JPH03115183A - Refractory material - Google Patents

Refractory material

Info

Publication number
JPH03115183A
JPH03115183A JP25383589A JP25383589A JPH03115183A JP H03115183 A JPH03115183 A JP H03115183A JP 25383589 A JP25383589 A JP 25383589A JP 25383589 A JP25383589 A JP 25383589A JP H03115183 A JPH03115183 A JP H03115183A
Authority
JP
Japan
Prior art keywords
base material
gas
heat
silicon carbide
resistant base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25383589A
Other languages
Japanese (ja)
Inventor
Tadashi Ohashi
忠 大橋
Hideyasu Matsuo
松尾 秀逸
Yoshinobu Tanada
棚田 良信
Yukio Ito
幸夫 伊藤
Eiichi Sotodani
栄一 外谷
Masayuki Sumiya
角谷 雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP25383589A priority Critical patent/JPH03115183A/en
Publication of JPH03115183A publication Critical patent/JPH03115183A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5066Silicon nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To inhibit peeling by lowering the concn. of SiC in a composite film as the distance from the surface of a heat resistant base material is made greater and increasing the concn. of Si3N4 as the distance from the surface of the heat resistant base material is made greater. CONSTITUTION:The heat resistant base material such as carbon base material is heated at the prescribed temp. in a heat-treatment furnace. Carrier gas such as H2, gas for an Si source such as SiCl4 and gas for a carbon source such as propylene are supplied at a prescribed rate. Thereby an SiC film having proper thickness is formed on the surface of the carbon base material. Then NH3 is supplied as gas for a nitrogen source at the prescribed rate together with H2, SiCl4 and propylene. The composite layer of SiC and Si3N4 having proper thickness is formed. The SiC layer of 100mol.% concn. is formed in the part adjacent to the heat resistant base material and the composite layer of SiC and Si3N4 is formed as the distance is made farther therefrom. Furthermore H2, SiCl4 and NH3 are firstly supplied at the same rate. The composite layer of SiC and Si3N4 and an Si3N4 layer having 100mol% concn. are additionally formed. As a result, such a refractory member is obtained that the concn. of SiC in the composite film is lowered as a whole as the distance from the heat resistant base material is enlarged and also the concn. of Si3N4 is increased as the distance therefrom is enlarged.

Description

【発明の詳細な説明】 +1)発明の目的 〔産業上の利用分野〕 本発明は、半導体製造に際して利用されるサセプタ、炉
芯管あるいは治具などを形成するための材料として好適
な耐火材料に関し、特に、耐熱基材の表面に対し炭化珪
素および窒化珪素を付着せしめてそれらの複合被膜を形
成してなる耐火材料に関するものである。
[Detailed Description of the Invention] +1) Purpose of the Invention [Field of Industrial Application] The present invention relates to a refractory material suitable as a material for forming susceptors, furnace core tubes, jigs, etc. used in semiconductor manufacturing. In particular, the present invention relates to a refractory material formed by adhering silicon carbide and silicon nitride to the surface of a heat-resistant base material to form a composite coating thereof.

[従来の技術] 従来、この種の耐火材料としては、炭素あるいは炭化珪
素などの耐熱基材の表面に対し化学蒸着などによって炭
化珪素層と窒化珪素層とを交互に付着して炭化珪素およ
び窒化珪素の複合被膜を形成し耐熱基材の気孔を閉塞す
ることにより、半導体製品の処理部材(サセプタ、炉芯
管あるいは治具なと)を作成した場合、その気孔に浸入
した不純物(たとえば洗浄ガス)が半導体製品の熱処理
などに際して滲出し熱処理炉内に拡散して半導体製品を
汚染することを回避してなるものが提案されていた(た
とえば特公昭5o−4s154参照)。
[Prior Art] Conventionally, this type of refractory material has been produced by alternately depositing silicon carbide layers and silicon nitride layers on the surface of a heat-resistant base material such as carbon or silicon carbide by chemical vapor deposition or the like. When processing parts for semiconductor products (such as susceptors, furnace core tubes, or jigs) are created by forming a silicon composite film to close the pores of a heat-resistant base material, impurities that have entered the pores (for example, cleaning gas ) has been proposed to avoid contamination of semiconductor products by leaching out and diffusing into the heat treatment furnace during heat treatment of semiconductor products (for example, see Japanese Patent Publication No. 5O-4S154).

[解決すべき問題点] しかしながら、従来の耐火材料では、炭化珪素層と窒化
珪素層とを交互に析出して炭化珪素および窒化珪素の複
合被膜を形成していたので、炭化珪素層および窒化珪素
層の膜厚をそれぞれ抑制することにより結晶粒子の粗大
化を阻止して洗浄ガスによる浸食に伴なうピンホールの
発生を抑制しかつ複合被膜の膜厚を確保して熱応力に伴
なうクラックの発生を抑制する目的は達成できていたが
、(i)炭化珪素層の熱膨張率と窒化珪素層の熱膨張率
との間に存在する大きな差に起因して炭化珪素層および
窒化珪素層が短期間で互いに剥離を生じる欠点があり、
ひいては(iil寿命を延長することができない欠点が
あった。
[Problems to be solved] However, in conventional refractory materials, a silicon carbide layer and a silicon nitride layer are deposited alternately to form a composite film of silicon carbide and silicon nitride. By controlling the thickness of each layer, it prevents the coarsening of crystal grains and suppresses the formation of pinholes due to erosion by cleaning gas, and secures the thickness of the composite coating to prevent thermal stress. Although the purpose of suppressing the occurrence of cracks was achieved, (i) due to the large difference between the coefficient of thermal expansion of the silicon carbide layer and the coefficient of thermal expansion of the silicon nitride layer, The disadvantage is that the layers can peel off from each other in a short period of time.
Furthermore, there was a drawback that the lifespan of (iil) could not be extended.

そこで、本発明は、これらの欠点を除去すべ(、耐熱基
材の表面からの距離が太き(なるにつれ炭化珪素の濃度
が低下せしめられかつ窒化珪素の濃度が増加せしめられ
てなる炭化珪素および窒化珪素の複合被膜を耐熱基材の
表面に対して形成してなる耐火材料を提供せんとするも
のである。
Therefore, the present invention aims to eliminate these drawbacks by producing silicon carbide and silicon carbide, in which the concentration of silicon carbide decreases and the concentration of silicon nitride increases as the distance from the surface of the heat-resistant base material increases. It is an object of the present invention to provide a fire-resistant material formed by forming a composite film of silicon nitride on the surface of a heat-resistant base material.

(2)発明の構成 [問題点の解決手段] 本発明により提供される問題点の解決手段は。(2) Structure of the invention [Means for solving problems] The solution to the problem provided by the present invention is as follows.

「耐熱基材上に炭化珪素と窒化珪素とを付着せしめて炭
化珪素および窒化珪素の複合被膜を形成してなる耐火材
料において、複合被膜中の炭化珪素の濃度が耐熱基材の
表面からの距離が大きくなるにしたがって減少し、かつ
複合被膜中の窒化珪素の濃度が耐熱基材の表面からの距
離が大きくなるにしたがって増加してなることを特徴と
する耐火材料」 である。
"In a fire-resistant material formed by depositing silicon carbide and silicon nitride on a heat-resistant base material to form a composite film of silicon carbide and silicon nitride, the concentration of silicon carbide in the composite film varies depending on the distance from the surface of the heat-resistant base material. , and the concentration of silicon nitride in the composite film increases as the distance from the surface of the heat-resistant base material increases.

[作用] 本発明にかかる耐火材料は、[問題点の解決手段]に明
示したごとく、耐熱基材の表面からの距離が大きくなる
につれ炭化珪素の濃度が低下せしめられかつ窒化珪素の
濃度が増加せしめられてなる炭化珪素および窒化珪素の
複合被膜を耐熱基材の表面に対して形成してなるので、 (i)複合被膜中の熱膨張率を耐熱基材の表面からの距
離に応じて変化せしめ て剥離を生じることを抑制する作用 をなし、併せて (ii)複合被膜中の粒子の粗大化を抑制しつつ膜厚を
確保する作用 をなし、ひいては (iii)洗浄ガスによる浸食を抑制してピンホールの
発生を防止する作用 をなし、また (ivl熱応力に対応可能としてクラックの発生を抑制
する作用 をなし、結果的に (V)寿命を延長する作用 をなす。
[Function] As specified in [Means for solving problems], in the fireproof material according to the present invention, the concentration of silicon carbide decreases and the concentration of silicon nitride increases as the distance from the surface of the heat-resistant base material increases. Since a composite film of silicon carbide and silicon nitride is formed on the surface of a heat-resistant base material, (i) the coefficient of thermal expansion in the composite film changes depending on the distance from the surface of the heat-resistant base material; At the very least, it has the effect of suppressing the occurrence of peeling, and also (ii) has the effect of ensuring film thickness while suppressing the coarsening of particles in the composite film, and (iii) suppresses erosion by cleaning gas. It has the effect of preventing the generation of pinholes, and also has the effect of suppressing the generation of cracks by being able to cope with thermal stress, and as a result (V) has the effect of extending the life.

[実施例1 次に、本発明にかかる耐火材料について、その好ましい
実施例を挙げ、添付図面を参照しつつ、具体的に説明す
る。しかしながら、以下に説明する実施例は、本発明の
理解を容易化ないし促進化するために記載されるもので
あって、本発明を限定するために記載されるものではな
い。換言すれば、以下に説明される実施例において開示
される各部材は、本発明の精神ならびに技術的範囲に属
する全ての設計変更ならびに均薯物置換を含むものであ
る。
[Example 1] Next, a preferred example of the fireproof material according to the present invention will be specifically described with reference to the accompanying drawings. However, the examples described below are described to facilitate or accelerate understanding of the present invention, and are not described to limit the present invention. In other words, each member disclosed in the embodiments described below includes all design changes and equivalent replacements that fall within the spirit and technical scope of the present invention.

ユ孟旧JnL因l眠と 第1図は、本発明にかかる耐火材料の一実施例を示す断
面図である。
FIG. 1 is a cross-sectional view showing one embodiment of the refractory material according to the present invention.

第2図は、第1図実施例における炭化珪素の濃度変化を
示すためのグラフである。
FIG. 2 is a graph showing changes in silicon carbide concentration in the embodiment shown in FIG.

第3図は、第1図実施例における窒化珪素の濃度変化を
示すグラフである。
FIG. 3 is a graph showing changes in silicon nitride concentration in the example of FIG. 1.

ユ!施皿五璽滅上 まず、第1図を参照しつつ、本発明にかかる耐火材料の
一実施例について、その構成を詳細に説明する。
Yu! First, the structure of an embodiment of the fireproof material according to the present invention will be described in detail with reference to FIG.

■は、本発明にかかる耐火材料であって、半導体製造に
おいて使用されているサセプタ、炉芯管あるいは治具な
どを作成するための材料として好適であり、耐熱基材1
1と、耐熱基材11の表面に対し化学蒸着などによって
形成されており適宜の膜厚(たとえば50〜2000u
m以上)をもつ炭化珪素および窒化珪素の複合被膜12
とを備えている。
(2) is a refractory material according to the present invention, which is suitable as a material for making susceptors, furnace core tubes, jigs, etc. used in semiconductor manufacturing;
1 and is formed on the surface of the heat-resistant base material 11 by chemical vapor deposition, etc., and has an appropriate film thickness (for example, 50 to 2000 μm).
Composite coating 12 of silicon carbide and silicon nitride with
It is equipped with

耐熱基材11としては、化学蒸着などによって炭化珪素
を付着し易い基材が好適であり、たとえば炭素基材、炭
化珪素基材あるいはシリコン含有の炭化珪素基材などが
ある。
As the heat-resistant base material 11, a base material to which silicon carbide is easily attached by chemical vapor deposition or the like is suitable, such as a carbon base material, a silicon carbide base material, or a silicon-containing silicon carbide base material.

複合被膜12では、耐熱基材11の表面からの距離が大
きくなるにつれ炭化珪素の濃度が減少しかつ窒化珪素の
濃度が増加している。このとき、複合被膜12のうち耐
熱基材11に隣接した領域では炭化珪素の濃度が100
モル%であれば耐熱基材11に対する付着強度を十分に
確保できるので好ましく、かつ複合被膜12の外表面で
は窒化珪素の濃度が100モル%であれば気孔率を低下
できるので好ましい。
In composite coating 12, as the distance from the surface of heat-resistant base material 11 increases, the concentration of silicon carbide decreases and the concentration of silicon nitride increases. At this time, the concentration of silicon carbide in the region adjacent to the heat-resistant base material 11 of the composite coating 12 is 100.
It is preferable that the silicon nitride concentration be 100 mol % on the outer surface of the composite coating 12 because it can reduce the porosity.

複合被膜12は、全体として、単層とされていてもよ(
、また複数層とされていてもよい。
The composite film 12 may be a single layer as a whole (
, or may have multiple layers.

ユ尖血医Ω立■1 更に、第1図を参照しつつ、本発明にかかる耐火材料の
一実施例について、その作用を詳細に説明する。
Furthermore, with reference to FIG. 1, the action of an embodiment of the fireproof material according to the present invention will be explained in detail.

本発明にかかる耐火材料用は、耐熱基材11の表面に対
し形成された炭化珪素および窒化珪素の複合被膜12が
、その内表面(すなわち耐熱基材11に接触する面)の
近傍において炭化珪素の濃度が高く、かつ外表面におい
て窒化珪素の濃度が高いので、耐熱基材11の表面に対
して付着しやすく、かつ外部からの耐食に優れている。
In the fire-resistant material according to the present invention, the composite film 12 of silicon carbide and silicon nitride formed on the surface of the heat-resistant base material 11 has silicon carbide in the vicinity of its inner surface (that is, the surface that contacts the heat-resistant base material 11). Since the concentration of silicon nitride is high and the concentration of silicon nitride is high on the outer surface, it easily adheres to the surface of the heat-resistant base material 11 and has excellent corrosion resistance from the outside.

また、本発明にかかる耐火材料用では、複合被膜12が
炭化珪素および窒化珪素の濃度を変化せしめつつ連続し
て付着されているので、(i)複合被膜12中の熱膨張
率が耐熱基材の表面からの距離に応じて変化せしめられ
、炭化珪素および窒化珪素の熱膨張率の差に起因した剥
離が抑制されており、併せて(ii)複合被膜中の粒子
の粗大化を抑制しつつ膜厚を確保され、ひいては(ii
i)洗浄ガスによる浸食を抑制してピンホールの発生を
防止され、また(ivl熱応力に対応可能としてクラッ
クの発生を抑制され、結果的に(Vl寿命を延長される
Further, in the fire-resistant material according to the present invention, since the composite film 12 is continuously deposited while changing the concentration of silicon carbide and silicon nitride, (i) the coefficient of thermal expansion in the composite film 12 is lower than that of the heat-resistant base material. The peeling caused by the difference in thermal expansion coefficient between silicon carbide and silicon nitride is suppressed, and (ii) the coarsening of particles in the composite coating is suppressed. The film thickness is ensured, and (ii
i) Erosion caused by the cleaning gas is suppressed to prevent the formation of pinholes, and cracks are suppressed by being able to cope with (ivl thermal stress), resulting in an extension of (ivl life).

ユ製泣方蓬り 加えて、第1図を参照しつつ、本発明にかかる耐火材料
について、その製造方法を簡略に説明する。
In addition, with reference to FIG. 1, a method for manufacturing the fireproof material according to the present invention will be briefly described.

本発明にかかる耐火材料■は、通常、化学蒸着によって
製造される。すなわち、本発明にかかる耐火材料用は、
耐熱基材11を熱処理炉内に収容してその表面温度を適
宜の温度に維持しつつ、適宜の熱処理ガスを複合被膜1
2の膜厚に応じた時間だけ供給することによって製造さ
れる。
The refractory material (1) according to the present invention is usually produced by chemical vapor deposition. That is, for fireproof materials according to the present invention,
The heat-resistant base material 11 is housed in a heat treatment furnace, and while maintaining its surface temperature at an appropriate temperature, an appropriate heat treatment gas is applied to the composite coating 1.
It is manufactured by supplying the film for a time corresponding to the film thickness of No. 2.

熱処理ガスは、キャリアガス(たとえばH2ガス)と珪
素源ガス(たとえば5iC14ガス)と炭素源ガス(た
とえばC,H,ガス)と窒素源ガス(たとえばNHmガ
ス)とを、供給開始からの経過時間に応じて変化せしめ
られた適宜の混合比で(すなわち経過時間が増加するに
つれて珪素源ガスが減少しかつ窒素源ガスが増加するよ
う)混合することにより調整されている。
The heat treatment gas is a carrier gas (for example, H2 gas), a silicon source gas (for example, 5iC14 gas), a carbon source gas (for example, C, H, gas), and a nitrogen source gas (for example, NHm gas). It is adjusted by mixing at an appropriate mixing ratio that is changed in accordance with (that is, as the elapsed time increases, the silicon source gas decreases and the nitrogen source gas increases).

ユλ体土り 併せて、本発明にかかる耐火材料について、具体的な数
値などを挙げ、詳細に説明する。
The refractory material according to the present invention will be described in detail by citing specific numerical values.

叉里±ユ 耐熱基材として、熱膨張係数が4.2 Xl0−’であ
る炭素基材を採用した。
As the heat-resistant base material, a carbon base material having a coefficient of thermal expansion of 4.2 Xl0-' was used.

耐熱基材は、熱処理炉に挿入され、表面の温度を130
0℃に維持された。この状態で、熱処理炉には、キャリ
アガスとしてのH2ガスと珪素源ガスとしての5iC1
4ガスと炭素源ガスとしてのC5Haガスとが、それぞ
れ0.54/分、 1.0127分および0.212/
分の供給割合で10分間にわたり供給された。これによ
り、耐熱基材の表面には、膜厚lOμmの炭化珪素層が
形成せしめられた。
The heat-resistant base material is inserted into a heat treatment furnace and the surface temperature is increased to 130°C.
The temperature was maintained at 0°C. In this state, the heat treatment furnace contains H2 gas as a carrier gas and 5iC1 as a silicon source gas.
4 gas and C5Ha gas as a carbon source gas at 0.54/min, 1.0127 min, and 0.212/min, respectively.
was fed over a period of 10 minutes at a feed rate of 10 minutes. As a result, a silicon carbide layer with a thickness of 10 μm was formed on the surface of the heat-resistant base material.

次いで、H2ガスと5iC14ガスとC5Hsガスとを
上述の供給割合で供給しつつ、熱処理炉に対し、窒素源
としてのNH,ガスが、0.08J2/分の割合で90
分間にわたり追加供給された。これにより、炭化珪素層
に対して膜厚90μmの炭化珪素および窒化珪素の複合
層が追加形成せしめられ、全体として耐熱基材の表面か
ら10μmまでの範囲で炭化珪素の濃度が100モル%
であって10〜90μmの範囲で炭化珪素の濃度および
窒化珪素の濃度がともに50モル%である複合被膜が形
成せしめられた。
Next, while supplying H2 gas, 5iC14 gas, and C5Hs gas at the above-mentioned supply rates, NH gas as a nitrogen source was supplied to the heat treatment furnace at a rate of 0.08 J2/min.
Additional feeds were provided over a period of minutes. As a result, a composite layer of silicon carbide and silicon nitride with a film thickness of 90 μm is additionally formed on the silicon carbide layer, and as a whole, the concentration of silicon carbide is 100 mol% in the range of 10 μm from the surface of the heat-resistant base material.
A composite film was formed in which the silicon carbide concentration and the silicon nitride concentration were both 50 mol % in the range of 10 to 90 μm.

最後−に、H,ガスと5iC14ガスとNHsガスとが
、上述の供給割合で熱処理炉に対して10分間にわたり
供給された。これにより、炭化珪素および窒化珪素の複
合層に対して膜厚10μmの窒化珪素層が追加形成せし
められ、全体として耐熱基材の表面から10μmまでの
範囲で炭化珪素の濃度が100モル%であって10〜9
0μmの範囲で炭化珪素の濃度および窒化珪素の濃度が
ともに50モル%でありかつ90〜100μmの範囲で
窒化珪素の濃度が100モル%である複合被膜が形成せ
しめられた。
Finally, H gas, 5iC14 gas, and NHs gas were supplied to the heat treatment furnace for 10 minutes at the above-mentioned supply ratios. As a result, a silicon nitride layer with a film thickness of 10 μm is additionally formed on the composite layer of silicon carbide and silicon nitride, and the overall concentration of silicon carbide is 100 mol% in the range of 10 μm from the surface of the heat-resistant base material. Te10~9
A composite film was formed in which the silicon carbide concentration and the silicon nitride concentration were both 50 mol % in the 0 μm range, and the silicon nitride concentration was 100 mol % in the 90 to 100 μm range.

以上により、炭化珪素の濃度分布および窒化珪素の濃度
分布が第2図および第3図において破線で示したとおり
でありかつ膜厚が100μmの炭化珪素および窒化珪素
の複合被膜が耐熱基材の表面に対して形成され、本発明
にかかる耐火材料とされた。
As a result of the above, the concentration distribution of silicon carbide and the concentration distribution of silicon nitride are as shown by the broken lines in FIGS. 2 and 3, and a composite film of silicon carbide and silicon nitride with a film thickness of 100 μm is formed on the surface of the heat-resistant base material. The fire-resistant material according to the present invention was formed against the above.

本発明にかかる耐火材料は、エピタキシャルウェーハを
製造するためにエピタキシャル製造装置でサセプタとし
て使用したところ、250回使用してもピンホールなら
びにクラックの発生が認められず、また製造されたエピ
タキシャルウェーハにおける不純物濃度の増加も認めら
れなかった。
When the refractory material according to the present invention was used as a susceptor in an epitaxial manufacturing device for manufacturing epitaxial wafers, no pinholes or cracks were observed even after 250 uses, and no impurities were observed in the manufactured epitaxial wafers. No increase in concentration was observed.

夾施且l 耐熱基材として、熱膨張係数が4.2 Xl0−’であ
る炭素基材を採用した。
As the heat-resistant base material, a carbon base material having a coefficient of thermal expansion of 4.2 Xl0-' was used.

耐熱基材は、熱処理炉に挿入され、表面の温度を130
0℃に維持された。この状態で、熱処理炉には、キャリ
アガスとしてのH,ガスと珪素源ガスとしての5iC1
4ガスと炭素源ガスとしてのCaH−ガスとが、それぞ
れ0.512/分、 1.O127分および0.212
7分の供給割合で10分間にわたり供給された。これに
より、耐熱基材の表面には、膜厚lOμmの炭化珪素層
が形成せしめられた。
The heat-resistant base material is inserted into a heat treatment furnace and the surface temperature is increased to 130°C.
The temperature was maintained at 0°C. In this state, the heat treatment furnace contains H gas as a carrier gas and 5iC1 gas as a silicon source gas.
4 gas and CaH- gas as a carbon source gas at 0.512/min, respectively.1. O127 min and 0.212
It was fed over a 10 minute period at a feed rate of 7 minutes. As a result, a silicon carbide layer with a thickness of 10 μm was formed on the surface of the heat-resistant base material.

次いで、H,ガスと5iC14ガスとを上述の供給割合
で供給し、かつC5Haガスの供給割合を徐々に削減し
つつ、熱処理炉に対し、窒素源としてのNH,ガスの供
給割合が0.01/分の供給割合まで90分間かけて徐
々に増加された。これにより、炭化珪素層に対して膜厚
90μmの炭化珪素および窒化珪素の複合層が追加形成
せしめられ、全体として耐熱基材の表面から10μmま
での範囲で炭化珪素の濃度が100モル%であって10
〜90μmの範囲で炭化珪素の濃度が100モル%から
0モル%まで徐々に減少しかつ窒化珪素の濃度が0モル
%から100モル%まで徐々に増加してなる複合被膜が
形成せしめられた。
Next, H, gas and 5iC14 gas were supplied at the above-mentioned supply ratio, and while the supply ratio of C5Ha gas was gradually reduced, the supply ratio of NH, gas as a nitrogen source to the heat treatment furnace was 0.01. The feed rate was increased gradually over a period of 90 minutes to a feed rate of 1/min. As a result, a composite layer of silicon carbide and silicon nitride with a film thickness of 90 μm is additionally formed on the silicon carbide layer, and the overall concentration of silicon carbide is 100 mol% in the range of 10 μm from the surface of the heat-resistant base material. te10
A composite film was formed in which the silicon carbide concentration gradually decreased from 100 mol% to 0 mol% and the silicon nitride concentration gradually increased from 0 mol% to 100 mol% in the range of ~90 μm.

最後に、H8ガスと5iC14ガスとNHIガスとが、
それぞれ0.52/分、1.0β/分および0.08β
/分の供給割合で熱処理炉に対して10分間にわたり供
給された。これにより、炭化珪素および窒化珪素の複合
層に対して膜厚10umの窒化珪素層が追加形成せしめ
られ、全体として耐熱基材の表面から10μmまでの範
囲で炭化珪素の濃度が100モル%であって10〜90
μmの範囲で炭化珪素の濃度が100モル%から0モル
%まで徐々に減少しかつ窒化珪素の濃度が0モル%から
100モル%まで徐々に増加しておりかつ90−100
μmの範囲で窒化珪素の濃度が100モル%である複合
被膜が形成せしめられた。
Finally, H8 gas, 5iC14 gas and NHI gas are
0.52/min, 1.0β/min and 0.08β respectively
was fed to the heat treatment furnace for 10 minutes at a feed rate of 1/min. As a result, a silicon nitride layer with a film thickness of 10 μm is additionally formed on the composite layer of silicon carbide and silicon nitride, and the overall concentration of silicon carbide is 100 mol% in the range of 10 μm from the surface of the heat-resistant base material. Te10-90
In the μm range, the concentration of silicon carbide gradually decreases from 100 mol% to 0 mol%, and the concentration of silicon nitride gradually increases from 0 mol% to 100 mol%, and 90-100 mol%.
A composite film with a silicon nitride concentration of 100 mol % in the micrometer range was formed.

以上により、炭化珪素の濃度分布および窒化珪素の濃度
分布が第2図および第3図において実線で示したとおり
でありかつ膜厚が100μmの炭化珪素および窒化珪素
の複合被膜が耐熱基材の表面に対して形成され、本発明
にかかる耐火材料とされた。
As a result, the silicon carbide concentration distribution and the silicon nitride concentration distribution are as shown by the solid lines in FIGS. 2 and 3, and the composite coating of silicon carbide and silicon nitride with a thickness of 100 μm is formed on the surface of the heat-resistant base material. The fire-resistant material according to the present invention was formed against the above.

本発明にかかる耐火材料は、エピタキシャルウェーハを
製造するためにエピタキシャル製造装置でサセプタとし
て使用したところ、250回使用してもピンホールなら
びにクラックの発生が認められず、また製造されたエピ
タキシャルウェーハにおける不純物濃度の増加も認めら
れなかった。
When the refractory material according to the present invention was used as a susceptor in an epitaxial manufacturing device for manufacturing epitaxial wafers, no pinholes or cracks were observed even after 250 uses, and no impurities were observed in the manufactured epitaxial wafers. No increase in concentration was observed.

!血皿且・ 耐熱基材として、熱膨張係数が4.5 Xl0−’であ
る炭化珪素基材を採用した。
! As the blood plate and the heat-resistant base material, a silicon carbide base material having a thermal expansion coefficient of 4.5 Xl0-' was used.

耐熱基材は、熱処理炉に挿入され、表面の温度を130
0℃に維持された。この状態で、熱処理炉には、キャリ
アガスとしてのH2ガスと珪素源ガスとしての5iC1
4ガスと炭素源ガスとしてのC,H,ガスとが、それぞ
れ0.5 ff7分、 1.012/分および0.2β
/分の供給割合で10分間にわたり供給された。これに
より、耐熱基材の表面には、膜厚10μmの炭化珪素層
が形成せしめられた。
The heat-resistant base material is inserted into a heat treatment furnace and the surface temperature is increased to 130°C.
The temperature was maintained at 0°C. In this state, the heat treatment furnace contains H2 gas as a carrier gas and 5iC1 as a silicon source gas.
4 gas and C, H, and gases as carbon source gases at 0.5 ff7 min, 1.012/min, and 0.2β, respectively.
was fed over a period of 10 minutes at a feed rate of /min. As a result, a silicon carbide layer with a thickness of 10 μm was formed on the surface of the heat-resistant base material.

次いで、H2ガスと5iC14ガスとC5Hsガスとを
上述の供給割合で供給しつつ、熱処理炉に対し、窒素源
としてのNHsガスが、0.01/分の割合で90分間
にわたり追加供給された。これにより、炭化珪素層に対
して膜厚90μmの炭化珪素および窒化珪素の複合層が
追加形成せしめられ、全体として耐熱基材の表面から1
0μmまでの範囲で炭化珪素の濃度が100モル%であ
って10〜90μmの範囲で炭化珪素の濃度および窒化
珪素の濃度がともに50モル%である複合被膜が形成せ
しめられた。
Next, while supplying H2 gas, 5iC14 gas, and C5Hs gas at the above-mentioned supply rates, NHs gas as a nitrogen source was additionally supplied to the heat treatment furnace at a rate of 0.01/min for 90 minutes. As a result, a composite layer of silicon carbide and silicon nitride with a film thickness of 90 μm is additionally formed on the silicon carbide layer, and as a whole, a composite layer of silicon carbide and silicon nitride is formed from the surface of the heat-resistant base material.
A composite film was formed in which the concentration of silicon carbide was 100 mol% in the range up to 0 μm, and the concentration of silicon carbide and silicon nitride were both 50 mol% in the range of 10 to 90 μm.

最後に、H2ガスと5iC14ガスとNHsガスとが、
上述の供給割合で熱処理炉に対して10分間にわたり供
給された。これにより、炭化珪素および窒化珪素の複合
層に対して膜厚lOμmの窒化珪素層が追加形成せしめ
られ、全体として耐熱基材の表面から10μmまでの範
囲で炭化珪素の濃度が100モル%であって10〜90
μmの範囲で炭化珪素の濃度および窒化珪素の濃度がと
もに50モル%でありかつ90〜100μmの範囲で窒
化珪素の濃度が100モル%である複合被膜が形成せし
められた。
Finally, H2 gas, 5iC14 gas and NHs gas are
The feed rate described above was fed to the heat treatment furnace for 10 minutes. As a result, a silicon nitride layer with a film thickness of 10 μm is additionally formed on the composite layer of silicon carbide and silicon nitride, and the overall concentration of silicon carbide is 100 mol% in the range of 10 μm from the surface of the heat-resistant base material. Te10-90
A composite film was formed in which the silicon carbide concentration and the silicon nitride concentration were both 50 mol % in the μm range, and the silicon nitride concentration was 100 mol % in the 90 to 100 μm range.

以上により、炭化珪素の濃度分布および窒化珪素の濃度
分布が第2図および第3図において破線で承したとおり
でありかつ膜厚が1001mの炭化珪素および窒化珪素
の複合被膜が耐熱基材の表面に対して形成され、本発明
にかかる耐火材料とされた。
As a result of the above, the concentration distribution of silicon carbide and the concentration distribution of silicon nitride are as indicated by the broken lines in FIGS. 2 and 3, and a composite coating of silicon carbide and silicon nitride with a thickness of 1001 m is formed on the surface of the heat-resistant base material. The fire-resistant material according to the present invention was formed against the above.

本発明にかかる耐火材料は、エピタキシャルウェーハを
製造するためにエピタキシャル製造装置でサセプタとし
て使用したところ、250回使用してもピンホールなら
びにクラックの発生が認められず、また製造されたエピ
タキシャルウェーハにおける不純物濃度の増加も認めら
れなかった。
When the refractory material according to the present invention was used as a susceptor in an epitaxial manufacturing device for manufacturing epitaxial wafers, no pinholes or cracks were observed even after 250 uses, and no impurities were observed in the manufactured epitaxial wafers. No increase in concentration was observed.

!態量A 耐熱基材として、熱膨張係数が4.OXl0−’である
シリコン含有の炭化珪素基材を採用した。
! Amount A: As a heat-resistant base material, the coefficient of thermal expansion is 4. A silicon-containing silicon carbide base material OXl0-' was employed.

耐熱基材は、熱処理炉に挿入され、表面の温度を130
0℃に維持された。この状態で、熱処理炉には、キャリ
アガスとしてのH2ガスと珪素源ガスとしての5iC1
+ガスと炭素源ガスとしてのC5Haガスとが、それぞ
れ0.512/分、 1.012/分および0.212
7分の供給割合で10分間にわたり供給された。これに
より、耐熱基材の表面には、膜厚lOμmの炭化珪素層
が形成せしめられた。
The heat-resistant base material is inserted into a heat treatment furnace and the surface temperature is increased to 130°C.
The temperature was maintained at 0°C. In this state, the heat treatment furnace contains H2 gas as a carrier gas and 5iC1 as a silicon source gas.
+ gas and C5Ha gas as carbon source gas are 0.512/min, 1.012/min and 0.212, respectively.
It was fed over a 10 minute period at a feed rate of 7 minutes. As a result, a silicon carbide layer with a thickness of 10 μm was formed on the surface of the heat-resistant base material.

次いで、H2ガスと5iC1nガスとを上述の供給割合
で供給し、かつC3HIIガスの供給割合を徐々に削減
しつつ、熱処理炉に対し、窒素源としてのNH,ガスの
供給割合が、0.0812/分の供給割合まで90分間
かけて徐々に増加された。これにより、炭化珪素層に対
して膜厚90μmの炭化珪素および窒化珪素の複合層が
追加形成せしめられ、全体として耐熱基材の表面から1
0μmまでの範囲で炭化珪素の濃度が100モル%であ
って10〜90μmの範囲で炭化珪素の濃度が100モ
ル%から0モル%まで徐々に減少しかつ窒化珪素の濃度
が0モル%から100モル%まで徐々に増加してなる複
合被膜が形成せしめられた。
Next, while supplying H2 gas and 5iC1n gas at the above supply ratio and gradually reducing the supply ratio of C3HII gas, the supply ratio of NH and gas as a nitrogen source to the heat treatment furnace was set to 0.0812. The feed rate was increased gradually over a period of 90 minutes to a feed rate of 1/min. As a result, a composite layer of silicon carbide and silicon nitride with a film thickness of 90 μm is additionally formed on the silicon carbide layer, and as a whole, a composite layer of silicon carbide and silicon nitride is formed from the surface of the heat-resistant base material.
The concentration of silicon carbide is 100 mol% in the range of 0 μm, and the concentration of silicon carbide gradually decreases from 100 mol% to 0 mol% in the range of 10 to 90 μm, and the concentration of silicon nitride is from 0 mol% to 100 mol%. Composite coatings were formed with gradually increasing mole %.

最後に、H2ガスと5IC14ガスとNH,ガスとが、
それぞれ0.5127分、1.0127分および0.0
8I2/分の供給割合で熱処理炉に対して10分間にわ
たり供給された。これにより、炭化珪素および窒化珪素
の複合層に対して膜厚lOμmの窒化珪素層が追加形成
せしめられ、全体として耐熱基材の表面から10μmま
での範囲で炭化珪素の濃度力(100モル%であって1
0〜90μmの範囲で炭化珪素の濃度が100モル%か
ら0モル%まで徐々に減少しかつ窒化珪素の濃度が0モ
ル%から100モル%まで徐々に増加しておりかつ90
〜100μmの範囲で窒化珪素の濃度が100モル%で
ある複合被膜が形成せしめられた。
Finally, H2 gas, 5IC14 gas, and NH gas are
0.5127 minutes, 1.0127 minutes and 0.0 respectively
A feed rate of 8 I2/min was fed to the heat treatment furnace for 10 minutes. As a result, a silicon nitride layer with a film thickness of 10 μm is additionally formed on the composite layer of silicon carbide and silicon nitride, and the concentration of silicon carbide (100 mol% There is one
In the range of 0 to 90 μm, the concentration of silicon carbide gradually decreases from 100 mol% to 0 mol%, and the concentration of silicon nitride gradually increases from 0 mol% to 100 mol%, and 90 mol%.
A composite film with a silicon nitride concentration of 100 mol % was formed in the range of ~100 μm.

以上により、炭化珪素の濃度分布および窒化珪素の濃度
分布が第2図および第3図において実線で示したとおり
でありかつ膜厚が100μmの炭化珪素および窒化珪素
の複合被膜が耐熱基材の表面に対して形成され、本発明
にかかる耐火材料とされた。
As a result, the silicon carbide concentration distribution and the silicon nitride concentration distribution are as shown by the solid lines in FIGS. 2 and 3, and the composite coating of silicon carbide and silicon nitride with a thickness of 100 μm is formed on the surface of the heat-resistant base material. The fire-resistant material according to the present invention was formed against the above.

本発明にかかる耐火材料は、エピタキシャルウェーハを
製造するためにエピタキシャル製造装置でサセプタとし
て使用したところ、250回使用してもピンホールなら
びにクラックの発生が認められず、また製造されたエピ
タキシャルウェーハにおける不純物濃度の増加も認めら
れなかった。
When the refractory material according to the present invention was used as a susceptor in an epitaxial manufacturing device for manufacturing epitaxial wafers, no pinholes or cracks were observed even after 250 uses, and no impurities were observed in the manufactured epitaxial wafers. No increase in concentration was observed.

土較医上 耐熱基材として、熱膨張係数が4.2 Xl0−’であ
る炭素基材を採用した。
A carbon base material having a thermal expansion coefficient of 4.2 Xl0-' was used as the medically heat-resistant base material.

耐熱基材は、熱処理炉に挿入され、表面の温度を130
0℃に維持された。この状態で、熱処理炉には、キャリ
アガスとしてのH,ガスと珪素源ガスとしての5iC1
4ガスと炭素源ガスとしてのCJaガスとが、それぞれ
0.5β/分、 1.O127分および0.2β/分の
供給割合で100分間にわたり供給された。
The heat-resistant base material is inserted into a heat treatment furnace and the surface temperature is increased to 130°C.
The temperature was maintained at 0°C. In this state, the heat treatment furnace contains H gas as a carrier gas and 5iC1 gas as a silicon source gas.
4 gas and CJa gas as a carbon source gas, each at a rate of 0.5β/min, 1. O was fed over 100 minutes at a feed rate of 127 minutes and 0.2 β/minute.

以上により、耐熱基材の表面に対し膜厚が100μmの
炭化珪素被膜が形成され、耐火材料とされた。
As a result, a silicon carbide film having a thickness of 100 μm was formed on the surface of the heat-resistant base material, and a fire-resistant material was obtained.

耐火材料は、エピタキシャルウェーハを製造するために
エピタキシャル製造装置でサセプタとして使用したとこ
ろ、72回使用したところでピンホールが発生し使用不
能となった。
When the refractory material was used as a susceptor in an epitaxial manufacturing apparatus for manufacturing epitaxial wafers, pinholes were generated after 72 uses, making it unusable.

比較丞l 耐熱基材として、熱膨張係数が4.OXl0−”である
シリコン含有の炭化珪素基材を採用した。
Comparison 1 As a heat-resistant base material, the coefficient of thermal expansion is 4. A silicon-containing silicon carbide base material of OX10-'' was used.

耐熱基材は、熱処理炉に挿入され、表面の温度を130
0℃に維持された。この状態で、熱処理炉には、キャリ
アガスとしてのH2ガスと珪素源ガスとしての5iC1
4ガスと炭素源ガスとしてのC,H,ガスとが、それぞ
れ0.5β/分、 1.O127分および0.2127
分の供給割合で100分間にわたり供給された。
The heat-resistant base material is inserted into a heat treatment furnace and the surface temperature is increased to 130°C.
The temperature was maintained at 0°C. In this state, the heat treatment furnace contains H2 gas as a carrier gas and 5iC1 as a silicon source gas.
4 gas and C, H, and gases as carbon source gases each at 0.5β/min, 1. O127 min and 0.2127
100 minutes.

以上により、耐熱基材の表面に対し膜厚が100μmの
炭化珪素被膜が形成され、耐火材料とされた。
As a result, a silicon carbide film having a thickness of 100 μm was formed on the surface of the heat-resistant base material, and a fire-resistant material was obtained.

耐火材料は、エピタキシャルウェーハを製造するために
エピタキシャル製造装置でサセプタとして使用したとこ
ろ、65回使用したところでピンホールが発生し使用不
能となった。
When the refractory material was used as a susceptor in an epitaxial manufacturing apparatus for manufacturing epitaxial wafers, pinholes were generated after 65 uses, making it unusable.

(3)発明の効果 上述より明らかなどと(、本発明にかかる耐火材料は、
耐熱基材の表面からの距離が大きくなるにつれ炭化珪素
の濃度が低下せしめられかつ窒化珪素の濃度が増加せし
められてなる炭化珪素および窒化珪素の複合被膜を耐熱
基材の表面に対して形成してなるので、 (i)複合被膜中の熱膨張率を耐熱基材の表面からの距
離に応じて変化せしめ て剥離を生じることを抑制できる効 果 を有し、併せて (ii)複合被膜中の粒子の粗大化を抑制しつり膜厚を
確保できる効果 を有し、ひいては (iii)洗浄ガスによる浸食を抑制してピンホールの
発生を防止できる効果 を有し、また (iv)熱応力に対応可能としてクラックの発生を抑制
できる効果 を有し、結果的に (Vl寿命を延長できる効果 を有する。
(3) Effects of the invention As is clear from the above (the fireproof material according to the present invention has
A composite film of silicon carbide and silicon nitride is formed on the surface of the heat-resistant base material, in which the concentration of silicon carbide decreases and the concentration of silicon nitride increases as the distance from the surface of the heat-resistant base material increases. (i) The coefficient of thermal expansion in the composite coating can be changed depending on the distance from the surface of the heat-resistant base material to suppress peeling, and (ii) It has the effect of suppressing the coarsening of particles and ensuring a suspended film thickness, and (iii) it also has the effect of suppressing erosion by cleaning gas and preventing the generation of pinholes, and (iv) it is resistant to thermal stress. It has the effect of suppressing the occurrence of cracks as much as possible, and as a result, it has the effect of extending the Vl life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる耐火材料の一実施例を示す断面
図、第2図および第3図は第1図実施例の内部構造を説
明するためのグラフ図である。
FIG. 1 is a sectional view showing an embodiment of the refractory material according to the present invention, and FIGS. 2 and 3 are graphs for explaining the internal structure of the embodiment shown in FIG.

Claims (1)

【特許請求の範囲】[Claims] 耐熱基材上に炭化珪素と窒化珪素とを付着せしめて炭化
珪素および窒化珪素の複合被膜を形成してなる耐火材料
において、複合被膜中の炭化珪素の濃度が耐熱基材の表
面からの距離が大きくなるにしたがって減少し、かつ複
合被膜中の窒化珪素の濃度が耐熱基材の表面からの距離
が大きくなるにしたがって増加してなることを特徴とす
る耐火材料。
In a fire-resistant material formed by depositing silicon carbide and silicon nitride on a heat-resistant base material to form a composite film of silicon carbide and silicon nitride, the concentration of silicon carbide in the composite film varies depending on the distance from the surface of the heat-resistant base material. A fire-resistant material characterized in that the concentration of silicon nitride in the composite film decreases as the size increases, and the concentration of silicon nitride in the composite film increases as the distance from the surface of a heat-resistant base material increases.
JP25383589A 1989-09-29 1989-09-29 Refractory material Pending JPH03115183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25383589A JPH03115183A (en) 1989-09-29 1989-09-29 Refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25383589A JPH03115183A (en) 1989-09-29 1989-09-29 Refractory material

Publications (1)

Publication Number Publication Date
JPH03115183A true JPH03115183A (en) 1991-05-16

Family

ID=17256798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25383589A Pending JPH03115183A (en) 1989-09-29 1989-09-29 Refractory material

Country Status (1)

Country Link
JP (1) JPH03115183A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003404A3 (en) * 2003-06-25 2005-10-06 Gen Electric Composite refractory metal carbide coating on a substrate and method for making thereof
JP2010236717A (en) * 2009-03-30 2010-10-21 Ube Ind Ltd Crucible and method for manufacturing the same, and method for manufacturing silicon nitride powder using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003404A3 (en) * 2003-06-25 2005-10-06 Gen Electric Composite refractory metal carbide coating on a substrate and method for making thereof
JP2010236717A (en) * 2009-03-30 2010-10-21 Ube Ind Ltd Crucible and method for manufacturing the same, and method for manufacturing silicon nitride powder using the same

Similar Documents

Publication Publication Date Title
US5119541A (en) Wafer succeptor apparatus
JPH11228233A (en) Sic molded product and its production
KR20020008395A (en) Chemical vapor deposition system and method
JP2548949B2 (en) Semiconductor manufacturing components
JPH03146672A (en) Susceptor for cvd
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP2000302577A (en) Graphite member coated with silicon carbide
JPH03115183A (en) Refractory material
JPH01162770A (en) Diamond-coated member
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JP2000302576A (en) Graphite material coated with silicon carbide
JPH11157989A (en) Susceptor for gas phase growth and its production
KR100976547B1 (en) Inductive heating susceptor and manufacturing method thereof
JP3442077B2 (en) Method for producing CVD silicon nitride
JPH10251062A (en) Production of silicon carbide formed body
JP2002097092A (en) Glassy carbon material coated with silicon carbide film and method for producing the same
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPH03146470A (en) Silicon carbide-based material
JP2005320208A (en) Carbon composite member
JPH1116991A (en) Carbon support for semiconductor manufacturing apparatus
TWI801974B (en) Parts with corrosion-resisting layer
JPH0647516B2 (en) Graphite susceptor for plasma CVD
JPS6010621A (en) Depressurized epitaxial growing equipment
JP2549030B2 (en) Semiconductor processing member and method of manufacturing the same
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same