JPH0311680B2 - - Google Patents

Info

Publication number
JPH0311680B2
JPH0311680B2 JP14897383A JP14897383A JPH0311680B2 JP H0311680 B2 JPH0311680 B2 JP H0311680B2 JP 14897383 A JP14897383 A JP 14897383A JP 14897383 A JP14897383 A JP 14897383A JP H0311680 B2 JPH0311680 B2 JP H0311680B2
Authority
JP
Japan
Prior art keywords
powder
vitrified
raw
disposal
glass powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14897383A
Other languages
Japanese (ja)
Other versions
JPS6040997A (en
Inventor
Tsunetaka Baba
Haruto Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP14897383A priority Critical patent/JPS6040997A/en
Publication of JPS6040997A publication Critical patent/JPS6040997A/en
Publication of JPH0311680B2 publication Critical patent/JPH0311680B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高レベル放射性廃棄物ガラス固化体
(以下〓高レベル廃棄物ガラス固化体″と略記す
る場合がある)の埋戻し材に関する。より詳細に
述べると本発明は、放射性廃棄物を熔融ガラス中
に封入固化して高レベル放射性廃棄物ガラス固化
体を得る際に使用される前記熔融ガラスの原料ガ
ラス粉体と同じ原料ガラス粉体あるいは原料ガラ
ス粉体とベントナイト粉体から成り、高レベル廃
棄物ガラス固化体の地層処分時高レベル廃棄物ガ
ラス固化体の浸出率を低下させ且つ浸出した放射
性核種を吸着する埋戻し材に関する。 放射性廃棄物を熔融ガラス中に封入固化するガ
ラス固化法は高レベル廃棄物の固化法の一つで、
現在最も技術的に先行している方法である。ガラ
スの中に放射性廃棄物を分散固化しようとするも
ので、ガラス固化の優れている点は、(1)既に確立
しているガラス製造技術を応用できること、(2)浸
出率が小さく化学的に安定であること、(3)廃棄物
組成の変動に対する適応性が大きいこと、(4)処理
前後の容積比である減容係数が大きいこと等であ
る。 所で、高レベル廃棄物ガラス固化体の最終処分
方法として地下の安定な地層岩盤中に建設される
処分場に、再び地表に出す意図なしに、永久に収
納し、人間による管理から外した状態におく、い
わゆる地層処分がある。かかる地層処分において
問題になるのは廃棄物パツケージから放射性核種
が水相へ移行する、いわゆる浸出性である。パツ
ケージを処分した場合パツケージが健全である限
り、放射性核種の漏洩があるとすれば、それは浸
出によるものである。従つて、放射性核種の環境
への移行を知る上で、浸出性を調べることは重要
な検討項目である。 通常のガラス固化体処分環境下では処分場に侵
入する地下水の流速は極めて遅いものと考えら
れ、それゆえ、地下水の液性は周辺物質の溶解の
影響を大きく受ける。このことは、ガラス固化体
処分時の埋戻し材を選択する上で重要である。す
なわち、ガラス固化体にもつとも近く位置する埋
戻し材の地下水への溶解がガラス固化体の浸出率
を左右するからである。従来、ガラス固化体処分
時の埋戻し材として経済性の面か処分地層を構成
する岩石粉体を、又、ガラス固化体から浸出した
放射性核種の吸着性の面から吸着性能を持つベン
トナイト等の粘土鉱物粉体を使用することが考え
られて来たが、これらの従来技術では、岩石およ
び粘土鉱物の水への溶解性が小さいこと、粘土鉱
物の吸着性能による地下水中の溶解成分の除去効
果等により、ガラス固化体の浸出率を低くする効
果はあまり期待出来ない。 本発明者等はガラスの水への溶解性が岩石等の
溶解性に比べ、大きいことに着目し、原料ガラス
粉体中にガラス固化体を埋めた状態での浸出試験
を実施した。その結果、浸出液が溶解したガラス
成分でほぼ飽和され、ガラス固化体の浸出がほと
んど進行しないことを発見し、本発明を成すにい
たつた。 従つて、本発明の主目的は高レベル廃棄物ガラ
ス固化体を処分する際に使用する新規な埋戻し材
を提供することである。 本発明のより特定的な目的は原料ガラス粉体単
独又は原料ガラス粉体とベントナイト粉体から成
る高レベル廃棄物ガラス固化体処分時に使用する
埋戻し材を提供することである。 更に本発明の別の目的はかかる埋戻し材を使用
して高レベル廃棄物の処分後の浸出率を低減化す
る方法を提供することである。 本発明の他の目的および利点は以下逐次明らか
にされる。 本発明の埋戻し材は原料ガラス粉体又は原料ガ
ラス粉体とベントナイト粉体を1:1の重量比で
混合して成る。 本発明の埋戻し材が原料ガラス粉体とベントナ
イト粉体の混合物から成る場合は原料ガラス粉体
単独の場合にくらべてガラス固化体の浸出率を大
巾に低減することが出来る。 本発明の埋戻し材を用いることにより処分後の
ガラス固化体の浸出率を低く抑えることができる
とともに、浸出した放射性核種を吸着させ、地下
水による移行を低減化できる。 以下、実施例を揚げて、本発明の効果を具体的
に説明する。 実施例および比較例 埋戻し材を使つたガラス固化体の処分条件を模
擬するために、模擬ガラス固化体を花崗岩粉体、
玄武岩粉体、ベントナイト粉体、原料ガラス粉体
および原料ガラスとベントナイトを同一重量比で
混合した粉体、それぞれに埋め、100℃の一定量
の水で10日間の浸出試験を実施した。ガラス固化
体の浸出による重量減から求めた浸出率と浸出溶
液の分析から求めたCsの浸出率は第1表に示す
通りである。比較のためイオン交換水中での浸出
率も示す。
The present invention relates to a backfilling material for high-level radioactive waste vitrified material (hereinafter sometimes abbreviated as "high-level waste vitrified material").More specifically, the present invention relates to It consists of the same raw material glass powder as the raw material glass powder of the molten glass used to obtain the high-level radioactive waste vitrified body by sealing and solidifying it, or the raw material glass powder and bentonite powder, and is a high-level waste material. This invention relates to a backfill material that reduces the leaching rate of high-level vitrified waste and adsorbs leached radionuclides during geological disposal of vitrified waste.The vitrification method, in which radioactive waste is encapsulated and solidified in molten glass, has a high One of the solidification methods for level waste.
This is currently the most technologically advanced method. This method attempts to disperse and solidify radioactive waste in glass.The advantages of vitrification are (1) that already established glass manufacturing technology can be applied, and (2) that the leaching rate is small and chemically (3) It has great adaptability to changes in waste composition, and (4) It has a large volume reduction coefficient, which is the volume ratio before and after treatment. However, as a final disposal method for vitrified high-level waste, it is stored permanently in a disposal site built underground in stable rock formations, with no intention of releasing it to the surface again, and is removed from human management. There is a so-called geological disposal method. A problem in such geological disposal is the so-called leaching, in which radionuclides migrate from the waste package into the aqueous phase. When the package is disposed of, as long as the package is intact, any leakage of radionuclides will be due to leaching. Therefore, investigating the leachability is an important consideration in understanding the transfer of radionuclides to the environment. Under normal vitrified waste disposal environments, the flow rate of groundwater entering the disposal site is considered to be extremely slow, and therefore, the liquid quality of groundwater is greatly affected by the dissolution of surrounding materials. This is important when selecting a backfill material for vitrified waste disposal. In other words, the dissolution of the backfill material located close to the vitrified material into groundwater influences the leaching rate of the vitrified material. Conventionally, rock powder constituting the disposal stratum has been used as a backfill material for vitrified material disposal due to economic considerations, and bentonite, which has adsorption performance for radionuclides leached from vitrified material, has been used. The use of clay mineral powder has been considered, but with these conventional techniques, the solubility of rocks and clay minerals in water is low, and the adsorption performance of clay minerals has limited effectiveness in removing dissolved components from groundwater. Therefore, it cannot be expected to be very effective in lowering the leaching rate of the vitrified material. The present inventors focused on the fact that the solubility of glass in water is greater than that of rocks, etc., and conducted a leaching test with a vitrified body buried in raw glass powder. As a result, it was discovered that the leaching solution was almost saturated with the dissolved glass components, and the leaching of the vitrified material hardly progressed, leading to the completion of the present invention. It is therefore a principal object of the present invention to provide a new backfill material for use in the disposal of high level waste vitrification. A more specific object of the present invention is to provide a backfill material for use in the disposal of high-level waste vitrification consisting of raw glass powder alone or raw glass powder and bentonite powder. Yet another object of the present invention is to provide a method of using such backfill materials to reduce leaching rates after disposal of high level waste. Other objects and advantages of the present invention will be made clear in the following. The backfilling material of the present invention is made by mixing raw glass powder or raw glass powder and bentonite powder at a weight ratio of 1:1. When the backfilling material of the present invention is composed of a mixture of raw material glass powder and bentonite powder, the leaching rate of the vitrified material can be significantly reduced compared to the case where the raw material glass powder is used alone. By using the backfill material of the present invention, the leaching rate of the vitrified material after disposal can be suppressed to a low level, and the leached radionuclides can be adsorbed to reduce migration by groundwater. Hereinafter, the effects of the present invention will be specifically explained with reference to Examples. Examples and Comparative Examples In order to simulate the disposal conditions of vitrified material using backfill material, the simulated vitrified material was made of granite powder,
The samples were buried in basalt powder, bentonite powder, raw glass powder, and powder made by mixing raw glass and bentonite in the same weight ratio, and a 10-day leaching test was conducted with a fixed amount of water at 100°C. The leaching rate determined from the weight loss due to leaching of the vitrified material and the leaching rate of Cs determined from the analysis of the leaching solution are shown in Table 1. For comparison, the leaching rate in ion-exchanged water is also shown.

【表】 上試結果から明らかな様に、本発明によれば従
来の方法に比べガラス固化体の浸出率を大巾に低
下させることができる。
[Table] As is clear from the above test results, according to the present invention, the leaching rate of the vitrified material can be significantly reduced compared to the conventional method.

Claims (1)

【特許請求の範囲】 1 放射性廃棄物を熔融ガラス中に封入固化する
ことによつて得られた高レベル放射性廃棄物ガラ
ス固化体を地下に埋設する際に使用される埋戻し
材であつて、その成分組成が前記熔融ガラスの原
料ガラス粉体と同じ原料ガラス粉体又はこの原料
ガラス粉体とベントナイト粉体との混合物から成
る埋戻し材。 2 前記原料ガラス粉体とベントナイト粉体の重
量比率が1:1である特許請求の範囲第1項に記
載の埋戻し材。
[Scope of Claims] 1. A backfilling material used when burying a vitrified high-level radioactive waste obtained by encapsulating and solidifying radioactive waste in molten glass underground, A backfilling material comprising raw glass powder having the same composition as the raw glass powder of the molten glass or a mixture of this raw glass powder and bentonite powder. 2. The backfilling material according to claim 1, wherein the weight ratio of the raw material glass powder and bentonite powder is 1:1.
JP14897383A 1983-08-15 1983-08-15 Back-filling material of high-level waste glass solidified body Granted JPS6040997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14897383A JPS6040997A (en) 1983-08-15 1983-08-15 Back-filling material of high-level waste glass solidified body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14897383A JPS6040997A (en) 1983-08-15 1983-08-15 Back-filling material of high-level waste glass solidified body

Publications (2)

Publication Number Publication Date
JPS6040997A JPS6040997A (en) 1985-03-04
JPH0311680B2 true JPH0311680B2 (en) 1991-02-18

Family

ID=15464813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14897383A Granted JPS6040997A (en) 1983-08-15 1983-08-15 Back-filling material of high-level waste glass solidified body

Country Status (1)

Country Link
JP (1) JPS6040997A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197599A (en) * 1984-10-19 1986-05-16 清水建設株式会社 Sealing material for radioactive waste
EP0297356B1 (en) * 1987-07-03 1996-02-07 Siemens Aktiengesellschaft Waste container, particularly for final deposit of radioactive substances
CN103366847A (en) * 2013-07-23 2013-10-23 南京大学 Application of waste glass to curing radioactive nuclide and method for curing Sr2+ waste

Also Published As

Publication number Publication date
JPS6040997A (en) 1985-03-04

Similar Documents

Publication Publication Date Title
US5728302A (en) Methods for the removal of contaminants from subterranean fluids
US3274784A (en) Composition and method for fixing atomic waste and disposal
JPH0315509B2 (en)
CN100400442C (en) Closure material and treatment method for on-site stabilizing contaminated bottom mud
GB2124276A (en) Sealing and/or consolidation agent and method of using it
US4173546A (en) Method of treating waste material containing radioactive cesium isotopes
US20140363240A1 (en) Method and Composition For Consolidating and Mechanically Strengthening Soil and/or Sand
JPH0311680B2 (en)
CA2085850A1 (en) Method for fixing waste material
JP5131545B2 (en) Removal and collection method of cushioning material at the radioactive waste disposal facility
US5502267A (en) Organic and metallic waste disposal in bentonite-water mixtures
Brown et al. Effect of organic chemicals on clay liner permeability
JP3547137B2 (en) Radioactive waste storage-backfill of storage
JPH07270597A (en) Buffer material or back-filling material for geological disposal of radioactive waste
Yanagi et al. Sorption behavior of cesium and strontium ions on mixtures of clay sorbents
Lomenick et al. The behavior of strontium-90 and cesium-137 in seepage pits at ORNL
JP5610412B2 (en) Method for insolubilizing water-soluble radioactive cesium, insolubilizing agent used in this method, and hardened cement and concrete obtained by this method
JPS6197600A (en) Back-filling material for radioactive waste
JP4096328B2 (en) Filler for radioactive waste burial
Tanaka et al. Colloidal migration behavior of radionuclides sorbed on mobile fine soil particles through a sand layer
Tordiffe Aspects of the hydrogeochemistry of the Karoo Sequence in the Great Fish River basin, eastern Cape Province, with special reference to the groundwater quality
JPS61191999A (en) Method of stabilizing and treating uranium slag or uranium smelting waste slag
RU2154317C2 (en) Method for recovering liquid radioactive wastes
Pusch et al. Final report of the borehole, shaft, and tunnel sealing test: volume II: shaft plugging
JPS59179580A (en) Ground grouting method