JPS6040997A - Back-filling material of high-level waste glass solidified body - Google Patents

Back-filling material of high-level waste glass solidified body

Info

Publication number
JPS6040997A
JPS6040997A JP14897383A JP14897383A JPS6040997A JP S6040997 A JPS6040997 A JP S6040997A JP 14897383 A JP14897383 A JP 14897383A JP 14897383 A JP14897383 A JP 14897383A JP S6040997 A JPS6040997 A JP S6040997A
Authority
JP
Japan
Prior art keywords
level waste
powder
vitrified
leaching
disposal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14897383A
Other languages
Japanese (ja)
Other versions
JPH0311680B2 (en
Inventor
馬場 恒孝
治人 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP14897383A priority Critical patent/JPS6040997A/en
Publication of JPS6040997A publication Critical patent/JPS6040997A/en
Publication of JPH0311680B2 publication Critical patent/JPH0311680B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高レベル放射性廃棄物ガラス固化体(以下“°
高レベル廃棄物ガラス固化体゛°と略記する場合がある
)の卯戻し利に関する。より17則に述べろと本発明は
原料ガラス粉体ル)るいは原ネ・1ガラス粉体とベット
ナイト粉体から成り、高レベル廃棄物ガラス固化体の地
層処分11′!4高レベル廃棄物ガラス固化体の浸出率
を低下させ且つ浸出した放射性核種を吸着する埋戻し拐
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to high-level radioactive waste vitrified material (hereinafter referred to as "°
Concerning the recovery of high-level waste vitrification (sometimes abbreviated as "high-level waste vitrification"). As stated in Rule 17, the present invention consists of raw material glass powder (1) or raw energy (1) glass powder and bedtonite powder, and is used for geological disposal of high-level waste vitrification. 4. It relates to backfilling that reduces the leaching rate of high-level waste vitrified material and adsorbs leached radionuclides.

ガラス固化法は高レベル廃棄物の固化法の一つで、現在
最も技術的に先行している方法である。
The vitrification method is one of the methods for solidifying high-level waste, and is currently the most technologically advanced method.

ガラスの中に放射性廃棄物を分散固化しようとするもの
で、ガラス固化の優れている点は、(1)既に確立して
いるガラス製造技術を応用できること、(2)浸出率が
小さく化学的に安定であること、(3)廃棄物組成の変
動に対する適応性が大きいこと、(4)処理前後の容積
比である減容係数が大きいこと等である。
This method attempts to disperse and solidify radioactive waste in glass.The advantages of vitrification are (1) that already established glass manufacturing technology can be applied, and (2) that the leaching rate is small and chemically (3) It has great adaptability to changes in waste composition; (4) It has a large volume reduction coefficient, which is the volume ratio before and after treatment.

所で、高レベル廃棄物ガラス固化体の最終処分方法とし
て地下の安定な地層岩盤中に建設されろ処分場に、再び
地表に出す意図なしに、永久に収納し、人間による管理
から外した状態におく、いわゆる地層処分がある。かか
る地層処分において問題になるのは廃棄物パッケージか
ら放射性核種が水相へ移行する、いわゆる浸出性である
。パッケージを処分した場合パッケージが健全である限
り、放射性核種の漏洩があるとすれば、それは浸出によ
るものである。従って、放射性核種の環境への移行を知
る上で、浸出性を調べろことは重要な検討項目である。
However, as a final disposal method for vitrified high-level waste, it is necessary to construct a repository underground in a stable geological bedrock, where it is permanently stored and removed from human management, with no intention of bringing it back to the surface. There is a so-called geological disposal method. A problem with such geological disposal is the so-called leaching, in which radionuclides migrate from the waste package into the aqueous phase. When the package is disposed of, as long as the package is intact, any leakage of radionuclides will be due to leaching. Therefore, investigating the leachability is an important consideration in understanding the migration of radionuclides into the environment.

通常のガラス固化体処分環境下では処分場に侵入する地
下水の流速は極めて遅いものと考えられ、それゆえ、地
下水の液性は周辺物質の溶解の影響を大きく受ける。こ
のことは、ガラス固化体処分時の埋戻し材を選択する上
で重要である。すなわち、ガラス固化体にもつとも近く
位置する埋戻し材の地下水への溶解がガラス固化体の浸
出率を左右するからである。従来、ガラス固化体処分時
の埋戻し材として経済性の面から処分地層を構成する岩
石粉体を、又、ガラス固化体から浸出した放射性核種の
吸着性の面から吸着性能を持つベットナイト等の粘土鉱
物粉体を使用することが考えられて来たが、これらの従
来技術では、岩石および粘土鉱物の水への溶解性が小さ
いこと、粘土鉱物の吸着性能による地下水中の溶解成分
の除去効果等により、ガラス固化体の浸出率を低くずろ
効果はあまり期待出来ない。
Under normal vitrified waste disposal environments, the flow rate of groundwater entering the disposal site is considered to be extremely slow, and therefore the liquid quality of groundwater is greatly affected by the dissolution of surrounding materials. This is important when selecting a backfill material for vitrified waste disposal. In other words, the dissolution of the backfill material located close to the vitrified material into groundwater influences the leaching rate of the vitrified material. Conventionally, rock powder constituting the disposal stratum has been used as a backfill material when disposing of vitrified material from an economic standpoint, and bettonite, which has adsorption performance for radionuclides leached from vitrified material, has been used. The use of clay mineral powder has been considered, but these conventional techniques have been proposed due to the low solubility of rocks and clay minerals in water, and the difficulty in removing dissolved components from groundwater due to the adsorption ability of clay minerals. Due to the effects, etc., the leaching rate of the vitrified material is low and no significant effect can be expected.

本発明者等はガラスの水への溶解性が岩石等の溶解性に
比べ、大きいことに着目し、原料ガラス粉体中にガラス
固化体を埋めた状態での浸出試験を実施した。その結果
、浸出液が溶解したガラス成分でほぼ飽和され、ガラス
固化体の浸出がほとんど進行しないことを発見し、本発
明を成すにいたった。
The present inventors focused on the fact that the solubility of glass in water is greater than that of rocks, etc., and conducted a leaching test with a vitrified body buried in raw glass powder. As a result, it was discovered that the leaching solution was almost saturated with the dissolved glass components, and the leaching of the vitrified material hardly progressed, leading to the completion of the present invention.

従って、本発明の主目的は高レベル廃棄物ガラス固化体
を処分する際に使用する新規な埋戻し材を提供ずろこと
である。
It is therefore a principal object of the present invention to provide a new backfill material for use in the disposal of high level waste vitrification.

本発明のより特定的な目的は原料ガラス粉体単独又は原
料ガラス粉体とベントナイト粉体から成る高レベル反棄
物ガラス固化体処分時に使用する埋戻し材を提供するこ
とである。
A more specific object of the present invention is to provide a backfill material for use in the disposal of high level waste vitrification consisting of raw glass powder alone or raw glass powder and bentonite powder.

更に本発明の別の目的はかかる埋戻し材を使用して高レ
ベル廃棄物の処分後の浸出率を低減化する方法を提供す
ることである。
Yet another object of the present invention is to provide a method of using such backfill materials to reduce leaching rates after disposal of high level waste.

本発明の他の目的および利点は以下逐次間らかにされろ
Other objects and advantages of the invention will be highlighted below.

本発明の埋戻し材は原料ガラス粉体又は原料ガラス粉体
とベントナイト粉体を1=1の重量比で混合して成る。
The backfilling material of the present invention is made by mixing raw glass powder or raw glass powder and bentonite powder at a weight ratio of 1=1.

本発明の埋戻し材が原料ガラス粉体とベントナイト粉体
の混合物から成る場合は原料ガラス粉体単独の場合にく
らべてガラス固化体の浸出率を大巾に低減することが出
来る。
When the backfilling material of the present invention is composed of a mixture of raw material glass powder and bentonite powder, the leaching rate of the vitrified material can be significantly reduced compared to the case where the raw material glass powder is used alone.

本発明の埋戻し材を用いることにより処分後のガラス固
化体の浸出率を低く抑えることができるとともに、浸出
した放射性核種を吸着させ、」11!下水による移行を
低減化できる。
By using the backfilling material of the present invention, the leaching rate of the vitrified material after disposal can be kept low, and the leached radionuclides can be adsorbed. Migration through sewage can be reduced.

以下、実施例を揚げて、本発明の効果を具体的に説明す
る。
Hereinafter, the effects of the present invention will be specifically explained with reference to Examples.

実施例および比較例 埋戻し材を使ったガラス固化体の処分条件を(莫擬する
ために、模擬ガラス固化体を花崗岩粉体、玄武岩粉体、
ベントナイト粉体、原料ガラス粉体および原料ガラスと
ベントナイトを同一重量比で混合した粉体、それぞれに
埋め、l OO’Cの一定量の水で10日間の浸出試験
を実施した。ガラス固化体の浸出による重量減からめた
浸出率と浸出溶液の分析からめたc8の浸出率は第1表
に示す通りである。比較のためイオン交換水中での浸出
率も示す。
Examples and Comparative Examples In order to simulate the disposal conditions of vitrified material using backfill material, simulated vitrified material was prepared using granite powder, basalt powder,
Bentonite powder, raw glass powder, and powder mixed with raw glass and bentonite in the same weight ratio were buried in each, and a 10-day leaching test was conducted with a fixed amount of lOO'C of water. Table 1 shows the leaching rate of c8 determined from the weight loss due to leaching of the vitrified material and the leaching rate from the analysis of the leaching solution. For comparison, the leaching rate in ion-exchanged water is also shown.

第1表 NDは浸出液中のCs濃度が測定限度以下(< 0.0
1 ppm)であることを表わす。
Table 1 ND indicates that the Cs concentration in the leachate is below the measurement limit (< 0.0
1 ppm).

上試結果から明らかな様に、本発明によれば従来の方法
に比ベガラス固化体の浸出率を大巾に低下させることが
できる。
As is clear from the above test results, according to the present invention, the leaching rate of the vitrified material can be significantly reduced compared to the conventional method.

特許出願人 日本原子力研究所 (外4名)Patent applicant: Japan Atomic Energy Research Institute (4 other people)

Claims (1)

【特許請求の範囲】 1 原料ガラス粉体単独又は原料ガラス粉体とベントナ
イト粉体から成る高レベル廃棄物ガラス固化体の埋戻し
材。 2 原料ガラス粉体とベントナイト粉体の重量比率が1
:1である特許請求の範囲第1項記載の埋戻し材。
[Claims] 1. A backfilling material for high-level waste vitrified material consisting of raw glass powder alone or raw glass powder and bentonite powder. 2 The weight ratio of raw glass powder and bentonite powder is 1
:1.
JP14897383A 1983-08-15 1983-08-15 Back-filling material of high-level waste glass solidified body Granted JPS6040997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14897383A JPS6040997A (en) 1983-08-15 1983-08-15 Back-filling material of high-level waste glass solidified body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14897383A JPS6040997A (en) 1983-08-15 1983-08-15 Back-filling material of high-level waste glass solidified body

Publications (2)

Publication Number Publication Date
JPS6040997A true JPS6040997A (en) 1985-03-04
JPH0311680B2 JPH0311680B2 (en) 1991-02-18

Family

ID=15464813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14897383A Granted JPS6040997A (en) 1983-08-15 1983-08-15 Back-filling material of high-level waste glass solidified body

Country Status (1)

Country Link
JP (1) JPS6040997A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197599A (en) * 1984-10-19 1986-05-16 清水建設株式会社 Sealing material for radioactive waste
JPS6430687A (en) * 1987-07-03 1989-02-01 Siemens Ag Waste storage vessel
CN103366847A (en) * 2013-07-23 2013-10-23 南京大学 Application of waste glass to curing radioactive nuclide and method for curing Sr2+ waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197599A (en) * 1984-10-19 1986-05-16 清水建設株式会社 Sealing material for radioactive waste
JPH0554637B2 (en) * 1984-10-19 1993-08-13 Shimizu Construction Co Ltd
JPS6430687A (en) * 1987-07-03 1989-02-01 Siemens Ag Waste storage vessel
CN103366847A (en) * 2013-07-23 2013-10-23 南京大学 Application of waste glass to curing radioactive nuclide and method for curing Sr2+ waste

Also Published As

Publication number Publication date
JPH0311680B2 (en) 1991-02-18

Similar Documents

Publication Publication Date Title
US5728302A (en) Methods for the removal of contaminants from subterranean fluids
Chapman et al. The potential of natural analogues in assessing systems for deep disposal of high-level radioactive waste
Bagosi et al. Immobilization of caesium-loaded ion exchange resins in zeolite-cement blends
Lee et al. Role of clays in the disposal of nuclear waste: a review
Liu et al. Migration chemistry and behaviour of iodine relevant to geological disposal of radioactive wastes. A literature review with a compilation of sorption data
Stille et al. REE mobility in groundwater proximate to the natural fission reactor at Bangombé (Gabon)
Carbol et al. Compilation of radionuclide sorption coefficients for performance assessment
Wieland et al. The effect of α-isosaccharinic acid on the stability of and Th (IV) uptake by hardened cement paste
US4173546A (en) Method of treating waste material containing radioactive cesium isotopes
JPS6040997A (en) Back-filling material of high-level waste glass solidified body
Bhattacharyya Issues in the disposal of waste containing naturally occurring radioactive material
Landström et al. Interactions of trace elements with fracture filling minerals from the Äspö Hard Rock Laboratory
Nowak Backfill barrier as a component in a multiple barrier nuclear waste isolation system
JP5610412B2 (en) Method for insolubilizing water-soluble radioactive cesium, insolubilizing agent used in this method, and hardened cement and concrete obtained by this method
JPH07270597A (en) Buffer material or back-filling material for geological disposal of radioactive waste
Davisson et al. Radioactive waste buried beneath Runit dome on Enewetak atoll, Marshall Islands
Wiborgh Prestudy of final disposal of long-lived low and intermediate level waste
Holgersson Studies on the Effect of Concrete on the Chemistry in a Repository for Radioactive Waste
Torstenfelt et al. Sorption of Sr and Cs on rocks and minerals. Pt. 1
Savage et al. Evolution of near-field physico-chemical characteristics of the SFR repository
JP2003149391A (en) Filler for burying radioactive waste
JP2015034811A (en) Insolubilizing agent for water-soluble radioactive cesium and method for insolubilizing water-soluble radioactive cesium
Buil et al. Rare Earth Elements: A Tool for Understanding the Behaviour of Trivalent Actinides in the Geosphere
Boggs Jr et al. Influence of dissolved organic substances in groundwater on sorption behavior of americium and neptunium
Dayal et al. Wet and dry cycle leaching: aspects of releases in the unsaturated zone