JPH03115486A - Organic electroluminescent element - Google Patents
Organic electroluminescent elementInfo
- Publication number
- JPH03115486A JPH03115486A JP1254960A JP25496089A JPH03115486A JP H03115486 A JPH03115486 A JP H03115486A JP 1254960 A JP1254960 A JP 1254960A JP 25496089 A JP25496089 A JP 25496089A JP H03115486 A JPH03115486 A JP H03115486A
- Authority
- JP
- Japan
- Prior art keywords
- organic
- transfer layer
- luminescent
- organic electroluminescent
- dye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000975 dye Substances 0.000 claims abstract description 52
- 230000027756 respiratory electron transport chain Effects 0.000 claims abstract description 21
- 239000010409 thin film Substances 0.000 claims abstract description 15
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 5
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims abstract description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims abstract description 4
- 150000002430 hydrocarbons Chemical group 0.000 claims abstract description 4
- 238000005401 electroluminescence Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 7
- -1 dinitrobifluorenonyl Chemical group 0.000 abstract description 5
- 229920000642 polymer Polymers 0.000 abstract description 4
- 150000001408 amides Chemical class 0.000 abstract 1
- 150000002148 esters Chemical class 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 15
- 239000002184 metal Substances 0.000 description 9
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 6
- 239000000370 acceptor Substances 0.000 description 5
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N benzene-dicarboxylic acid Natural products OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- BOHFWWWQMGFMPJ-UHFFFAOYSA-N 1,2,3,4-tetraphenylpyrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C2C=3C=CC=CC=3)=CC3=CC=CC4=CC=C2C1=C34 BOHFWWWQMGFMPJ-UHFFFAOYSA-N 0.000 description 1
- YCANAXVBJKNANM-UHFFFAOYSA-N 1-nitroanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2[N+](=O)[O-] YCANAXVBJKNANM-UHFFFAOYSA-N 0.000 description 1
- JWWQNDLIYXEFQL-UHFFFAOYSA-N 2,3-dinitrofluoren-1-one Chemical compound C1=CC=C2C3=CC([N+](=O)[O-])=C([N+]([O-])=O)C(=O)C3=CC2=C1 JWWQNDLIYXEFQL-UHFFFAOYSA-N 0.000 description 1
- XYPMAZCBFKBIFK-UHFFFAOYSA-N 9,10-dinitroanthracene Chemical compound C1=CC=C2C([N+](=O)[O-])=C(C=CC=C3)C3=C([N+]([O-])=O)C2=C1 XYPMAZCBFKBIFK-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 238000002061 vacuum sublimation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Led Devices (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は表示素子、照明素子などとして用いられる有機
電界発光素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an organic electroluminescent device used as a display device, a lighting device, etc.
(従来の技術)
近年、携帯用TV、コンピュータの需要の増加に伴い、
フラットパネルデイスプレィを中心とした薄型軽量の表
示素子の開発が急速に進められている。現在、その主流
は液晶表示素子であるが、液晶表示素子は大画面化しに
(く、視角によってはみづらいなどの欠点がある。(Prior art) In recent years, with the increase in demand for portable TVs and computers,
Development of thin and lightweight display elements, mainly for flat panel displays, is progressing rapidly. Currently, liquid crystal display elements are the mainstream, but liquid crystal display elements have drawbacks such as difficulty in increasing the screen size and difficulty in viewing depending on the viewing angle.
このため、色の鮮やかさ、動画表示の容易さ、暗い場所
でも表示可能であるなど、優れた表示機能が期待できる
発光型表示素子の開発が要望されている。このような発
光型表示素子としては、プラズマデイスプレィ、無機系
エレクトロルミネッセンス素子、蛍光表示管、発光ダイ
オードなどが研究されている。これらの素子でフルカラ
ーデイスプレィを実現するには、高輝度のRGB発光が
要求される。しかし、現状ではいずれの素子も青色を発
光させることが困難であり、フルカラーデイスプレィは
実現されていない。Therefore, there is a demand for the development of a light-emitting display element that can be expected to have excellent display functions such as vivid colors, ease of displaying moving images, and the ability to display images even in dark places. As such light emitting display elements, plasma displays, inorganic electroluminescent elements, fluorescent display tubes, light emitting diodes, and the like are being studied. In order to realize a full color display with these elements, high brightness RGB light emission is required. However, at present, it is difficult for any of these devices to emit blue light, and a full-color display has not been realized.
ところで、有機色素分子のなかにはそのフォトルミネッ
センスにおいて青色領域(波長4BOr+m近傍)に蛍
光やリン光を発するものが多い。このことから、2枚の
電極の間に有機色素薄膜からなる発光層を設けた構造の
有機電界発光素子は、フルカラーの表示素子などを実現
できる可能性が高く、大きい期待が寄せられている。し
かし、有機電界発光素子では、肉眼で認識できないほど
輝度の低いことが問題となっていた。Incidentally, many organic dye molecules emit fluorescence or phosphorescence in the blue region (near the wavelength 4BOr+m) during their photoluminescence. From this, an organic electroluminescent device having a structure in which a light-emitting layer made of a thin organic dye film is provided between two electrodes has a high possibility of realizing a full-color display device, and is highly anticipated. However, organic electroluminescent devices have a problem in that their luminance is so low that they cannot be recognized with the naked eye.
そこで、有機電界発光素子の輝度を向上するために、有
機色素を混合した有機色素薄膜又は有機色素薄膜の多層
積層構造を素子の基本構造とし、発光性色素に対する電
子供与性色素と電子受容性色素とを様々な形態で組合わ
せた構造の有機電界発光素子が提案されている(特開昭
61−43884号、特開昭61−44974号、特開
昭61−44978号、特開昭61−44981号、特
開昭61−44988号など)。Therefore, in order to improve the brightness of organic electroluminescent devices, the basic structure of the device is an organic dye thin film containing organic dyes or a multilayer stacked structure of organic dye thin films. Organic electroluminescent devices having structures in which these are combined in various forms have been proposed (JP-A-61-43884, JP-A-61-44974, JP-A-61-44978, JP-A-61-Sho. No. 44981, JP-A-61-44988, etc.).
また、プラス極と発光層との間に正孔移動層を設けた構
造の有機電界発光素子では、低電圧の直流電源で高輝度
の発光が得られることが報告されている( Appl、
Phys、Lett、、51,913(1,987)、
特開昭83−49450号、特開昭63−284692
号、特開昭63−295895号)。In addition, it has been reported that an organic electroluminescent device with a structure in which a hole transfer layer is provided between the positive electrode and the light emitting layer can emit high-intensity light with a low-voltage DC power source (Appl.
Phys, Lett, 51,913(1,987),
JP-A-83-49450, JP-A-63-284692
No., JP-A-63-295895).
また、九州大学の斎藤省吾らは、プラス極と発光層との
間に正孔移動層を設けるとともに、マイナス極と発光層
との間に電子移動層を設けた構造の有機電界発光素子で
は、更に輝度が向上することを報告している(J、J、
Appl、Phys、、 25.L775(1986)
、同、 27.L289(1988))。そして、
発光層を構成する色素として、例えばアントラセン(B
)、コロネン(G)、ペリレン(R)の3種を用いるこ
とにより、RG B、発光を得ることができる。In addition, Shogo Saito of Kyushu University and his colleagues have found that an organic electroluminescent device has a structure in which a hole transfer layer is provided between the positive electrode and the light emitting layer, and an electron transfer layer is provided between the negative electrode and the light emitting layer. It has been reported that the brightness is further improved (J, J,
Appl, Phys, 25. L775 (1986)
, 27. L289 (1988)). and,
For example, anthracene (B
), coronene (G), and perylene (R), RGB light emission can be obtained.
以上のように、有機電界発光素子においては、■発光効
率が良好である、■発光輝度が高い、■青色の短波長発
光が得られる、■低電圧で駆動する、■歩留まりが高い
、という5つの条件を満たすことが要求されている。■
、■に対しては、正孔移動層と電子移動層に用いられる
電子供与性色素と電子受容性色素の電子的性質を最適な
条件に制御することが重要である。■に対しては、色素
のバンドギャップを広くとることが重要である。As mentioned above, organic electroluminescent devices have the following five properties: 1) good luminous efficiency, 2) high luminance, 2) blue short wavelength light emission, 2) drive at low voltage, and 4) high yield. It is required that two conditions be met. ■
, (2), it is important to control the electronic properties of the electron-donating dye and electron-accepting dye used in the hole-transfer layer and electron-transfer layer to optimal conditions. For (2), it is important to widen the band gap of the dye.
ここで、青色発光(λ−46Oni)に相当するエネル
ギーは約2.7eVである。発光位置は吸収位置より長
波長側にストークスシフトするから、色素の吸収位置す
なわちバンドギャップは3eV以上にとることが望まし
い。■に対しては、有機薄膜層に高電界を印加するため
に、各有機薄膜層の膜厚を薄くすることが重要である。Here, the energy corresponding to blue light emission (λ-46Oni) is about 2.7 eV. Since the emission position is Stokes-shifted to the longer wavelength side than the absorption position, it is desirable that the absorption position of the dye, that is, the band gap, be set to 3 eV or more. Regarding (2), it is important to reduce the thickness of each organic thin film layer in order to apply a high electric field to the organic thin film layer.
しかし、有機薄膜層の膜厚を薄くしつつ、■の歩留まり
を高めるという条件を満たすことは、現状では非常に困
難である。これは以下のような理由による。有機電界発
光素子は、透明基板上に形成された透明電極(例えばI
TO)上に、キャリア注入層や発光層を順次真空蒸着し
、最後に上部金属電極を真空蒸着することにより製造さ
れる。However, it is currently extremely difficult to satisfy the condition (2) of increasing the yield while reducing the thickness of the organic thin film layer. This is due to the following reasons. An organic electroluminescent device consists of a transparent electrode (for example, I) formed on a transparent substrate.
It is manufactured by sequentially vacuum-depositing a carrier injection layer and a light-emitting layer on top of TO (TO), and finally vacuum-depositing an upper metal electrode.
ここで、キャリア注入層や発光層の膜厚は通常100〜
1.0000人の範囲である。また、上部金属電極を真
空蒸着する際には、真空度10−5〜10”’Torr
で、抵抗加熱又は電子銃加熱により温度約200〜30
0℃という条件が用いられる。この結果、キャリア注入
層や発光層は、蒸着源からの放射熱や飛来する金属原子
ビームが伝達する熱の影響を受ける。このうち最も大き
い影響は、色素が低分子量である場合に、その蒸気圧が
高いために、前述した熱の影響により色素が再昇華して
欠陥が生じることである。更に、熱によって薄膜が融解
して膜構造が乱れたり、欠陥が生じ、上部電極と下部透
明電極との間に短絡バスが生じ、有機薄膜層に所定の電
界を印加することが不可能になるという問題も頻発する
というしていた。Here, the film thickness of the carrier injection layer and the light emitting layer is usually 100~
The range is 1.0000 people. In addition, when vacuum depositing the upper metal electrode, the vacuum degree is 10-5 to 10'' Torr.
By resistance heating or electron gun heating, the temperature is about 200~30℃.
A condition of 0°C is used. As a result, the carrier injection layer and the light emitting layer are affected by the radiant heat from the vapor deposition source and the heat transmitted by the incoming metal atom beam. The biggest influence among these is that when the dye has a low molecular weight, its vapor pressure is high, so the dye sublimes again under the influence of heat as described above, causing defects. Furthermore, the thin film is melted by the heat, which disturbs the film structure and causes defects, creating a short circuit bus between the upper electrode and the lower transparent electrode, making it impossible to apply a predetermined electric field to the organic thin film layer. This problem also occurs frequently.
実際、青色発光するアントラセンなどの低分子量の発光
性色素を用いた場合、素子の歩留まりが非常に低いとい
う問題があっ・た。また、分子量の高いフタロシアニン
を用いれば比較的高い歩留りが期待できるが、フタロシ
アニンは非発光性であるため、この素子では正孔移動層
にフタロシアニンを用い、電子移動層に発光性の電子受
容性色素を用いなければならない。ところが、発光性の
電子受容性色素で、バンドギャップが広く青色発光に適
したものは非常に少ないという欠点がある。In fact, when a low molecular weight luminescent dye such as anthracene, which emits blue light, is used, there is a problem in that the yield of devices is extremely low. In addition, relatively high yields can be expected if phthalocyanine with a high molecular weight is used, but since phthalocyanine is non-luminescent, this device uses phthalocyanine in the hole transfer layer and a luminescent electron-accepting dye in the electron transfer layer. must be used. However, the drawback is that there are very few luminescent electron-accepting dyes that have a wide band gap and are suitable for blue light emission.
(発明が解決しようとする課題)
以上のように、従来の有機電界発光素子では、上部電極
形成時に有機薄膜層がダメージを受け、発光輝度の低下
や短絡を生じるため、歩留りが低いという問題があった
。(Problems to be Solved by the Invention) As described above, in conventional organic electroluminescent devices, the organic thin film layer is damaged during the formation of the upper electrode, resulting in a decrease in luminance and short circuits, resulting in a low yield. there were.
本発明はこの問題を解決し、上部電極形成プロセスに耐
える有機薄膜層を有し、特性が良好で歩留りの高い有機
電界発光素子を提供することを目的とする。It is an object of the present invention to solve this problem and provide an organic electroluminescent device that has an organic thin film layer that can withstand the upper electrode formation process, has good characteristics, and has a high yield.
[発明の構成]
(課題を解決するための手段と作用)
本発明の有機電界発光素子は、少なくとも一方が透明な
2枚の電極間に、有機色素からなり、少なくともいずれ
か一方が発光性である正孔移動層と電子移動層とを積層
した有機薄膜を有する有機電界発光素子において、前記
発光性の有機色素として、バンドギャップが3eV以上
である有機色素を非共役性結合を介して2個以上結合し
た多量体を用いたことを特徴とするものである。[Structure of the Invention] (Means and Effects for Solving the Problems) The organic electroluminescent device of the present invention comprises an organic dye between two electrodes, at least one of which is transparent, and at least one of which is luminescent. In an organic electroluminescent device having an organic thin film in which a hole transfer layer and an electron transfer layer are laminated, two organic dyes having a band gap of 3 eV or more are bonded to each other as the luminescent organic dye via a non-conjugated bond. This invention is characterized by using a multimer having the above-mentioned bonds.
本発明において用いられる発光性の有機色素は、バンド
ギャップが3eV以上である有機色素を非共役性結合を
介して2個以上結合した多量体であるので、蒸気圧が高
く、上部電極を形成するための真空蒸着プロセスにおい
ても、再昇華を防止することができる。The luminescent organic dye used in the present invention is a multimer in which two or more organic dyes with a band gap of 3 eV or more are bonded via non-conjugated bonds, so it has a high vapor pressure and can form the upper electrode. Re-sublimation can also be prevented in the vacuum evaporation process.
本発明において、発光性の有機色素の分子量は400以
上であることが望ましい。これは、上部電極形成時の真
空度fO−’〜1O−6Torr、温度200〜300
℃という一般的な条件下で、分子量の異なる種々の縮合
多環型芳香族色素の蒸気圧を測定することにより得られ
た知見に基づいている。この場合、同一分子量でもベン
ゼン環の結合の仕方によって若干蒸気圧が異なるが、分
子ff1Mと蒸気圧Pとの関係は概ね下記式
%式%
(ここで、Tは温度、B、Cは定数)
という関係を満たしている。In the present invention, the molecular weight of the luminescent organic dye is preferably 400 or more. This is based on the vacuum degree fO-' to 1O-6 Torr and the temperature 200 to 300 when forming the upper electrode.
It is based on the knowledge obtained by measuring the vapor pressure of various condensed polycyclic aromatic dyes with different molecular weights under the general condition of ℃. In this case, even if the molecular weight is the same, the vapor pressure will differ slightly depending on the way the benzene rings are bonded, but the relationship between the molecule ff1M and the vapor pressure P is generally expressed by the following formula % formula % (where T is temperature and B and C are constants) The following relationship is satisfied.
そして、実験的な結果から、200〜300℃において
蒸気圧力月0−5〜to−6Torrとなるのは、分子
量が400以上の色素であることが判明した。From experimental results, it has been found that dyes with a molecular weight of 400 or more have a vapor pressure of 0-5 to -6 Torr per month at 200 to 300°C.
このような分子量の大きい色素分子としては種々のもの
が挙げられるが、前述した■〜■の条件を全て満たすた
めには、その分子構造も考慮する必要がある。例えば、
分子量の大きい色素分子として、π電子共役系が広がっ
た縮合多環芳香族分子の誘導体が挙げられる。これらの
色素は発光性であり、一般に電子供与性であるため、正
孔移動層として用いられている。縮合多環芳香族分子の
誘導体を電子移動層として用いるためには、芳香族骨格
にキノイド構造に誘導したり、更にニトロ基、シアノ基
、ハロゲン基などを導入して電子受容性を付与すること
が行われている。また、分子量の大きい色素分子として
、ポルフィリン金属錯体やフタロシアニン金属錯体も公
知である。There are various types of such dye molecules having a large molecular weight, but in order to satisfy all of the conditions (1) to (4) described above, it is necessary to consider the molecular structure thereof. for example,
Examples of dye molecules having a large molecular weight include derivatives of condensed polycyclic aromatic molecules in which a π-electron conjugated system is expanded. Since these dyes are luminescent and generally electron-donating, they are used as hole transport layers. In order to use a derivative of a condensed polycyclic aromatic molecule as an electron transfer layer, it is necessary to induce the aromatic skeleton into a quinoid structure or to impart electron-accepting properties by introducing a nitro group, cyano group, halogen group, etc. is being carried out. Porphyrin metal complexes and phthalocyanine metal complexes are also known as dye molecules with large molecular weights.
しかし、大形の縮合多環芳香族分子を基本骨格とする色
素分子、又はポルフィリン金属錯体やフタロシアニン金
属錯体を基本骨格とする色素分子は、バンドギャップが
狭くなり、青色発光させることが困難であるという欠点
がある。また、その色素分子を合成することも困難であ
り、色素の電子受容性又は電子供与性を制御することが
困難となる。However, dye molecules whose basic skeletons are large condensed polycyclic aromatic molecules, or dye molecules whose basic skeletons are porphyrin metal complexes or phthalocyanine metal complexes have narrow band gaps, making it difficult to emit blue light. There is a drawback. Furthermore, it is difficult to synthesize the dye molecules, making it difficult to control the electron-accepting or electron-donating properties of the dye.
これに対して、本発明では大きい分子量をもっという条
件を満たしながら、バンドギャップが狭まることのない
構造を有する発光性の有機色素として、バンドギャップ
が3eV以上である有機色素を非共役性結合を介して2
個以上結合した多量体を用いている。単量体としてのバ
ンドギャップが3eV以上である有機色素は、分子量1
oo〜400のものでよい。この有機色素は、バンドギ
ャップが3eV以上であり青色の短波長発光を示すもの
であるが、このほか発光効率がよく、発光輝度の高いこ
とが望ましい。In contrast, in the present invention, an organic dye with a band gap of 3 eV or more is used as a luminescent organic dye with a structure that does not narrow the band gap while satisfying the condition of having a large molecular weight. through 2
It uses multimers in which two or more molecules are linked together. Organic dyes with a band gap of 3 eV or more as a monomer have a molecular weight of 1
oo to 400 may be sufficient. This organic dye has a band gap of 3 eV or more and emits short wavelength blue light, but it is also desirable that it has good luminous efficiency and high luminance.
これらの有機色素を結合する非共役性結合としては、炭
素−炭素単結合、炭化水素残基、エステル結合、カルボ
ニル残基、アミド結合、エーテル結合などが挙げられる
。また、これらの有機色素を直鎖重合体にペンダント状
に結合してもよい。Examples of non-conjugated bonds that bind these organic dyes include carbon-carbon single bonds, hydrocarbon residues, ester bonds, carbonyl residues, amide bonds, and ether bonds. Further, these organic dyes may be bonded to the linear polymer in a pendant manner.
この場合、非共役性結合は直鎖を構成する繰り返し単位
となる。In this case, the non-conjugated bond becomes a repeating unit that constitutes a linear chain.
以上のように、バンドギャップが3eV以上である有機
色素を非共役性結合を介して2個以上結合した多量体か
らなる発光性の有機色素の例を第1表〜第3表に示す。As mentioned above, Tables 1 to 3 show examples of luminescent organic dyes made of multimers in which two or more organic dyes having a band gap of 3 eV or more are bonded via non-conjugated bonds.
第1表は非共役性結合が炭素−炭素単結合又は炭化水素
残基(−CH−CH−)である発光性の有機色素の例を
示すものである。(a)はドナー (b)はアクセプタ
である。Table 1 shows examples of luminescent organic dyes in which the non-conjugated bond is a carbon-carbon single bond or a hydrocarbon residue (-CH-CH-). (a) is the donor (b) is the acceptor.
第2表は発光性の有機色素を構成する(a)単量体とな
るドナー (b)単量体となるアクセプタ、(、C)非
共役性結合としてのエステル結合、カルボニル残基、ア
ミド結合、エーテル結合などの組み合わせの例を示すも
のである。ここで、Rはドナー又はアクセプタを示す。Table 2 shows the constituents of the luminescent organic dye: (a) Donor, which becomes the monomer; (b) Acceptor, which becomes the monomer; (C) Ester bonds, carbonyl residues, and amide bonds as non-conjugated bonds. , which shows examples of combinations such as ether bonds. Here, R represents a donor or an acceptor.
第3表は単量体となる直鎖重合体にドナー又はアクセプ
タRがペンダント状に結合した発光性の有機色素の例を
示すものである。Table 3 shows examples of luminescent organic dyes in which donors or acceptors R are bonded pendantly to a linear polymer serving as a monomer.
本発明に係る発光性の有機色素は、前記のような有機色
素を非共役性結合を介して2個以上結合することにより
多量体化しているので、元の有機色素と比較して、その
電子的性質、例えば電子受容性、電子供与性、バンドギ
ャップの広さなどに大きな影響が表れることがなく、良
好な特性を示す。しかも、大きな分子量を有するので、
上部金属電極を形成するための真空蒸着プロセスでもダ
メージを受けに<<、有機電界発光素子の歩留りが向」
ニする。The luminescent organic dye according to the present invention is multimerized by bonding two or more organic dyes as described above through non-conjugated bonds, so compared to the original organic dye, its electron It exhibits good properties, with no major effects on physical properties such as electron-accepting properties, electron-donating properties, band gap width, etc. Moreover, since it has a large molecular weight,
The vacuum deposition process for forming the upper metal electrode also suffers from damage, leading to a decline in the yield of organic electroluminescent devices.
d.
第 表(その1) (a) ドナー ビジペンツアトフナIノルハVニ〜 第 表(その2) (b)アクセプタ Czs Hs N 60 + b (c)非共役性結合 ○ 0− 表(その2) R の非共役性結合が導入されたものでもよい。No. Table (Part 1) (a) donor Visipenza Atofuna I Norha V Ni~ No. Table (Part 2) (b) Acceptor Czs Hs N 60 + b (c) Non-conjugated bond ○ 0- Table (Part 2) R A non-conjugated bond may be introduced.
リ −CI−(2−0− 第 3 表 CH。Li -CI-(2-0- No. 3 table CH.
■−べCH2CH汁7−1( −0 H−HCHz −CHh−H −0 rl−3〜10 (実施例) 以下、本発明の詳細な説明する。■-be CH2CH soup 7-1 ( -0 H-HCHz-CHh-H -0 rl-3~10 (Example) The present invention will be explained in detail below.
第1図に本発明に係る有機電界発光素子の構成図を示す
。第1図において、ガラス基板1上にはITO電極2、
正孔移動層3、電子移動層4、及びAg電極5が順次形
成されている。また、ITO電極2とAl電極5との間
には直流電源6が接続される。FIG. 1 shows a configuration diagram of an organic electroluminescent device according to the present invention. In FIG. 1, an ITO electrode 2 is placed on a glass substrate 1,
A hole transfer layer 3, an electron transfer layer 4, and an Ag electrode 5 are formed in this order. Further, a DC power supply 6 is connected between the ITO electrode 2 and the Al electrode 5.
ITO電極2はスパッタ法により形成された。The ITO electrode 2 was formed by sputtering.
正孔移動層3、電子移動層4は、有機化合物を真空昇華
することにより形成された。Ag電極5は真空蒸着法に
より形成された。この際、抵抗加熱方式により加熱し、
真空度は1O−6Torrとした。The hole transfer layer 3 and the electron transfer layer 4 were formed by vacuum sublimation of an organic compound. The Ag electrode 5 was formed by vacuum evaporation. At this time, heating is performed using a resistance heating method,
The degree of vacuum was 10-6 Torr.
実施例1
正孔移動層として発光性のビビレニルを用い、電子移動
層としてジニトロビフルオレノニルを用いて第1図の有
機電界発光素子を作製した。ビビレニルの吸収端は40
0nm付近にあり、バンドギャップ3eV以上を満たし
ている。正孔移動層及び電子移動層の膜厚をそれぞれ5
000.2000.1000.500.250人として
素子を作製して直流電圧をば加したところ、膜厚が50
0人までは素子に短絡力士じなかった。Example 1 The organic electroluminescent device shown in FIG. 1 was produced using luminescent bibyrenyl as the hole transfer layer and dinitrobifluorenonyl as the electron transfer layer. The absorption edge of bibyrenyl is 40
It is near 0 nm and satisfies the band gap of 3 eV or more. The film thickness of the hole transfer layer and electron transfer layer is 5
000.2000.1000.500.250 people fabricated a device and applied a DC voltage, and the film thickness was 50%.
Until 0 people, there was no short-circuit wrestler to Motoko.
そして、IOVの直流電圧を印加したとき、5rrA
/ cm ’の電流が流れ、最大輝度5000c d
/ m ”の青色発光が得られた。When a DC voltage of IOV is applied, 5rrA
/cm' current flows, maximum brightness 5000c d
/m'' blue luminescence was obtained.
比較例1
正孔移動層として分子量が400以下である発ツ性のピ
レンを用い、電子移動層としてジニトロ;ルオレノンを
用いて第1図の有機電界発光素子イ作製した。実施例1
と同様に、正孔移動層及びγ子移助層の膜厚を薄くして
いった場合、2000人1も素子に短絡が生じ、500
0人の膜厚が必要であ・た。Comparative Example 1 An organic electroluminescent device as shown in FIG. 1 was prepared using pyrene having a molecular weight of 400 or less as a hole transfer layer and dinitrofluorenone as an electron transfer layer. Example 1
Similarly, when the film thickness of the hole transfer layer and the γ-ton transfer layer is made thinner, short circuits occur in the device by 2000 people, and 500
I needed a film thickness of 0 people.
そして、100■の直流電圧を印加しても、1「Alc
II+2の電流しか流れず、最大輝度も500C/m
2と低かった。Even if a DC voltage of 100 μ is applied, 1 “Alc
Only II+2 current flows and maximum brightness is 500C/m
It was as low as 2.
実施例2
正孔移動層として発光性のビス(アントリルチロキシ)
テレフタル酸エステルを用い、電子、助層としてビスに
トロアントリルメチロキシ)テレフタル酸エステルを用
いて第1図の有機電界発光素子を作製した。正孔移動層
及び電子移動層の膜厚をそれぞれ5000.2000.
1000.500.250人として素子を作製して直流
電圧を印加したところ、膜厚が500人までは素子に短
絡が生じなかった。Example 2 Luminescent bis(anthrylthyroxy) as hole transport layer
The organic electroluminescent device shown in FIG. 1 was prepared by using terephthalic acid ester and bis(troanthrylmethyloxy)terephthalic acid ester as an electron and auxiliary layer. The film thicknesses of the hole transfer layer and electron transfer layer were respectively 5000.2000.
When a device was prepared with a thickness of 1000, 500, and 250 and a DC voltage was applied, no short circuit occurred in the device until the film thickness reached 500.
そして、lOVの直流電圧を印加したとき、5mA /
cm 2の電流が流れ、最大輝度5000c d /
m 2の青色発光が得られた。When a DC voltage of 1OV is applied, 5mA/
cm2 current flows, maximum brightness 5000c d/
A blue emission of m 2 was obtained.
比較例2
正孔移動層として分子量が400以下である発光性のア
ントラセンを用い、電子移動層としてジニトロアントラ
センを用いて第1図の有機電界発光素子を作製した。実
施例1と同様に、正孔移動層及び電子移動層の膜厚を薄
くしていった場合、2000人でも素子に短絡が生じ、
5000人の膜厚が必要であった。Comparative Example 2 The organic electroluminescent device shown in FIG. 1 was produced using luminescent anthracene having a molecular weight of 400 or less as the hole transfer layer and dinitroanthracene as the electron transfer layer. As in Example 1, when the film thicknesses of the hole transfer layer and electron transfer layer were made thinner, a short circuit occurred in the device even with 2000 people.
A film thickness of 5,000 people was required.
そして、100 Vの直流電圧を印加しても、1mA/
−2の電流しか流れず、最大輝度も500cd7m2と
低かった。Even if 100 V DC voltage is applied, 1 mA/
Only -2 current was flowing, and the maximum brightness was low at 500 cd7m2.
実施例3
正札移動層として発光性のテトラフェニルピレンを用い
、電子移動層としてテトラニトロフェニルアントラキノ
ンを用いて第1図の有機電界発光素子を作製した。正孔
移動層及び電子移動層の膜厚をそれぞれ5000.20
00.1000.500.250人として素子を作製し
て直流電圧を印加したところ、膜厚が500人までは素
子に短絡が生じなかった。Example 3 The organic electroluminescent device shown in FIG. 1 was produced using luminescent tetraphenylpyrene as the front plate transfer layer and tetranitrophenylanthraquinone as the electron transfer layer. The film thickness of the hole transfer layer and electron transfer layer is 5000.20, respectively.
When a device was fabricated with a thickness of 00.1000.500.250 and a DC voltage was applied, no short circuit occurred in the device up to a film thickness of 500.
そして、IOVの直流電圧を印加したとき、5mA /
cm ’の電流が流れ、最大輝度5000c d /
m 2の青色発光が得られた。And when IOV DC voltage is applied, 5mA/
cm' current flows, maximum brightness 5000c d/
A blue emission of m 2 was obtained.
比較例3
正孔移動層として分子量が400以下である発光性のピ
レンを用い、電子移動層としてニトロアントラキノンを
用いて第1図の有機電界発光素子を作製した。実施例1
と同様に、正孔移動層及び電子移動層の膜厚を薄くして
いった場合、2000人でも素子に短絡が生じ、500
0人の膜厚が必要であった。Comparative Example 3 The organic electroluminescent device shown in FIG. 1 was produced using luminescent pyrene having a molecular weight of 400 or less as the hole transfer layer and nitroanthraquinone as the electron transfer layer. Example 1
Similarly, when the film thickness of the hole transfer layer and electron transfer layer is made thinner, a short circuit occurs in the device even with 2000 people, and 500 people
A film thickness of 0 was required.
そして、100vの直流電圧を印加しても、1mA /
cm 2の電流しか流れず、最大輝度も500c d
/ m 2と低かった。Even if 100v DC voltage is applied, 1mA/
Only a current of cm2 flows and the maximum brightness is 500cd
/ m2.
[発明の効果]
以上詳述したように本発明の有機電界発光素子は、分子
量の大きい有機色素を用いているため、上部金属電極を
形成するための真空蒸着プロセスでもダメージを受けに
<<、有機薄膜層の厚みを薄くしてより低電圧で駆動さ
せても高輝度を得ることができ、しかも歩留りも著しく
向上する。[Effects of the Invention] As detailed above, since the organic electroluminescent device of the present invention uses an organic dye with a large molecular weight, it is not susceptible to damage even during the vacuum deposition process for forming the upper metal electrode. Even if the organic thin film layer is made thinner and driven at a lower voltage, high brightness can be obtained, and the yield is also significantly improved.
第1図は本発明の実施例における有機電界発光素子の構
成図である。
1・・・ガラス基板、2・・・ITO電極、3・・・正
孔移動層、4・・・・・・電子移動層、5・・・AJ2
電極、6・・・直流電源。FIG. 1 is a block diagram of an organic electroluminescent device in an example of the present invention. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... ITO electrode, 3... Hole transfer layer, 4... Electron transfer layer, 5... AJ2
Electrode, 6...DC power supply.
Claims (2)
素からなり、少なくともいずれか一方が発光性である正
孔移動層と電子移動層とを積層した有機薄膜を有する有
機電界発光素子において、前記発光性の有機色素として
、バンドギャップが3eV以上である有機色素を非共役
性結合を介して2個以上結合した多量体を用いたことを
特徴とする有機電界発光素子。(1) In an organic electroluminescent device having an organic thin film in which a hole transfer layer and an electron transfer layer made of an organic dye and at least one of which is luminescent are laminated between two electrodes, at least one of which is transparent. An organic electroluminescent device characterized in that, as the luminescent organic dye, a multimer in which two or more organic dyes having a band gap of 3 eV or more are bonded via non-conjugated bonds is used.
基、エステル結合、カルボニル残基、アミド結合、又は
エーテル結合であることを特徴とする請求項(1)記載
の有機電界発光素子。(2) The organic electroluminescence according to claim (1), wherein the non-conjugated bond is a carbon-carbon single bond, a hydrocarbon residue, an ester bond, a carbonyl residue, an amide bond, or an ether bond. element.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1254960A JPH03115486A (en) | 1989-09-29 | 1989-09-29 | Organic electroluminescent element |
EP90303351A EP0390551B1 (en) | 1989-03-31 | 1990-03-29 | Organic electroluminescent device |
DE69027697T DE69027697T2 (en) | 1989-03-31 | 1990-03-29 | Organic electroluminescent device |
US07/921,379 US5294810A (en) | 1989-03-31 | 1992-07-30 | Organic electroluminescent device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1254960A JPH03115486A (en) | 1989-09-29 | 1989-09-29 | Organic electroluminescent element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03115486A true JPH03115486A (en) | 1991-05-16 |
Family
ID=17272260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1254960A Pending JPH03115486A (en) | 1989-03-31 | 1989-09-29 | Organic electroluminescent element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03115486A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6489638B2 (en) | 2000-06-23 | 2002-12-03 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US6677621B2 (en) | 2000-05-22 | 2004-01-13 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electrical appliance |
US6905784B2 (en) | 2000-08-22 | 2005-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US7372199B2 (en) | 2000-08-28 | 2008-05-13 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and image playback device having triplet and singlet compounds in electroluminescent layer |
US7400087B2 (en) | 2000-06-05 | 2008-07-15 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having triplet and singlet compound in light-emitting layers |
-
1989
- 1989-09-29 JP JP1254960A patent/JPH03115486A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6677621B2 (en) | 2000-05-22 | 2004-01-13 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electrical appliance |
US9362343B2 (en) | 2000-06-05 | 2016-06-07 | Semiconductor Energy Laboratory Co., Ltd. | Iridium-containing active-matrix EL display module |
US9917141B2 (en) | 2000-06-05 | 2018-03-13 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having singlet and triplet compounds |
US8674599B2 (en) | 2000-06-05 | 2014-03-18 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device having fluorescence and phosphoresence compound |
US7400087B2 (en) | 2000-06-05 | 2008-07-15 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having triplet and singlet compound in light-emitting layers |
US8907559B2 (en) | 2000-06-05 | 2014-12-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having display portion with plural pixels |
US10777615B2 (en) | 2000-06-05 | 2020-09-15 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
US8304985B2 (en) | 2000-06-05 | 2012-11-06 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device having singlet and triplet compounds with different emission colors |
US10446615B2 (en) | 2000-06-05 | 2019-10-15 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
US10192934B2 (en) | 2000-06-05 | 2019-01-29 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having light emission by a singlet exciton and a triplet exciton |
US7915808B2 (en) | 2000-06-05 | 2011-03-29 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device including EL elements for emitting lights of different colors |
US9564472B2 (en) | 2000-06-05 | 2017-02-07 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
US6489638B2 (en) | 2000-06-23 | 2002-12-03 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US6905784B2 (en) | 2000-08-22 | 2005-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US8415876B2 (en) | 2000-08-28 | 2013-04-09 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and display comprising light emitting device |
US7372199B2 (en) | 2000-08-28 | 2008-05-13 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and image playback device having triplet and singlet compounds in electroluminescent layer |
US8975813B2 (en) | 2000-08-28 | 2015-03-10 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US8049418B2 (en) | 2000-08-28 | 2011-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device comprising triplet compound in electroluminescent layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0510541B1 (en) | Organic elecroluminescent device | |
JP4655410B2 (en) | Organic electroluminescence device | |
JPH09249876A (en) | Light emission element | |
JPH08109373A (en) | Organic thin-film el element | |
US20020106530A1 (en) | Organic electroluminescent element and luminescent apparatus employing the same | |
TWI301124B (en) | ||
JP2848189B2 (en) | Organic thin film EL device | |
JPH1088122A (en) | Organic electroluminescent element | |
JPH06136360A (en) | Electroluminescent element | |
JP2003026641A (en) | Binaphthyl compound, method for producing the same and organic electroluminescent element | |
JP3050066B2 (en) | Light emitting element | |
TWI293011B (en) | ||
JP3237282B2 (en) | Organic electroluminescence device | |
JP3463364B2 (en) | Organic electroluminescent device | |
JPH10284252A (en) | Organic el element | |
JPH03115486A (en) | Organic electroluminescent element | |
JP2010121036A (en) | Light-emitting element, imaging display and new organic compound | |
JP3302064B2 (en) | EL device | |
JP2007314512A (en) | Organic compound and organic light-emitting device | |
JP3208833B2 (en) | Organic electroluminescent device | |
JP3189376B2 (en) | Organic electroluminescent device | |
JPH06256759A (en) | Electroluminescent element | |
JP3191377B2 (en) | Organic electroluminescent device | |
JP3141023B2 (en) | EL device | |
JP2010121035A (en) | New organic compound, light-emitting element and imaging display |