JPH03116780A - Semiconductor element cooling container - Google Patents

Semiconductor element cooling container

Info

Publication number
JPH03116780A
JPH03116780A JP1253206A JP25320689A JPH03116780A JP H03116780 A JPH03116780 A JP H03116780A JP 1253206 A JP1253206 A JP 1253206A JP 25320689 A JP25320689 A JP 25320689A JP H03116780 A JPH03116780 A JP H03116780A
Authority
JP
Japan
Prior art keywords
charge transfer
transfer image
light
image sensor
cold shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1253206A
Other languages
Japanese (ja)
Other versions
JP2540956B2 (en
Inventor
Kazuo Konuma
和夫 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1253206A priority Critical patent/JP2540956B2/en
Publication of JPH03116780A publication Critical patent/JPH03116780A/en
Application granted granted Critical
Publication of JP2540956B2 publication Critical patent/JP2540956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To excite impurity optically in a semiconductor element and to improve activation rate by providing a mechanism to irradiate light having energy which is necessary for activation of the impurity, to the semiconductor element. CONSTITUTION:An outer periphery of a charge transfer image element 101 is enclosed by a light transmitter cup-like cold shield 4' which is provided with an input light opening of a light signal 102 in the central part; a heater 4a' is provided to the cold shield 4', which irradiates ultraviolet ray having energy necessary for activation of dopant impurity in the charge transfer image sensing element by heating the cold shield 4'; and an optical filter 5 is provided which shields detrimental shortwavelength which causes an increase of dark current, etc., of the charge transfer image sensing element 101 in an optical path formed between the cold shield 4' and the charge transfer image sensing element 101. Dopant impurity in the charge transfer image sensing element 101, activated by receiving irradiation of ultraviolet ray, does not freeze and deterioration of dynamic characteristics thereof is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は半導体素子冷却容器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device cooling container.

〔従来の技術] 第4図に、従来の半導体素子冷却容器の一例として米国
KADEL社KD−318SLタイプの半導体素子冷却
容器に半導体素子として電荷転送撮像素子を実装した状
態を示す。第4図に示すようにアルミニウム製真空容器
lの内部には、冷媒100を貯蔵する冷媒だめ2と、冷
媒だめ2内の冷媒100により冷却されるコールドステ
ージ3と、コールドシールド4とが内蔵されている。ま
た、電荷転送撮像素子1011例えばCCDイメージセ
ンサがコールドステージ3上に積載されており、また、
外部から光信号102を電荷転送撮像素子101上に照
射するための窓1aが取付けられている。冷媒100に
は液体チッ素が用いられている。
[Prior Art] FIG. 4 shows a state in which a charge transfer image sensor is mounted as a semiconductor element in a KD-318SL type semiconductor element cooling vessel manufactured by KADEL, USA, as an example of a conventional semiconductor element cooling vessel. As shown in FIG. 4, a refrigerant reservoir 2 for storing refrigerant 100, a cold stage 3 cooled by the refrigerant 100 in the refrigerant reservoir 2, and a cold shield 4 are built into the aluminum vacuum container l. ing. Further, a charge transfer image sensor 1011 such as a CCD image sensor is mounted on the cold stage 3, and
A window 1a is attached for irradiating an optical signal 102 onto the charge transfer image sensor 101 from the outside. Liquid nitrogen is used as the refrigerant 100.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

半導体素子としての電荷転送撮像素子(CCDイメージ
センサ)101の素材として、例えばシリコンを用いた
場合には低温時に、ドーパントとして注入した浅い準位
の不純物の一部が凍結してしまう(参考文献:高橋清「
半導体工学」p96〜p102森北出版B1982年)
。高濃度に注入されたドーパントはど、低温化に伴うド
ーパントの凍結は顕著となる。ドーパントが凍結すると
、キャリア数が低下し、CCDイメージセンサ101の
特性が変動してしまう。また、高濃度に注入されたドー
パントはど、ドーパントの凍結が顕著となるため、高濃
度のドーパントを用いているオーミックコンタクト領域
ではオーミックコンタクトが得られない等の問題が生じ
る。更に、凍結したドーパントは、CCDイメージセン
サ101の動特性を劣化させるキャリアのトラップとし
て働く。このため、電荷転送撮像素子101においては
低温化に伴いトラップに起因する転送損失が生じること
となる(参考文献二木股。
For example, when silicon is used as the material for the charge transfer image sensor (CCD image sensor) 101 as a semiconductor element, a portion of the shallow level impurity implanted as a dopant freezes at low temperatures (References: Kiyoshi Takahashi “
"Semiconductor Engineering" p96-p102 Morikita Publishing B1982)
. When a dopant is implanted at a high concentration, freezing of the dopant becomes noticeable as the temperature decreases. When the dopant freezes, the number of carriers decreases and the characteristics of the CCD image sensor 101 change. Further, when dopant is implanted at a high concentration, freezing of the dopant becomes noticeable, which causes problems such as an ohmic contact cannot be obtained in an ohmic contact region using a dopant at a high concentration. Furthermore, the frozen dopant acts as a carrier trap that degrades the dynamic characteristics of the CCD image sensor 101. For this reason, in the charge transfer image sensor 101, transfer loss due to traps occurs as the temperature decreases (Reference: Futakimata).

電子通信学会論文誌Vol、J68−CNc12 p9
98〜1005゜(1985年))。一方、白金シリサ
イドを受光部に持つショットキ型赤外イメージセンサの
ように、低温(例えば液体窒素温度)での動作を前提と
した特殊な半導体素子がある(参考文献:小沼、テレビ
ジョン学会技術報告Vol 12. k36 p19−
24(1988年))、。
Journal of the Institute of Electronics and Communication Engineers Vol. J68-CNc12 p9
98-1005° (1985)). On the other hand, there are special semiconductor devices that operate at low temperatures (e.g., liquid nitrogen temperature), such as the Schottky infrared image sensor that has platinum silicide in its light receiving area (References: Konuma, Television Society Technical Report Vol 12. k36 p19-
24 (1988)).

一般に半導体素子は低温で動作させると、暗電流が減少
し、熱雑音が低減され、S/N比等の素子特性が向上す
るため、S/N比等の特性改善として冷却する必要があ
る。
In general, when semiconductor devices are operated at low temperatures, dark current is reduced, thermal noise is reduced, and device characteristics such as S/N ratio are improved, so cooling is required to improve characteristics such as S/N ratio.

しかしながら、以上述べたように一般的な半導体素子に
は低温化に伴い素子特性劣化の問題があるにも拘らず、
S/N比等の特性改善を目的として半導体素子の冷却が
行われているのが実情である。
However, as mentioned above, although general semiconductor devices have the problem of deterioration of device characteristics as the temperature decreases,
The reality is that semiconductor devices are cooled for the purpose of improving characteristics such as S/N ratio.

本発明の目的はこのような従来の欠点を除去した半導体
素子冷却容器を提供することにある。
An object of the present invention is to provide a semiconductor device cooling container that eliminates such conventional drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明に係る半導体素子冷却
容器は、真空容器中に、半導体素子を積載する冷却用コ
ールドステージを備えた半導体素子冷却容器において、
半導体素子中の不純物の活性化に必要なエネルギーをも
つ光を前記半導体素子に照射する機構を有するものであ
る。
In order to achieve the above object, a semiconductor device cooling container according to the present invention is a semiconductor device cooling container equipped with a cooling cold stage for loading semiconductor devices in a vacuum container.
It has a mechanism for irradiating the semiconductor element with light having energy necessary to activate impurities in the semiconductor element.

〔作用〕[Effect]

本発明によれば、半導体素子冷却容器内に少なくとも赤
外線光源を有し、半導体素子に赤外線を照射する構造に
しであるため、低温状態で活性化率が低下している半導
体素子中の不純物を光励起させて、活性化率を向上させ
ることができる。
According to the present invention, since at least an infrared light source is provided in the semiconductor device cooling container and the structure is such that the semiconductor device is irradiated with infrared rays, impurities in the semiconductor device whose activation rate is decreased in a low temperature state are optically excited. By doing so, the activation rate can be improved.

〔実施例〕〔Example〕

以下、本発明を、半導体素子としての電荷転送撮像素子
を冷却する半導体素子冷却容器に適用した実施例につい
て説明する。
Hereinafter, an embodiment will be described in which the present invention is applied to a semiconductor device cooling container that cools a charge transfer image sensor as a semiconductor device.

(実施例1) 第1図は本発明の実施例1を示す断面図である。(Example 1) FIG. 1 is a sectional view showing a first embodiment of the present invention.

第1図において、真空容器1に、冷媒100を貯蔵した
冷媒だめ2が内蔵され、冷媒だめ2の下部側面にコール
ドステージ3が取付けられ、コールドステージ3に冷却
対象の電荷転送撮像素子101が搭載されている。一方
、真空容器lには電荷転送撮像素子101に対向させて
光信号102を入光させる窓1aが設けられている。以
上の構成は従来の半導体素子冷却容器と同一構成である
In FIG. 1, a refrigerant reservoir 2 storing a refrigerant 100 is built into a vacuum container 1, a cold stage 3 is attached to the lower side of the refrigerant reservoir 2, and a charge transfer image sensor 101 to be cooled is mounted on the cold stage 3. has been done. On the other hand, a window 1a is provided in the vacuum container 1 so as to face the charge transfer image sensor 101 and allow the optical signal 102 to enter therein. The above configuration is the same as that of a conventional semiconductor device cooling container.

本発明は、中央部に光信号102の入光用開口を備えた
光透過性のカップ状コールドシールド4′により前記電
荷転送撮像素子101の外周を包囲し、コールドシール
ド4′に、該コールドシールド4′を加熱することによ
り電荷転送撮像素子101中のドーパント不純物の活性
化に必要なエネルギーをもつ赤外線を照射させるヒータ
4a’を装備し、コールドシールド4′と電荷転送撮像
素子101 との間に形成される光路中に、電荷転送撮
像素子101の暗電流増加等を引き起こす有害な短波長
を遮断する光学フィルタ5を設置したものである。
In the present invention, the outer periphery of the charge transfer image sensor 101 is surrounded by a light-transmissive cup-shaped cold shield 4' having an opening for the entrance of the optical signal 102 in the center, and the cold shield 4' is provided with Between the cold shield 4' and the charge transfer image sensor 101, there is provided a heater 4a' that irradiates infrared rays with energy necessary to activate dopant impurities in the charge transfer image sensor 101 by heating the cold shield 4'. An optical filter 5 is installed in the formed optical path to block harmful short wavelengths that cause an increase in dark current of the charge transfer image sensor 101.

実施例において、電荷転送撮像素子101は外部からの
光信号102を得て動作している状態において冷媒だめ
2中の冷媒lOOによりコールドステージ3を介して低
−温冷却される。冷媒100による冷却期間中に電荷転
送撮像素子101中のドーパント不純物が凍結してキャ
リア数が低下し、電荷転送撮像素子101の動特性が劣
化する場合がある。そこで、本発明ではヒータ4a’に
よりコールドシールド4′を加熱して、電荷転送撮像素
子101中のドーパント不純物の活性化率向上に必要な
赤外線を該電荷転送撮像素子101に向けて照射する。
In the embodiment, the charge transfer image pickup device 101 is cooled to a low temperature via the cold stage 3 by the coolant lOO in the coolant reservoir 2 while operating in response to an optical signal 102 from the outside. During the cooling period by the coolant 100, dopant impurities in the charge transfer image sensor 101 are frozen, the number of carriers decreases, and the dynamic characteristics of the charge transfer image sensor 101 may deteriorate. Therefore, in the present invention, the cold shield 4' is heated by the heater 4a', and infrared rays necessary for improving the activation rate of the dopant impurities in the charge transfer image sensor 101 are irradiated toward the charge transfer image sensor 101.

したがって、電荷転送撮像素子101中のドーパント不
純物は赤外線照射を受けて活性化され、凍結することが
なく、その動特性の劣化が阻止される。ここで、電荷転
送撮像素子101のバンドギャップ以上のエネルギーを
持つ有害な短波長光は光学フィルタ5により吸収される
ため、有害な短波長光を含む赤外線照射により電荷転送
撮像素子lotの暗電流が増加することはない。
Therefore, the dopant impurities in the charge transfer image sensor 101 are activated by infrared irradiation, are not frozen, and deterioration of the dynamic characteristics thereof is prevented. Here, since harmful short wavelength light having energy greater than the bandgap of the charge transfer image sensor 101 is absorbed by the optical filter 5, the dark current of the charge transfer image sensor lot is reduced due to infrared irradiation containing harmful short wavelength light. It will not increase.

(実施例2) 第2図は本発明の実施例2を示す断面図である。(Example 2) FIG. 2 is a sectional view showing a second embodiment of the present invention.

本実施例は冷媒だめ2の冷媒100中に赤外線を透過し
て電荷転送撮像素子101に照射する構造としたもので
ある。すなわち、図において、中空のコールドステージ
3′の開口に光透過性を持つ光透過コールドステージ3
“を嵌合し、該光透過コールドステージ3“上に電荷転
送撮像素子lot を搭載する。一方、光透過コールド
ステージ3“を挾んで電荷転送撮像素子101 と反対
側の冷媒だめ2の側壁に光透過窓105を設置し、該光
透過窓105の外側に光源104を配置し、光透過窓1
05の内側に光学フィルタ5を配置する。光源104 
としてはヒータにより加熱される黒色に塗られた銅ブロ
ックを用いる。
This embodiment has a structure in which infrared rays are transmitted through the refrigerant 100 in the refrigerant reservoir 2 and irradiated onto the charge transfer image sensor 101. That is, in the figure, a light-transmissive cold stage 3 having a light-transmitting property is provided at the opening of the hollow cold stage 3'.
and a charge transfer image sensor lot is mounted on the light-transmitting cold stage 3. On the other hand, a light transmitting window 105 is installed on the side wall of the coolant reservoir 2 on the opposite side of the charge transfer image sensor 101 with the light transmitting cold stage 3'' in between, and a light source 104 is disposed outside the light transmitting window 105. window 1
An optical filter 5 is placed inside the 05. light source 104
A black-painted copper block heated by a heater is used.

また、冷媒+00としては、赤外線に対する透過性が高
い液体窒素を用いる。また、光透過コールドステージ3
“及び光透過窓105の素材としてはシリコン、 Zn
5e等を用いる。
Further, as the refrigerant +00, liquid nitrogen having high transparency to infrared rays is used. In addition, the light transmission cold stage 3
“And the material of the light transmitting window 105 is silicon, Zn.
5e etc. is used.

光源104から発したドーパント励起光103は、光透
過窓105.光学フィルタ5.冷媒100.光透過コー
ルドステージ3“を透過して電荷転送撮像素子101に
照射される。電荷転送撮像素子101はドーパント励起
光103を受けてそのドーパント不純物が光励起されて
活性化される。したがって、電荷転送撮像素子101の
動特性の劣化が阻止される。また、電荷転送撮像素子1
.01の暗電流増加等を引き起こす有害な短波長光は光
学フィルタ5に吸収遮断される。
Dopant excitation light 103 emitted from light source 104 passes through light transmission window 105. Optical filter 5. Refrigerant 100. The light passes through the light transmission cold stage 3'' and is irradiated onto the charge transfer imaging device 101.The charge transfer imaging device 101 receives the dopant excitation light 103, and the dopant impurities are photoexcited and activated.Therefore, charge transfer imaging is performed. Deterioration of the dynamic characteristics of the element 101 is prevented.Furthermore, the charge transfer image sensor 1
.. Harmful short wavelength light that causes an increase in the dark current of 01 is absorbed and blocked by the optical filter 5.

(実施例3) 第3図は本発明の実施例3を示す断面図である。(Example 3) FIG. 3 is a sectional view showing a third embodiment of the present invention.

本実施例では第2図に示した実施例での光源104から
の光をレンズ106により集光させて照射するようにし
たものである。すなわち、光源!04から発した光はレ
ンズ+06により集光されたドーパント励起光103′
として電荷転送撮像素子101に照射される。集光され
ることにより、ドーパント励起光の照射強度を増すこと
ができる。レンズの代わりに凹面鏡を用いても集光する
ことができる。
In this embodiment, the light from the light source 104 in the embodiment shown in FIG. 2 is condensed by a lens 106 and irradiated. Namely, the light source! The light emitted from 04 becomes dopant excitation light 103' focused by lens +06.
The charge transfer image sensor 101 is irradiated with the light as a light beam. By condensing the light, the irradiation intensity of the dopant excitation light can be increased. Light can also be focused using a concave mirror instead of a lens.

尚、各実施例では電荷転送撮像素子101 を冷却する
場合について説明したが、あらゆる半導体素子に対して
同様の効果がある。また、冷媒だめを有する金属冷却容
器以外の例えば循環型冷却器。
In each embodiment, the case where the charge transfer image sensor 101 is cooled has been described, but the same effect can be obtained for all semiconductor devices. Also, for example, a circulation type cooler other than a metal cooling container having a refrigerant reservoir.

ガラス製冷却容器等の他の冷却容器についても同様の効
果がある。
Similar effects can be achieved with other cooling containers such as glass cooling containers.

〔発明の効果] 以上述べたように本発明によれば、冷却される半導体素
子に光照射を行い、該半導体素子中の不純物ドーパント
に光励起を生じさせて活性化率を向上させることができ
、冷却による不純物ドーパントの凍結を低減させながら
、しかも冷却によって半導体素子の暗電流、熱雑音等を
低減し、素子のS/N比を向上させることができる。以
上の効果は、つまりは、不純物ドーパントの凍結による
特性劣化を考慮せずに、半導体素子の最適動作温度にま
で冷却することが可能になることを意味し、本発明によ
って、特に冷却を必要とする半導体素子の特性を十分に
発揮させることができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to improve the activation rate by irradiating a semiconductor element to be cooled with light to cause optical excitation of impurity dopants in the semiconductor element, While reducing the freezing of impurity dopants due to cooling, it is also possible to reduce the dark current, thermal noise, etc. of the semiconductor device by cooling, and improve the S/N ratio of the device. The above effects mean that it is possible to cool a semiconductor element to its optimum operating temperature without considering the characteristic deterioration due to freezing of impurity dopants. The characteristics of the semiconductor device can be fully exhibited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明の実施例を示す断面図
、第4図は従来の半導体素子冷却容器を示す断面図であ
る。 1・・・真空容器      2 3・・・コールドステージ 3′・・・中空コールドステージ 3″・・・光透過コールドステージ 4.4′・・・コールドシールド 4a’ヒータ5・・
・光学フィルタ    100・・・冷媒101・・・
電荷転送撮像素子 102・・・光信号103・・・ド
ーパント励起光 104・・・光源105・・・光透過
窓      106・・・レンズ・・冷媒だめ
1, 2, and 3 are cross-sectional views showing embodiments of the present invention, and FIG. 4 is a cross-sectional view showing a conventional semiconductor device cooling container. 1... Vacuum container 2 3... Cold stage 3'... Hollow cold stage 3''... Light transmission cold stage 4.4'... Cold shield 4a' Heater 5...
・Optical filter 100... Refrigerant 101...
Charge transfer image sensor 102... Optical signal 103... Dopant excitation light 104... Light source 105... Light transmission window 106... Lens... Coolant reservoir

Claims (1)

【特許請求の範囲】[Claims] (1)真空容器中に、半導体素子を積載する冷却用コー
ルドステージを備えた半導体素子冷却容器において、半
導体素子中の不純物の活性化に必要なエネルギーをもつ
光を前記半導体素子に照射する機構を有することを特徴
とする半導体素子冷却容器。
(1) In a semiconductor device cooling container equipped with a cooling cold stage for loading semiconductor devices in a vacuum container, a mechanism for irradiating the semiconductor devices with light having energy necessary to activate impurities in the semiconductor devices is provided. A semiconductor device cooling container characterized by comprising:
JP1253206A 1989-09-28 1989-09-28 Semiconductor device Expired - Lifetime JP2540956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1253206A JP2540956B2 (en) 1989-09-28 1989-09-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1253206A JP2540956B2 (en) 1989-09-28 1989-09-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH03116780A true JPH03116780A (en) 1991-05-17
JP2540956B2 JP2540956B2 (en) 1996-10-09

Family

ID=17248030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1253206A Expired - Lifetime JP2540956B2 (en) 1989-09-28 1989-09-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2540956B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052778A1 (en) * 2005-11-02 2007-05-10 Buhei Kono Method of promoting reaction of organic substance or inorganic substance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146185A (en) * 1982-02-25 1983-08-31 Fujitsu Ltd Solid-state image pickup device
JPS58180649U (en) * 1982-05-25 1983-12-02 富士通株式会社 Cooled photoelectric conversion device
JPS60250786A (en) * 1984-05-26 1985-12-11 Fujitsu Ltd Photoelectric converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146185A (en) * 1982-02-25 1983-08-31 Fujitsu Ltd Solid-state image pickup device
JPS58180649U (en) * 1982-05-25 1983-12-02 富士通株式会社 Cooled photoelectric conversion device
JPS60250786A (en) * 1984-05-26 1985-12-11 Fujitsu Ltd Photoelectric converter

Also Published As

Publication number Publication date
JP2540956B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
US5804827A (en) Infrared ray detection device and solid-state imaging apparatus
US4939369A (en) Imaging and tracking sensor designed with a sandwich structure
US4937450A (en) Infrared detector comprising an evacuated and cooled Dewar having an elliptical spheroid end window
JPH01295449A (en) Cooling type solid-state image sensing device
US5408100A (en) Chromatic radiance attenuator
JP3674012B2 (en) Solid-state imaging device
JPH03116780A (en) Semiconductor element cooling container
US3639765A (en) Infrared image converter
KR100480299B1 (en) Laser diode module for optical communication
US6091069A (en) Infrared optical system
EP0595468B1 (en) Image device
JP2814987B2 (en) Semiconductor laser module
JP2551381B2 (en) Imaging device
JPH10146332A (en) X-ray ct device
JP3021388B2 (en) A device that converts infrared images into visible light images
Shkedy et al. Multifunction InGaAs detector with on-chip signal processing
US3598998A (en) Single crystal infrared image converter
US5796155A (en) Schottky barrier infrared detector array with increased effective fill factor
KR20000035433A (en) Light irradiation annealing apparatus having infrared radiation cut filter
JP3564845B2 (en) Laser light attenuator
JPH09162379A (en) Cooled ccd camera apparatus
JP2001093407A (en) Semiconductor photoelectric cathode, optical detector using the cathode, and optical detection equipment using the cathode
JPH0357445B2 (en)
US5371376A (en) Mercuric iodide detector
JPS6136906Y2 (en)