JPH03115170A - Refractory material - Google Patents
Refractory materialInfo
- Publication number
- JPH03115170A JPH03115170A JP25070389A JP25070389A JPH03115170A JP H03115170 A JPH03115170 A JP H03115170A JP 25070389 A JP25070389 A JP 25070389A JP 25070389 A JP25070389 A JP 25070389A JP H03115170 A JPH03115170 A JP H03115170A
- Authority
- JP
- Japan
- Prior art keywords
- cerium oxide
- mixed
- corrosion resistance
- oxides
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011819 refractory material Substances 0.000 title claims abstract description 7
- 239000000463 material Substances 0.000 claims abstract description 28
- 239000002184 metal Substances 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000005260 corrosion Methods 0.000 claims abstract description 17
- 230000007797 corrosion Effects 0.000 claims abstract description 17
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 14
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000002844 melting Methods 0.000 claims abstract description 10
- 230000008018 melting Effects 0.000 claims abstract description 10
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 9
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000000292 calcium oxide Substances 0.000 claims abstract description 5
- 235000012255 calcium oxide Nutrition 0.000 claims abstract description 5
- 239000000126 substance Substances 0.000 claims abstract description 4
- 150000002739 metals Chemical class 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 238000007750 plasma spraying Methods 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 8
- 150000002910 rare earth metals Chemical class 0.000 abstract description 6
- 230000001771 impaired effect Effects 0.000 abstract description 2
- 229910044991 metal oxide Inorganic materials 0.000 abstract 2
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000000843 powder Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910004688 Ti-V Inorganic materials 0.000 description 1
- 229910010968 Ti—V Inorganic materials 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
及栗上二■亙豆互
本発明は、表面が耐食性を有する物質からなる、希土類
金属に代表される活性金属およびそれを含む合金を溶融
するための、耐食性を有する耐火材料に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for melting active metals such as rare earth metals and alloys containing the same, the surface of which is made of a corrosion-resistant material. Regarding fireproof materials.
亘米辺韮生
希土類金属・T1・Vなどの活性金属は、磁性材料・特
殊合金など各種の新素材の原料として重要である。これ
らの新素材関係の用途においては、微量の不純物が材料
の品質を著しく損なうことが多く、このため、これらの
活性金属やその合金の製造・処理の過程では、汚染の防
止のために配慮する必要がある。Rare earth metals such as T1 and V are important as raw materials for various new materials such as magnetic materials and special alloys. In applications involving these new materials, trace amounts of impurities often significantly impair the quality of the materials, so care must be taken to prevent contamination during the production and processing of these active metals and their alloys. There is a need.
しかし、一般にこれらの金属は強い活性があり、金属の
溶融・鋳造の過程でルツボ材料と反応し、ルツボを侵食
すると同時に、それ自身が汚染される問題があった。
従来、こうした侵食性の強い金属を溶融するための材料
としては、MgO5Cab、Al、O,などの還元され
にくい酸化物が、用いられてきた。However, these metals are generally highly active and react with the crucible material during the process of melting and casting the metal, eroding the crucible and contaminating the crucible itself.
Conventionally, oxides that are difficult to reduce, such as MgO5Cab, Al, and O, have been used as materials for melting these highly corrosive metals.
しよ と る
しかし、これらの材料を用いても希土類金属などによる
侵食を十分に防ぐことはできず、酸素が精製あるいは溶
解処理をした金属に混入するため高い品位の製品が得ら
れなかった。However, even with these materials, it was not possible to sufficiently prevent corrosion by rare earth metals, etc., and high-quality products could not be obtained because oxygen mixed in with the refined or melted metals.
以上の問題を解決する方法として、以下の発明をなした
。As a method for solving the above problems, the following invention has been made.
ヱJLG旧l広
即ち、本発明は、(1)表面が少なくとも酸化セリウム
または酸化セリウムにモル比で20%までのアルミナ、
マグネシア、カルシアの一つ以上を混合した物質からな
るものであって、活性金属およびそれを含む合金を溶融
する際に極めて高い耐食性を有することを特徴とする耐
火材料、および(2)上記(1)において、材料が汎用
の材料の表面にプラズマ溶射法を用いて第1項記載の物
質の皮膜を形成したものであることを特徴とする、耐火
材料に関する。That is, the present invention provides (1) a surface of at least cerium oxide or alumina having a molar ratio of up to 20% to cerium oxide;
A refractory material consisting of a mixture of one or more of magnesia and calcia, and characterized by having extremely high corrosion resistance when melting active metals and alloys containing the same, and (2) the above (1). ) relates to a refractory material characterized in that the material is a film of the substance described in item 1 formed on the surface of a general-purpose material using a plasma spraying method.
点 るための び 以下に、発明の詳細な説明する。To make a point The invention will be described in detail below.
本発明で対象とする活性金属とは、Ti−V・希土類金
属およびその合金(ミツシュメタルを含む)等である。The active metals targeted by the present invention include Ti-V, rare earth metals, and alloys thereof (including Mitsushi metal).
上記の問題を解決する方法として、発明者は活性金属に
対して耐食性を有すると思われる酸化セリウムを用いた
。酸化セリウムは、それ自身が酸素との親和力の強い元
素の酸化物であるため、活性金属との反応性が極めて小
さいと思われ、確認したところ極めて好ましい結果であ
った。この耐食材料は、それ自身を単独で活性金属の処
理用容器として用いるか、またはこれを通常用いられて
いる成形が容易で安価なセラミック材料、例えばAI、
O,、MgOなどからなる容器の表面に皮膜を形成して
容器材料に耐食性を与えたものとして用いる。As a method to solve the above problem, the inventor used cerium oxide, which is believed to have corrosion resistance against active metals. Since cerium oxide itself is an oxide of an element that has a strong affinity for oxygen, it is thought that its reactivity with active metals is extremely low, and the results obtained were extremely favorable. This corrosion-resistant material can be used on its own as a processing vessel for active metals, or it can be replaced with commonly used easily moldable and inexpensive ceramic materials such as AI,
A film is formed on the surface of a container made of O, MgO, etc. to provide corrosion resistance to the container material.
さらに、利用する耐食性材料を希土類酸化物の中の酸化
セリウムに限定するのは、その他の希土類元素の酸化物
は融点から常温までの間で結晶構造が変化するため、あ
るいは高価であり工業用途に適さないためである。酸化
セリウムには、その焼結性・膜付けする下地の材料との
接着性や密着性・熱膨張率の整合性向上のため上記のA
I、0.、MgO,CaOを加えることが好ましい。た
だし、これらの耐食性の劣る酸化物を多量に混合すると
、材料そのものの耐食性が著しく損なわれるので、これ
らの混合量は20mo1%にとどめる必要がある。また
、これら以外にも焼結性を向上させる酸化物はあるが、
耐食性・価格などの点で不適当である。Furthermore, the reason why the corrosion-resistant material to be used is limited to cerium oxide among rare earth oxides is because the crystal structure of other rare earth element oxides changes between the melting point and room temperature, or because they are expensive and cannot be used for industrial purposes. This is because it is not suitable. Cerium oxide has the above-mentioned A in order to improve its sinterability, adhesion with the underlying material to which the film is attached, and consistency in thermal expansion coefficient.
I, 0. , MgO, and CaO are preferably added. However, if a large amount of these oxides with poor corrosion resistance are mixed, the corrosion resistance of the material itself will be significantly impaired, so the amount of these mixed should be kept at 20 mo1%. In addition, there are other oxides that improve sinterability, but
It is unsuitable in terms of corrosion resistance, price, etc.
ここで、焼結体単体を用いる場合について、以下に詳述
する。Here, the case where a single sintered body is used will be described in detail below.
焼結体を用いる場合、緻密な焼結体を製造するには、粉
末として平均粒径10μm以下、望ましくは1μm以下
の微粉末を利用するのがよい。粉末は、通常の加圧成形
ないしは冷間静水圧成形により圧縮成形する。焼結の温
度は希土類酸化物に添加する助剤の種類や量により異な
るが、少なくとも1400℃以上、好ましくは1700
℃以上とする。また、製膜の場合は次の通りである。When using a sintered body, in order to produce a dense sintered body, it is preferable to use a fine powder with an average particle size of 10 μm or less, preferably 1 μm or less. The powder is compression molded by conventional pressure molding or cold isostatic pressing. The sintering temperature varies depending on the type and amount of the auxiliary agent added to the rare earth oxide, but is at least 1400°C or higher, preferably 1700°C or higher.
℃ or higher. Further, in the case of film formation, the procedure is as follows.
セラミックの膜を形成する方法としては、■スパッター
、■CVD、■スラリーの塗布後の焼結、■プラズマ溶
射等が考えられる。しかし、これらの方法のうち、■か
ら■には、厚い強度のある膜を作りにくい、ルツボの内
面に付けにくい、製膜速度が遅い、スラリー付着強度が
小さい、などの問題があった。Possible methods for forming a ceramic film include (1) sputtering, (2) CVD, (2) sintering after application of slurry, and (2) plasma spraying. However, among these methods, methods (1) to (2) have problems such as difficulty in forming a thick and strong film, difficulty in attaching it to the inner surface of the crucible, slow film formation speed, and low slurry adhesion strength.
この発明では、アルミナなどの比較的耐熱性がある汎用
的なセラミック材料からなるルツボの内面に上記の耐蝕
性材料の皮膜をプラズマ溶射により形成する方法を用い
た。ここで、プラズマ溶射を利用する利点としては、■
ある程度複雑な形状の容器表面にも膜付は可能、■大型
化可能、■高速成膜、■十分な厚さの膜付け、■付着強
度が高い、■高融点セラミックへの応用可能などが挙げ
られる。In this invention, a method is used in which a film of the above-mentioned corrosion-resistant material is formed by plasma spraying on the inner surface of a crucible made of a relatively heat-resistant general-purpose ceramic material such as alumina. Here, the advantages of using plasma spraying are: ■
Possible to attach a film to the surface of a container with a somewhat complex shape, ■ Capable of increasing the size, ■ High-speed film formation, ■ Applying a film of sufficient thickness, ■ High adhesion strength, ■ Can be applied to high melting point ceramics, etc. It will be done.
プラズマ溶射する粉末としては、平均粒径が100μm
未満、好ましくは50〜5μmの範囲で球形に近い粒子
からなる流動性のよいものを使う。溶射する下地の材料
は、溶射や活性金属の処理の温度や熱ショックに耐える
ものであれば限定されないが、仮に耐食性皮膜が剥がれ
ても下地が活性金属にある程度耐えつる素材、例えばA
I。The average particle size of the powder to be plasma sprayed is 100 μm.
A material with good fluidity consisting of nearly spherical particles with a diameter of less than 5 μm, preferably in the range of 50 to 5 μm is used. The material for the base material to be thermally sprayed is not limited as long as it can withstand the temperature and thermal shock of thermal spraying and treatment of active metals, but materials that can withstand the active metal to some extent even if the corrosion-resistant film peels off, such as A
I.
0、、MgOがよい。膜の厚さは、50μmからIMの
範囲、好ましくは200〜300μmが適当である。0, MgO is good. The thickness of the film is suitably in the range of 50 μm to IM, preferably 200 to 300 μm.
50μm未満では膜強度が小さく、llll11を越え
ると膜付けに極端に時間がかかるようになり、実用的で
ない。If it is less than 50 μm, the film strength will be low, and if it exceeds lllll11, it will take an extremely long time to form the film, which is not practical.
〈実施例1〉
平均粒径4μmのCeo、に4 w t%(約12mo
le%)のAI、O,粉を加え、1700℃で3時間焼
結し、想定密度の92%(d=6.76)の内径30m
+nの円筒るつぼ型の焼結体を作った。<Example 1> 4 wt% (approximately 12 mo
le%) of AI, O, and powder were added and sintered at 1,700°C for 3 hours to obtain an inner diameter of 30 m with 92% of the assumed density (d = 6.76).
A +n cylindrical crucible-shaped sintered body was made.
これを利用してミツシュメタルやTi合金を溶解したが
、表1.2に示したように原料に対し酸素含有率の増加
はわずかであった。This was used to melt Mitsushi metal and Ti alloys, but as shown in Table 1.2, the increase in oxygen content relative to the raw materials was small.
〈実施例2〉
内径35mmのMgO円筒型るつぼの内側表面にCeO
,をArプラズマ溶射して厚さ0.2m+eの皮膜を作
った。これを用いてミツシュメタルやTi合金を溶解し
たが、表1,2に示したように原料に対し酸素含有率の
増加はわずかであった。<Example 2> CeO was applied to the inner surface of an MgO cylindrical crucible with an inner diameter of 35 mm.
, was sprayed with Ar plasma to form a film with a thickness of 0.2 m+e. This was used to melt Mitsushi metal and Ti alloy, but as shown in Tables 1 and 2, the oxygen content increased only slightly compared to the raw materials.
〈比較例〉
内径3 C)〜35mm(7)MgO製およびAI、O
,製内筒型るつぼを用いてミツシュメタルやTi合金を
溶解したが、表1.2に示したように原料に対し酸素含
有率は大幅に増加した。<Comparative example> Inner diameter 3 C) ~ 35 mm (7) Made of MgO and AI, O
However, as shown in Table 1.2, the oxygen content of the raw materials increased significantly when Mitsushi metal and Ti alloy were melted using an inner cylindrical crucible.
表1.真空熱処理時のミツシュメタル中の酸素含有率の
るつぼ材料による差
(1100℃×1時間加熱後)
表2゜
真空溶解時のTi−6AI−4V合金中の酸素含有率の
るつぼ材料による差
(1600℃×20分加熱後)
m旧九且
(1)本発明により、活性金属の溶解または精製処理に
おいて、処理物中に酸素が混入するのを防止できる。Table 1. Differences in oxygen content in Mitshu metal during vacuum heat treatment depending on crucible material (after heating at 1100°C for 1 hour) Table 2 Difference in oxygen content in Ti-6AI-4V alloy during vacuum melting depending on crucible material (1600°C (After heating for 20 minutes) (1) According to the present invention, it is possible to prevent oxygen from being mixed into the processed material during the melting or purification treatment of active metals.
(2)製膜したものを用いることにより、安価に上記(
1)の効果を得ることができる。(2) By using a film formed, the above (
The effect of 1) can be obtained.
(3)例えば、希土類系の水素吸蔵合金製造に本発明を
利用して処理した低酸素の金属を用いれば、水分の発生
を抑え好ましい特性が得られる。(3) For example, if a low-oxygen metal treated according to the present invention is used in the production of a rare earth-based hydrogen storage alloy, favorable characteristics can be obtained by suppressing the generation of moisture.
Claims (2)
ムにモル比で20%までのアルミナ、マグネシア、カル
シアの一つ以上を混合した物質からなるものであって、
活性金属およびそれを含む合金を溶融する際に極めて高
い耐食性を有することを特徴とする耐火材料。(1) The surface is made of at least cerium oxide or a substance mixed with cerium oxide and one or more of alumina, magnesia, and calcia in a molar ratio of up to 20%,
A refractory material characterized by extremely high corrosion resistance when melting active metals and alloys containing the same.
ズマ溶射法を用いて第1項記載の物質の皮膜を形成した
ものであることを特徴とする耐火材料。(2) A refractory material according to item 1, characterized in that the material is a film of the substance described in item 1 formed on the surface of a general-purpose material using a plasma spraying method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25070389A JPH03115170A (en) | 1989-09-28 | 1989-09-28 | Refractory material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25070389A JPH03115170A (en) | 1989-09-28 | 1989-09-28 | Refractory material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03115170A true JPH03115170A (en) | 1991-05-16 |
Family
ID=17211789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25070389A Pending JPH03115170A (en) | 1989-09-28 | 1989-09-28 | Refractory material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03115170A (en) |
-
1989
- 1989-09-28 JP JP25070389A patent/JPH03115170A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03115535A (en) | Method for decreasing oxygen in rare earth metal | |
RU2245762C2 (en) | METHOD FOR PRODUCING FeCrAl ALLOY BASE POWDER MATERIAL AND SUCH MATERIAL | |
JP2003073794A (en) | Heat-resistant coated member | |
EP0118249A2 (en) | Spraying materials containing ceramic needle fiber and composite materials spray-coated with such spraying materials | |
TW552251B (en) | Process for producing a coating on a refractory structural member | |
US4906431A (en) | Method of producing a heat insulating separation wall | |
JPH03115170A (en) | Refractory material | |
JPH03115169A (en) | Refractory material | |
JPS58213677A (en) | Silicon nitride composite sintered body | |
JPS63285175A (en) | Production of ceramic sintered material | |
JPH03197356A (en) | Zirconia refractory and its production | |
JPH02258670A (en) | Low temperature expandable ceramics | |
JP2005139554A (en) | Heat-resistant coated member | |
US5098631A (en) | Method of preparing near-net shape silicon nitride articles and the articles so prepared | |
JPS61222658A (en) | Molding material for precision casting and casting method using said material | |
JP2004010381A (en) | Surface-coated silicon nitride sintered compact | |
JPS6251913B2 (en) | ||
JPH0224789B2 (en) | ||
JP3944700B2 (en) | Rare earth alloy melting crucible and rare earth alloy | |
JPH0226841A (en) | Mold material for molding optical glass | |
JPH0450160A (en) | Transparent alumina sintered material | |
KR20030032387A (en) | Sialon powder for thermal spraying, method for making the same, and thermal spray coating method using it | |
JPS62130236A (en) | Production of target material | |
JPS63129061A (en) | Al2o3-tic base composite sintered body and manufacture | |
JPS62287064A (en) | Vessel for vacuum deposition |