the upper surface of the first insulating dielectric component 22, and its surface is used as a sample attraction surface.

また、第一の絶縁誘電体部品22の下面は冷却水路部品
24と接している。
Further, the lower surface of the first insulating dielectric component 22 is in contact with the cooling channel component 24 .

本静電式試料吸着ホルダを使用するには、まず、試料吸
着面の上方に位置するリフトピン25の上に試料Sを載
置し、リフトピン25を降下させることによって試料S
を吸着面上に移し換える。その後、直流電圧印加電極2
1に所望の正負の電圧を印加して試料吸着面に静電荷を
発生させて静電力によって試料Sを吸着し、冷却する。
To use this electrostatic sample suction holder, first place the sample S on the lift pin 25 located above the sample suction surface, and lower the lift pin 25 to remove the sample S.
Transfer it onto the suction surface. After that, the DC voltage application electrode 2
A desired positive and negative voltage is applied to the sample S to generate an electrostatic charge on the sample adsorption surface, and the sample S is adsorbed by the electrostatic force and cooled.

試料Sを回収するには、まず、試料Sを吸着するために
印加した直流電圧を解除し、静電力が消滅するまで待機
する。
To collect the sample S, first, the DC voltage applied to attract the sample S is released, and the system waits until the electrostatic force disappears.

その後、試料の外周部をリフトピン25で支持しながら
上昇させることによって、試料Sを吸着面からリフトビ
ン25上に移し換えて搬送機構等によって回収する。
Thereafter, the sample S is moved from the suction surface onto the lift bin 25 by being lifted while supporting the outer circumferential portion of the sample with the lift pins 25, and collected by a transport mechanism or the like.

以下に、従来の試料ホルダ(A)、 (B)及び本発明
の試料ホルダ(C)の冷却性能及び静電力残留特性(試
料交換効率)を比較するために行った実験結果の一例を
示す。
Below, an example of the results of an experiment conducted to compare the cooling performance and electrostatic force residual characteristics (sample exchange efficiency) of conventional sample holders (A), (B) and the sample holder (C) of the present invention will be shown.

既に述べたように、冷却性能は各々の試料ホルダに試料
(レジストバタン付きSiウェハ)を載置して冷却し、
その試料にC12プラズマを照射することによってレジ
ストの熱ダメージなしにエツチングできる投入可能パワ
ーで評価した。その結果、電極間に部品接合面をもつ従
来の試料ホルダ(A)では、異常放電の発生によって投
入可能パワーは600Wに制限された。また、電極間に
部品接合面が存在しない焼結アルミニウム酸化物からな
る一体形成した高絶縁誘電体部品を用いた従来の試料ホ
ルダ(B)では、異常放電の問題がないため投入可能パ
ワーが1200W以上でも問題なかった。
As already mentioned, the cooling performance is determined by placing a sample (Si wafer with a resist button) on each sample holder and cooling it.
By irradiating the sample with C12 plasma, evaluation was made based on the power that can be applied to etching the resist without thermal damage. As a result, in the conventional sample holder (A) having a component joining surface between electrodes, the power that could be applied was limited to 600W due to the occurrence of abnormal discharge. In addition, with the conventional sample holder (B) that uses an integrally formed highly insulating dielectric component made of sintered aluminum oxide with no component joint surface between the electrodes, there is no problem with abnormal discharge, and the input power is 1200 W. There was no problem with the above.

一方、本発明の試料ホルダ(C)での投入可能なパワー
は、試料ホルダ(B)には及ばなかったが、試料ホルダ
(B)の1.5倍の900Wであり十分なSiのエツチ
ング速度(1500人/分)を確保できる値であった。
On the other hand, although the power that can be applied to the sample holder (C) of the present invention was not as high as that of the sample holder (B), it was 900 W, which is 1.5 times that of the sample holder (B), and the power was sufficient for etching Si. (1,500 people/minute).

図4は、試料の交換時間に係わる静電力残留特性に関す
る本発明の試料ホルダ(C)と従来の試料ホルダ(C)
の違いについて比較したものである。
Figure 4 shows the sample holder of the present invention (C) and the conventional sample holder (C) regarding the electrostatic force residual characteristics related to sample exchange time.
This is a comparison of the differences.

ここで、静電力残留時間とは直流印加電圧解除時点から
静電力の消滅を待って試料をリフトピンによって試料ホ
ルダ上方に移動し搬送機構による回収が可能になるまで
の待機時間と定義した。
Here, the electrostatic force residual time is defined as the waiting time from the time when the DC applied voltage is removed until the electrostatic force disappears, the sample is moved above the sample holder by the lift pin, and can be recovered by the transport mechanism.

その結果、本発明の試料ホルダ(C)では、±2KV印
加でもたかだか15秒という非常に小さな待機時間しか
必要とせず、短時間で試料交換が可能であることがわか
った。
As a result, it was found that the sample holder (C) of the present invention requires only a very short waiting time of 15 seconds at most even when ±2 KV is applied, and the sample can be replaced in a short time.

これに対し、従来の試料ホルダ(B)では、±0.5K
V印加で2分、±0.75 K V印加で3分、±2に
■印加では5分以上の長い待機時間が必要であり、この
ような印加条件では試料交換時間が長すぎて実用的な装
置には採用できないことがわかった。
In contrast, with the conventional sample holder (B), ±0.5K
V application requires 2 minutes, ±0.75 K V application requires 3 minutes, and ±2 ■ application requires a long waiting time of 5 minutes or more, and under such application conditions, the sample exchange time is too long to be practical. It was found that this method could not be used in other types of equipment.

そこで、試料ホルダ(B)での試料交換時間を短くする
ために印加電圧を0.IKV程度までに抑えてみたが、
試料冷却能が非常に小さいためレジストの熱ダメージな
しに投入可能のパワーは極めて小さく制限され十分なエ
ツチング速度が得られなかった。また、密着力の低下は
大型試料の吸着を困難にするため、大口径ウェハを採用
する何間にある現在のLSI製造装置の中に従来の試料
ホルダ(B)は使用できない。
Therefore, in order to shorten the sample exchange time in the sample holder (B), the applied voltage was reduced to 0. I tried to reduce it to about IKV, but
Since the sample cooling capacity was very small, the power that could be applied without causing thermal damage to the resist was extremely small, making it impossible to obtain a sufficient etching rate. Further, since the reduction in adhesion makes it difficult to adsorb large samples, the conventional sample holder (B) cannot be used in the current LSI manufacturing equipment that uses large diameter wafers.

このような静電力残留特性の違いは、第一の高絶縁誘電
体部品の上に試料吸着面の役割を果たすための第二の絶
縁誘電体部品として弾性・可撓性のある高絶縁誘電体部
品(例えば、カプトン膜)を配置した結果と考えている
。すなわち、印加電圧解除直後にリフトピンで試料を押
し上げた場合でも、吸着面と試料の瞬間的な形状変形が
容易に可能なため、それに伴って正負の静電荷の再結合
・消滅が生じやすくなり、残留静電力が短時間で消滅し
試料交換が短時間で可能となったものである。
This difference in electrostatic force residual characteristics is due to the fact that the second highly insulating dielectric component is made of an elastic and flexible highly insulating dielectric material that acts as a sample adsorption surface on top of the first highly insulating dielectric component. We believe this is a result of the placement of parts (for example, Kapton membrane). In other words, even if the sample is pushed up with a lift pin immediately after the applied voltage is removed, the adsorption surface and the sample can easily undergo instantaneous shape deformation, making it easy for positive and negative electrostatic charges to recombine and disappear. Residual electrostatic force disappears in a short time, making it possible to exchange samples in a short time.

この結果、従来の試料ホルダでは達成できなかった高冷
却能の確保と、静電残留時間の短縮による試料交換の効
率化という両条件を同時に満足できる静電式試料吸着ホ
ルダ装置を実現した。
As a result, we have achieved an electrostatic sample suction holder device that can simultaneously satisfy both the requirements of ensuring high cooling capacity, which could not be achieved with conventional sample holders, and increasing the efficiency of sample exchange by shortening the electrostatic residual time.

なお、本発明の試料ホルダでは、重金属物質を含まない
高分子膜(カプトン膜等)でその他のホルダ構成部品を
被覆する構造となっているため、重金属汚染が心配され
るような部品がプラズマに曙されることを未然に防止で
きるため、従来の試料ホルダ(B)では問題となりそう
な焼結絶縁誘電体部品からの不純物汚染を完全に防止す
ることができるという利点もある。また、この高分子膜
はシリコーン系接着剤で容易に接着することができ、か
つ、剥離・再接着も容易であるため、従来のものに比べ
て製作及び再生も非常に安価に実行することができると
いう特徴もある。
The sample holder of the present invention has a structure in which other holder components are coated with a polymer film (Kapton film, etc.) that does not contain heavy metal substances, so parts that are likely to be contaminated by heavy metals are not exposed to plasma. There is also the advantage that impurity contamination from the sintered insulating dielectric component, which is likely to be a problem with the conventional sample holder (B), can be completely prevented since it can be prevented from occurring. In addition, this polymer membrane can be easily adhered with silicone adhesive, and is also easy to peel and re-adhere, making it much cheaper to manufacture and recycle than conventional membranes. There is also the feature that it can be done.

(5)発明の詳細 な説明したように、本発明の静電式試料吸着ホルダは、
■高冷却能の確保と、■速い静電力消滅特性(交換時間
の短縮)という両条件を同時に満足でき、装置のスルー
プットを向上できるという利点がある。また、試料吸着
面の製作・再生が容易で安価に実行することができると
いう利点がある。
(5) As described in detail, the electrostatic sample adsorption holder of the present invention has the following features:
It has the advantage of being able to simultaneously satisfy both of the following conditions: (1) ensuring high cooling capacity and (2) fast electrostatic force dissipation characteristics (reducing replacement time), thereby improving the throughput of the device. Another advantage is that the sample adsorption surface can be manufactured and reproduced easily and inexpensively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電極間に部品接合面の存在する従来の静電式試
料吸着ホルダの構造図、第2図は電極を1つの高絶縁誘
電体部品で被覆し電極間に部品接合面を有しない従来の
静電式試料ホルダの構造図、第3図は本発明の複合構造
絶縁誘電体部品を用いた静電吸着式試料ホルダの構造図
、第4図は各試料ホルダの静電力残留特性に関する実験
結果を示す特性図である。 1・・・直流印加電極(Al)、2・・・電極下部と電
極間だけを絶縁するための絶縁部品、3・・・電極下部
と試料間に配置した高絶縁誘電体部品(カプトン膜)、
4・・・電極間に存在する部品接合面、5・・・冷却水
路部品、6・・・リフトビン、S・・・エツチング試料
、11・・・直流印加電極(W) 、12・・・電極全
体を一体で絶縁する高絶縁誘電体部品(焼結アルミニウ
ム酸化物)、13・・・冷却水路部品、14・・・リフ
トピン、21・・・直流印加電i (W)、22・・・
電極全体を一体で絶縁する第一の高絶縁誘電体部品(焼
結アルミニウム酸化物)、23・・・第一の高絶縁誘電
体部品上面と試料間に配置した試料吸着面をなす第二の
高絶縁誘電体部品(カプトン膜)、24・・・冷却水路
部品、25・・・リフトビン。
Figure 1 is a structural diagram of a conventional electrostatic sample suction holder that has a component bonding surface between the electrodes, and Figure 2 shows the electrode covered with one highly insulated dielectric component and has no component bonding surface between the electrodes. FIG. 3 is a structural diagram of a conventional electrostatic sample holder, FIG. 3 is a structural diagram of an electrostatic chuck sample holder using the composite structure insulating dielectric component of the present invention, and FIG. 4 is a diagram showing the electrostatic force residual characteristics of each sample holder. FIG. 3 is a characteristic diagram showing experimental results. 1... DC applying electrode (Al), 2... Insulating component for insulating only the lower part of the electrode and between the electrodes, 3... Highly insulating dielectric component placed between the lower part of the electrode and the sample (Kapton film) ,
4... Component joining surface existing between electrodes, 5... Cooling channel component, 6... Lift bottle, S... Etching sample, 11... Direct current application electrode (W), 12... Electrode Highly insulating dielectric component (sintered aluminum oxide) that integrally insulates the whole, 13... Cooling channel component, 14... Lift pin, 21... DC applied electric current i (W), 22...
a first highly insulating dielectric component (sintered aluminum oxide) that integrally insulates the entire electrode; Highly insulating dielectric parts (Kapton film), 24...Cooling channel parts, 25...Lift bin.

Claims (3)

【特許請求の範囲】[Claims] (1)静電力を利用する試料吸着ホルダにおいて、該ホ
ルダを構成する絶縁誘電体部品が、電極の全周囲を一体
で覆う第1の絶縁誘電体部品と、試料吸着部を形成する
第2の絶縁誘電体部品との複合構造をなしていることを
特徴とする試料吸着ホルダ。
(1) In a sample suction holder that uses electrostatic force, the insulating dielectric parts that constitute the holder include a first insulating dielectric part that integrally covers the entire circumference of the electrode, and a second insulating dielectric part that forms the sample suction part. A sample suction holder characterized by having a composite structure with insulating dielectric parts.
(2)前記第2の絶縁誘電体部品がカプトン等の高分子
膜であることを特徴とする特許請求の範囲第1項記載の
試料吸着ホルダ。
(2) The sample suction holder according to claim 1, wherein the second insulating dielectric component is a polymer film such as Kapton.
(3)前記第1の絶縁誘電体部品が陽極酸化法または焼
結法で形成したアルミニウム酸化物であり、かつ、前記
第2の絶縁誘電体部品がカプトン等の高分子絶縁誘電体
膜であることを特徴とする特許請求の範囲第1項記載の
試料吸着ホルダ。
(3) The first insulating dielectric component is aluminum oxide formed by an anodizing method or a sintering method, and the second insulating dielectric component is a polymeric insulating dielectric film such as Kapton. A sample suction holder according to claim 1, characterized in that:
JP1145469A 1989-06-09 1989-06-09 Sample suction holder Pending JPH0311750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145469A JPH0311750A (en) 1989-06-09 1989-06-09 Sample suction holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145469A JPH0311750A (en) 1989-06-09 1989-06-09 Sample suction holder

Publications (1)

Publication Number Publication Date
JPH0311750A true JPH0311750A (en) 1991-01-21

Family

ID=15385963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145469A Pending JPH0311750A (en) 1989-06-09 1989-06-09 Sample suction holder

Country Status (1)

Country Link
JP (1) JPH0311750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017550A (en) * 2001-06-27 2003-01-17 Shin Sti Technology Kk Chuck for fixing substrate and method for peeling substrate off from chuck

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137536A (en) * 1982-02-03 1983-08-16 Toshiba Corp Electrostatic holding plate
JPS61192435A (en) * 1985-02-21 1986-08-27 Canon Inc Electrostatic adsorbing holder
JPS6294953A (en) * 1985-10-21 1987-05-01 Toto Ltd Manufacture of electrostatic chucking substrate
JPS62286249A (en) * 1986-06-05 1987-12-12 Toto Ltd Electrostatic chuck plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137536A (en) * 1982-02-03 1983-08-16 Toshiba Corp Electrostatic holding plate
JPS61192435A (en) * 1985-02-21 1986-08-27 Canon Inc Electrostatic adsorbing holder
JPS6294953A (en) * 1985-10-21 1987-05-01 Toto Ltd Manufacture of electrostatic chucking substrate
JPS62286249A (en) * 1986-06-05 1987-12-12 Toto Ltd Electrostatic chuck plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017550A (en) * 2001-06-27 2003-01-17 Shin Sti Technology Kk Chuck for fixing substrate and method for peeling substrate off from chuck
JP4681763B2 (en) * 2001-06-27 2011-05-11 住友化学株式会社 Substrate fixing chuck and substrate peeling method from the chuck

Similar Documents

Publication Publication Date Title
US6373681B2 (en) Electrostatic chuck, and method of and apparatus for processing sample using the chuck
US5583736A (en) Micromachined silicon electrostatic chuck
JP3911787B2 (en) Sample processing apparatus and sample processing method
JP5165817B2 (en) Electrostatic chuck and manufacturing method thereof
KR101757378B1 (en) Wafer carrier for smaller wafers and wafer pieces
TWI479595B (en) De-clamping wafers from an electrostatic chuck
JP2001189378A (en) Wafer-chucking heating apparatus
US6730276B2 (en) Plastic film electrostatic adsorption apparatus and electrostatic adsorption method
JP2006080509A (en) Thin substrate support
JPS63283037A (en) Statically attracting apparatus
JPH10154745A (en) Electrostatic attracting device
JPH07130826A (en) Electrostatic chuck
JP4033508B2 (en) Electrostatic chuck
JPH0311750A (en) Sample suction holder
JP2004179364A (en) Electrostatic chuck
US20220130706A1 (en) Etching apparatus and methods of cleaning thereof
JP3769378B2 (en) Electrostatic chuck
JP3933289B2 (en) Electrostatic chuck
JP2600558Y2 (en) Electrostatic chuck
JP3393714B2 (en) Clamp ring
JP2503364B2 (en) Wafer electrostatic chucking device, wafer electrostatic chucking method, wafer separating method, and dry etching method
JPS6325706B2 (en)
JP2003347396A (en) Wafer chucking heating apparatus and wafer chucking apparatus
JPH0737971A (en) Wafer chuck
JPH0794576A (en) Electrostatic attracter