JPH0311661B2 - - Google Patents

Info

Publication number
JPH0311661B2
JPH0311661B2 JP57225530A JP22553082A JPH0311661B2 JP H0311661 B2 JPH0311661 B2 JP H0311661B2 JP 57225530 A JP57225530 A JP 57225530A JP 22553082 A JP22553082 A JP 22553082A JP H0311661 B2 JPH0311661 B2 JP H0311661B2
Authority
JP
Japan
Prior art keywords
moisture
sensitive
humidity
hydrophilic polymer
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57225530A
Other languages
Japanese (ja)
Other versions
JPS59114452A (en
Inventor
Mitsuhiro Murata
Akira Kumada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP57225530A priority Critical patent/JPS59114452A/en
Publication of JPS59114452A publication Critical patent/JPS59114452A/en
Publication of JPH0311661B2 publication Critical patent/JPH0311661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Non-Adjustable Resistors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は雰囲気の湿度変化を抵抗変化として
検出する感湿抵抗体に関するものである。 従来より樹脂に導電粉末を分散したものが雰囲
気の湿度変化にもとづいて抵抗変化を示すことは
知られている。このような特性を利用することに
よつて湿度検知素子に利用することも試みられて
いる。しかしながら、湿度検知の履歴を繰り返え
すごとに樹脂中の導電粒子の移動を伴うため、応
答性、再現性あるいはヒステリシスなどに難点が
見られた。 このような難点を改善させるため樹脂を有機化
合物の架橋剤で架橋し、樹脂中の導電粒子の移動
をなくす試みがなされている。このような手段を
施すことによつて樹脂膜の強度を増し、導電粒子
の移動を押えているが、水濡性が悪くなり、湿度
の検知能力が低下してしまうという問題があつ
た。 したがつて、この発明は上記した問題点を解消
するためになされたもので、湿度に対する感度が
すぐれ、応答性、ヒステリシスなどにもすぐれた
特性を有する感湿抵抗体を提供することを目的と
する。 すなわち、この発明にかかる感湿抵抗体は、対
向電極上に感湿抵抗膜が設けられており、相対湿
度の増加に伴つて抵抗値が増大する感湿抵抗体に
おいて、感湿抵抗膜は、イツトリウム、ランタ
ン、セリウムのイオンのいずれかを含む親水性高
分子と導電粉末とからなり、前記親水性高分子は
ポリビニルアルコール系重合体、ポリビニルアル
コール系重合体とセルロース誘導体高分子、ポリ
アクリル酸メチルエステルケン化物、ポリアクリ
ル酸エチルケン化物のうちから選ばれた少なくと
も一種からなることを特徴とするものである。 かかる構成からなる感湿抵抗体は、吸湿、脱湿
時の樹脂の膨潤、収縮の可逆性にすぐれている。
また吸湿時には樹脂の膨潤にもとづいて導電粒子
同志の電気的接触を断ち、抵抗増加の変化をもた
らす。 この発明における特徴は、親水性高分子と導電
粉末を含む感湿抵抗膜に、イツトリウム、ランタ
ン、セリウムのイオンのいずれかを含有させ、そ
の表層部にこれらイオンを偏在させるか、全体に
含有させ、分子内キレートを生成させることによ
つて、高分子鎖を捲縮させて導電性粒子相互の接
触を確実にし、かつ水分の吸着時における親水性
高分子の膨潤を大きくし、抵抗増加の変化を大き
くしたことにある。 上記した分子内キレートの生成は、感湿抵抗膜
を構成する皮膜、つまり上記した各金属イオンを
含む親水性高分子、導電粉末からなる皮膜をアル
カリ性溶液に浸漬するかアルカリ性の蒸気に接触
し、そののち水洗し、乾燥して加熱する方法、ま
たは皮膜を100℃以上で親水性高分子が分解しな
い温度までの温度で加熱するなどによつて行われ
る。このとき、親水性高分子のグリコール結合の
親水基(OH基)と金属イオンとのキレート生成
が生じ、感湿抵抗膜の表面は強固になるとともに
疎水性を帯び、安定した特性を有するとともに、
信頼性の高い感湿抵抗体が得られることになるの
である。 つまり、感湿抵抗膜の表面の親水性が低下し、
疎水性が強められた結果、水が存在しても溶解す
ることがなく、水に対して安定な構造になつてい
る。 一般には、親水性高分子を含む感湿抵抗体の場
合、触媒の存在下のもとに架橋する有機性架橋剤
を用いることは知られている。こうした架橋剤を
使用すると、親水性高分子膜の疎水性が著しく強
められるだけでなく、親水性高分子膜の硬化が生
じ吸湿に伴う高分子膜の膨潤が小さくなる。 一方、この発明のように感湿抵抗膜内で分子内
キレートを生成させると、結晶化が進まず、また
分子鎖も長くならず、親水性高分子の親水基であ
るOH基は完全に脱水されずに一部配位子として
残存するので、吸湿に伴う膨潤度が大きくなり、
大きな抵抗増加の変化を実現することができる。 この発明の特徴である感湿抵抗膜の一部を構成
する導電粒子としては、たとえばカーボンがある
が、その他の化合物導電体、金属などを用いても
よい。この導電粒子の粒径としては10μ以下が良
好な応答性能を得る上で好ましい。 また、親水性高分子としては、たとえば、ポリ
ビニルアルコール系重合体、ポリビニルアルコー
ル系重合体とセルロース誘導体高分子、ポリアク
リル酸メチルエステルケン化物、ポリアクリル酸
エチルケン化物などがある。 上記した構成において、ポリビニルアルコール
系重合体には次のようなものがある。 酢酸ビニル、その他の各種ビニルエステル類
の重合体、およびこれらの共重合体を完全ケン
化または部分ケン化して得られたもの。 酢酸ビニル、その他の各種ビニルエステル類
と各種不飽和単量体、たとえば、α−オレフイ
ン類、塩化ビニル、アクリロニトリル、アクリ
ルアミド、アクリル酸エステル類、メタクリル
酸エステル類を共重合させた共重合体のケン化
物。 こうしたポリビニルアルコール系重合体の環
状酸無水物でエステル化したポリビニルアルコ
ール共重合体やカルボキシル基変性されたポリ
ビニルアルコール系重合体。 また、金属イオンには、たとえば、オキシ塩化
物、塩化物、酢酸塩、硫酸塩、硝酸塩などの塩が
あり、水溶性、アルコール可溶性のものが用いら
れる。 相対湿度の増加に伴つて抵抗値が増加する特性
を有する感湿抵抗膜を構成する親水性高分子と導
電粉末との配合比は次の範囲に選ばれる。 つまり、親水性高分子は20〜80重量%、導電粉
末20〜80重量%である。ここで親水性高分子を20
〜80重量%とし、導電粉末を20〜80重量%とした
のは、親水性高分子が20重量%未満、導電粉末が
80重量%を越えると、吸湿による抵抗変化が小さ
いものとなり、また親水性高分子が80重量%を越
え、導電粉末が20重量%未満になると、感湿抵抗
体そのものの抵抗値が大きくなつて実用に適しな
いからである。金属イオン量の濃度については、
親水性高分子の親水基に対して100モル%以下、
好ましくは60モル%が望ましい。親水性高分子の
親水基は金属イオンと分子内キレートを生成する
のであるが、親水基の半分はキレート配位子とし
て配位するため、キレート化率が高くても水分付
着による膨潤は極端に小さくならない。 以下この発明を実施例にもとづいて詳細に説明
する。 実施例 1 ポリビニルアルコールをアルコールとエチレン
グリコールモノブチルエーテルに溶解した。この
ポリビニルアルコール100重量部に対して平均粒
径30mμのカーボンブラツクの粉末を等量加え、
混練してペーストを作成した。一方、その表面に
電極間隔0.3mm、全電極対向長6.5cmのくし型カー
ボン電極を有する絶縁基板を準備し、この絶縁基
板上にペーストをカーボン電極が隠れるように塗
布手段によつて設けた。 次いで、この絶縁基板を第1表に示すそれぞれ
の金属イオンの10%アルコール水溶液に浸漬し、
引き上げたのち乾燥して塗布膜に金属塩を含有さ
せた。さらに絶縁基板をアルカリ性溶液に浸漬
し、ポリビニルアルコールと金属イオンとで分子
内キレートを生成させた。こののち水洗し乾燥さ
せた。次に170℃で加熱処理を行い、それぞれ試
料を得た。
The present invention relates to a humidity-sensitive resistor that detects changes in atmospheric humidity as changes in resistance. It has been known that resins in which conductive powder is dispersed exhibit resistance changes based on changes in atmospheric humidity. Attempts have also been made to utilize such characteristics in humidity sensing elements. However, as the conductive particles in the resin move each time the humidity detection history is repeated, there are problems with response, reproducibility, and hysteresis. In order to overcome these difficulties, attempts have been made to crosslink the resin with an organic compound crosslinking agent to eliminate the movement of conductive particles in the resin. By applying such measures, the strength of the resin film is increased and the movement of the conductive particles is suppressed, but there is a problem that the water wettability deteriorates and the humidity detection ability decreases. Therefore, the present invention was made to solve the above-mentioned problems, and its purpose is to provide a humidity-sensitive resistor having excellent sensitivity to humidity, excellent responsiveness, hysteresis, etc. do. That is, in the humidity-sensitive resistor according to the present invention, a humidity-sensitive resistor film is provided on the counter electrode, and the resistance value increases as the relative humidity increases. It consists of a hydrophilic polymer containing any of yttrium, lanthanum, or cerium ions and a conductive powder, and the hydrophilic polymer is a polyvinyl alcohol polymer, a polyvinyl alcohol polymer and a cellulose derivative polymer, or a polymethyl acrylate. It is characterized by comprising at least one type selected from saponified esters and saponified polyethyl acrylates. A moisture-sensitive resistor having such a structure has excellent reversibility of swelling and contraction of the resin during moisture absorption and dehumidification.
Furthermore, when moisture is absorbed, electrical contact between the conductive particles is broken due to swelling of the resin, resulting in a change in resistance increase. The feature of this invention is that a moisture-sensitive resistance film containing a hydrophilic polymer and a conductive powder contains yttrium, lanthanum, or cerium ions, and these ions are distributed unevenly in the surface layer or are contained throughout the film. By generating an intramolecular chelate, the polymer chains are crimped to ensure mutual contact between the conductive particles, and the swelling of the hydrophilic polymer upon adsorption of water is increased, resulting in a change in resistance increase. This is due to the fact that it has been made larger. The above-mentioned intramolecular chelate is generated by immersing the film constituting the moisture-sensitive resistance film, that is, the film made of a hydrophilic polymer containing each of the metal ions mentioned above and a conductive powder, in an alkaline solution or contacting it with alkaline vapor. This is then carried out by washing with water, drying and heating, or by heating the film at a temperature of 100° C. or higher to a temperature at which the hydrophilic polymer does not decompose. At this time, chelate formation occurs between the hydrophilic group (OH group) of the hydrophilic polymer's glycol bond and the metal ion, and the surface of the moisture-sensitive resistance film becomes strong and hydrophobic, and has stable characteristics.
This results in a highly reliable moisture-sensitive resistor. In other words, the hydrophilicity of the surface of the moisture-sensitive resistance film decreases,
As a result of its increased hydrophobicity, it does not dissolve even in the presence of water, resulting in a structure that is stable against water. Generally, in the case of a moisture-sensitive resistor containing a hydrophilic polymer, it is known to use an organic crosslinking agent that crosslinks in the presence of a catalyst. When such a crosslinking agent is used, not only the hydrophobicity of the hydrophilic polymer membrane is significantly strengthened, but also the hydrophilic polymer membrane is hardened and the swelling of the polymer membrane due to moisture absorption is reduced. On the other hand, when an intramolecular chelate is generated in a moisture-sensitive resistance film as in this invention, crystallization does not proceed and the molecular chain does not become long, and the OH group, which is a hydrophilic group in a hydrophilic polymer, is completely dehydrated. Since some of the molecules remain as ligands without being absorbed, the degree of swelling due to moisture absorption increases.
Large resistance increase changes can be achieved. The conductive particles constituting a part of the moisture-sensitive resistive film, which is a feature of the present invention, include carbon, for example, but other compound conductors, metals, and the like may also be used. The particle size of the conductive particles is preferably 10 μm or less in order to obtain good response performance. Examples of hydrophilic polymers include polyvinyl alcohol polymers, polyvinyl alcohol polymers and cellulose derivative polymers, saponified polymethyl acrylates, and saponified polyethyl acrylates. In the above configuration, the polyvinyl alcohol polymers include the following. Products obtained by completely saponifying or partially saponifying polymers of vinyl acetate, other vinyl esters, and copolymers thereof. A copolymer made by copolymerizing vinyl acetate, other vinyl esters, and various unsaturated monomers, such as α-olefins, vinyl chloride, acrylonitrile, acrylamide, acrylic esters, and methacrylic esters. monster. Polyvinyl alcohol copolymers esterified with cyclic acid anhydrides of such polyvinyl alcohol polymers and carboxyl group-modified polyvinyl alcohol polymers. Further, metal ions include, for example, salts such as oxychlorides, chlorides, acetates, sulfates, and nitrates, and water-soluble and alcohol-soluble ones are used. The blending ratio of the hydrophilic polymer and the conductive powder constituting the humidity-sensitive resistive film, which has a characteristic that the resistance value increases as the relative humidity increases, is selected within the following range. That is, the hydrophilic polymer content is 20-80% by weight, and the conductive powder content is 20-80% by weight. Here, add 20% hydrophilic polymer.
~80% by weight, and the conductive powder was set at 20 to 80% by weight because the hydrophilic polymer was less than 20% by weight and the conductive powder was less than 20% by weight.
If it exceeds 80% by weight, the resistance change due to moisture absorption will be small, and if the hydrophilic polymer exceeds 80% by weight and the conductive powder is less than 20% by weight, the resistance value of the moisture-sensitive resistor itself will increase. This is because it is not suitable for practical use. Regarding the concentration of metal ions,
100 mol% or less based on the hydrophilic group of the hydrophilic polymer,
Preferably 60 mol% is desirable. The hydrophilic groups of hydrophilic polymers form intramolecular chelates with metal ions, but half of the hydrophilic groups are coordinated as chelate ligands, so even if the chelation rate is high, swelling due to moisture adhesion is extremely high. It doesn't get smaller. The present invention will be described in detail below based on examples. Example 1 Polyvinyl alcohol was dissolved in alcohol and ethylene glycol monobutyl ether. Add an equal amount of carbon black powder with an average particle size of 30 mμ to 100 parts by weight of this polyvinyl alcohol,
A paste was made by kneading. On the other hand, an insulating substrate having comb-shaped carbon electrodes on its surface with an electrode spacing of 0.3 mm and a total electrode facing length of 6.5 cm was prepared, and a paste was applied onto this insulating substrate by a coating means so as to cover the carbon electrodes. Next, this insulating substrate was immersed in a 10% alcohol aqueous solution of each metal ion shown in Table 1.
After being pulled up, the coating film was dried to contain a metal salt. Furthermore, the insulating substrate was immersed in an alkaline solution to form an intramolecular chelate with polyvinyl alcohol and metal ions. Afterwards, it was washed with water and dried. Next, heat treatment was performed at 170°C to obtain each sample.

【表】 得られた感湿抵抗体について、相対湿度におけ
る抵抗値の変化を測定したところ、第1図に示す
ような結果が得られた。 図中の番号は試料No.である。第2図は金属イオ
ンを有していないこの発明範囲外(参考例)のも
のである。 第1図に示したように、この発明にかかるもの
は高湿度領域において抵抗変化率の大きな特性を
有し、ヒステリシスの小さいものが得られている
ことがわかる。一方第2図に示すように金属イオ
ンを含有させないと、抵抗−相対湿度特性曲線に
おいて、相対湿度90%付近に極大値がみられ、ヒ
ステリシスも大きく、さらには初期抵抗値(相対
湿度0%のときの抵抗値)が高いという難点が見
られ、実用には不適当であることがわかる。 実施例 2 実施例1の試料No.3について、実施例1と同様
に絶縁基板の上にセリウムイオンを含むペースト
の皮膜を設け、これをアルカリ性溶液に浸漬せず
に170℃で熱処理を行い、ポリビニルアルコール
とセリウムイオンを反応させ、感湿抵抗体を得
た。 この感湿抵抗体につき、抵抗−相対湿度特性を
測定したところ、第3図に示すような結果が得ら
れた。(図中、番号1)この第3図から明らかな
ように、結露時の抵抗値が0.7MΩで、相対湿度
60%時の抵抗値に対する結露時の抵抗値の増加比
(結露による抵抗増加比)も212と大きな特性を示
し、高湿度領域で抵抗変化の大きい感湿抵抗体が
得られた。 実施例 3 実施例1で得られた各感湿抵抗体について、結
露時の抵抗値と、相対湿度60%時の抵抗値に対す
る結露時の抵抗値の増加比(結露による抵抗増加
比)を測定し、その結果を第2表に示した。 第2表から明らかなように、結露による抵抗変
化比の大きい特性を示している。また、乾燥状態
と結露状態を繰り返しても安定した特性を示すこ
とが確認できた。
[Table] Regarding the obtained humidity-sensitive resistor, the change in resistance value due to relative humidity was measured, and the results shown in FIG. 1 were obtained. The numbers in the figure are sample numbers. FIG. 2 shows an example outside the scope of this invention (reference example) that does not contain metal ions. As shown in FIG. 1, it can be seen that the device according to the present invention has a characteristic of a large resistance change rate in a high humidity region and has a small hysteresis. On the other hand, as shown in Figure 2, if metal ions are not included, the maximum value is seen in the resistance-relative humidity characteristic curve near 90% relative humidity, the hysteresis is large, and the initial resistance value (at relative humidity of 0%) is observed. The drawback is that the resistance value is high, making it unsuitable for practical use. Example 2 Regarding sample No. 3 of Example 1, a paste film containing cerium ions was provided on an insulating substrate in the same manner as in Example 1, and this was heat-treated at 170°C without being immersed in an alkaline solution. A moisture-sensitive resistor was obtained by reacting polyvinyl alcohol with cerium ions. When the resistance-relative humidity characteristics of this humidity-sensitive resistor were measured, the results shown in FIG. 3 were obtained. (Number 1 in the figure) As is clear from this figure 3, the resistance value at the time of dew condensation is 0.7MΩ, and the relative humidity
The ratio of increase in resistance value during dew condensation to the resistance value at 60% (resistance increase ratio due to dew condensation) also showed a large characteristic of 212, resulting in a moisture-sensitive resistor with large resistance changes in high humidity regions. Example 3 For each humidity-sensitive resistor obtained in Example 1, the resistance value during dew condensation and the increase ratio of the resistance value during dew condensation to the resistance value at 60% relative humidity (resistance increase ratio due to dew condensation) were measured. The results are shown in Table 2. As is clear from Table 2, the resistance change ratio due to dew condensation is large. Furthermore, it was confirmed that stable characteristics were exhibited even when the dry state and dew condensation state were repeated.

【表】 実施例 4 親水性高分子として、35%アクリル変性ポリビ
ニルアルコール、およびポリビニルアルコール70
重量部とエチルセルロース30重量部のものを用
い、実施例1と同様にペーストを作成した。この
ペーストを実施例1で作成した絶縁基板の上に塗
布手段で設けた。 次いで、この絶縁基板を2%酢酸セリウムを含
む10%アルコール水溶液に浸漬し、引き上げたの
ち乾燥して塗布膜にセリウムを含有させた。さら
に絶縁基板をアルカリ性溶液に浸漬して反応さ
せ、こののち水洗し乾燥させた。ひきつづき加熱
温度を170℃で行い試料を得た。 得られた感湿抵抗体について、相対湿度におけ
る抵抗値の変化を測定したところ、第3図に示す
ような結果が得られた。図中、2は親水性高分子
として35%アクリル変性ポリビニルアルコールを
用いた例、3は親水性高分子としてポリビニルア
ルコール70重量部とエチルセルロース30重量部の
ものを用いた例である。また結露時の抵抗値は前
者のものは1.0MΩ、後者のものは0.6MΩの値を
示し、いずれも電気抵抗の変化が大きいものであ
つた。 以上この発明にかかる感湿抵抗体は、その感湿
抵抗膜がイツトリウム、ランタン、セリウムのい
ずれかを含む親水性高分子と導電粉末とで構成さ
れ、具体的には親水性高分子とこれら金属イオン
との間で、アルカリ性溶液との接触による反応ま
たは熱処理によつて分子内キレートを生成させた
ものから構成されたものであり、感湿抵抗膜の水
濡性を低下させずに膜強度を向上させることがで
き、良好な感湿特性を有するとともに、その感湿
特性のヒステリシスも小さなものである。また、
親水性高分子と各金属イオンとの分子内キレート
は高分子中に金属イオンを酸素との結合で導入し
ているため、これが高分子の熱伝導率を向上さ
せ、感湿機能を高めることになるから応答性にす
ぐれたものを構成することができる。さらにアル
カリ性溶液による処理では室温で反応させること
ができ、簡単な操作ですぐれた特性を有する感湿
抵抗体が得られる。
[Table] Example 4 As hydrophilic polymers, 35% acrylic modified polyvinyl alcohol and polyvinyl alcohol 70
A paste was prepared in the same manner as in Example 1 using 30 parts by weight of ethyl cellulose. This paste was applied onto the insulating substrate prepared in Example 1 using a coating means. Next, this insulating substrate was immersed in a 10% alcohol aqueous solution containing 2% cerium acetate, pulled up, and dried to make the coating film contain cerium. Further, the insulating substrate was immersed in an alkaline solution to react, and then washed with water and dried. Subsequently, heating was performed at a temperature of 170°C to obtain a sample. When the resistance value of the obtained humidity-sensitive resistor was measured for changes in relative humidity, the results shown in FIG. 3 were obtained. In the figure, 2 is an example in which 35% acrylic modified polyvinyl alcohol was used as the hydrophilic polymer, and 3 is an example in which 70 parts by weight of polyvinyl alcohol and 30 parts by weight of ethyl cellulose were used as the hydrophilic polymer. Furthermore, the resistance value during dew condensation was 1.0 MΩ for the former and 0.6 MΩ for the latter, and both had large changes in electrical resistance. As described above, in the humidity-sensitive resistor according to the present invention, the humidity-sensitive resistive film is composed of a hydrophilic polymer containing any one of yttrium, lanthanum, and cerium and a conductive powder. It is composed of an intramolecular chelate formed with ions by reaction with an alkaline solution or heat treatment, and it increases the film strength without reducing the water wettability of the moisture-sensitive resistance film. In addition to having good moisture sensitivity characteristics, the hysteresis of the moisture sensitivity characteristics is also small. Also,
The intramolecular chelate between a hydrophilic polymer and each metal ion introduces the metal ion into the polymer by bonding with oxygen, which improves the thermal conductivity of the polymer and enhances its moisture-sensing function. Therefore, it is possible to construct something with excellent responsiveness. Furthermore, when treated with an alkaline solution, the reaction can be carried out at room temperature, and a moisture-sensitive resistor with excellent properties can be obtained with simple operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は抵抗−相対湿度特性を示す図
である。
FIGS. 1 to 3 are diagrams showing resistance-relative humidity characteristics.

Claims (1)

【特許請求の範囲】 1 対向電極上に感湿抵抗膜が設けられており、
相対湿度の増加に伴つて抵抗値が増大する感湿抵
抗体において、 感湿抵抗膜は、イツトリウム、ランタン、セリ
ウムのイオンのいずれかを含む親水性高分子と導
電粉末とからなり、 前記親水性高分子はポリビニルアルコール系重
合体、ポリビニルアルコール系重合体とセルロー
ス誘導体高分子、ポリアクリル酸メチルエステル
ケン化物、ポリアクリル酸エチルケン化物のうち
から選ばれた少なくとも一種からなることを特徴
とする感湿抵抗体。 2 感湿抵抗膜を構成する親水性高分子と導電粉
末の比率はそれぞれ20〜80重量%、80〜20重量%
の範囲からなる特許請求の範囲第1項記載の感湿
抵抗体。
[Claims] 1. A moisture-sensitive resistive film is provided on the counter electrode,
In a humidity-sensitive resistor whose resistance value increases with an increase in relative humidity, the humidity-sensitive resistive film is made of a hydrophilic polymer containing any one of yttrium, lanthanum, and cerium ions and a conductive powder, and the hydrophilic Moisture sensitive, characterized in that the polymer is made of at least one selected from polyvinyl alcohol polymers, polyvinyl alcohol polymers and cellulose derivative polymers, saponified polyacrylic acid methyl esters, and polyacrylic acid ethyl saponified materials. resistor. 2 The proportions of the hydrophilic polymer and conductive powder that make up the moisture-sensitive resistance film are 20 to 80% by weight and 80 to 20% by weight, respectively.
The moisture-sensitive resistor according to claim 1, comprising the range of:
JP57225530A 1982-12-21 1982-12-21 Humidity sensitive resistor Granted JPS59114452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225530A JPS59114452A (en) 1982-12-21 1982-12-21 Humidity sensitive resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225530A JPS59114452A (en) 1982-12-21 1982-12-21 Humidity sensitive resistor

Publications (2)

Publication Number Publication Date
JPS59114452A JPS59114452A (en) 1984-07-02
JPH0311661B2 true JPH0311661B2 (en) 1991-02-18

Family

ID=16830742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225530A Granted JPS59114452A (en) 1982-12-21 1982-12-21 Humidity sensitive resistor

Country Status (1)

Country Link
JP (1) JPS59114452A (en)

Also Published As

Publication number Publication date
JPS59114452A (en) 1984-07-02

Similar Documents

Publication Publication Date Title
Sakai et al. A humidity sensor using cross‐linked quaternized Polyvinylpyridine
JP3625348B2 (en) Moisture sensitive element
JPH0311661B2 (en)
JPS642896B2 (en)
JPH0311659B2 (en)
JPH0311660B2 (en)
JPS6161626B2 (en)
JPH0311426B2 (en)
JPS5816467B2 (en) moisture sensing element
JPS58171657A (en) Moisture sensitive resistor
KR950001483B1 (en) Organic high molecule humidity sensor
JPS6253064B2 (en)
KR950009012B1 (en) Organic high polymer humidity sensor
JPH0658337B2 (en) Moisture-sensitive element and manufacturing method thereof
KR950001484B1 (en) Organic high molecule humidity sensor
JP2874021B2 (en) Humidity sensor
JPS6158778B2 (en)
JPS6128700B2 (en)
JP2874026B2 (en) Humidity sensor
JPH0244388B2 (en) KANSHITSUTEIKOTAI
JPH0225458B2 (en)
JPS6236549A (en) Moisture-sensitive element
JP2874022B2 (en) Humidity sensor
JP2874024B2 (en) Humidity sensor
JP2874023B2 (en) Humidity sensor