JPH03115140A - Boron nitride film, method for forming boron nitride film, boron nitride-coated fiber and composite material having boron-nitride- coated fiber - Google Patents

Boron nitride film, method for forming boron nitride film, boron nitride-coated fiber and composite material having boron-nitride- coated fiber

Info

Publication number
JPH03115140A
JPH03115140A JP2179400A JP17940090A JPH03115140A JP H03115140 A JPH03115140 A JP H03115140A JP 2179400 A JP2179400 A JP 2179400A JP 17940090 A JP17940090 A JP 17940090A JP H03115140 A JPH03115140 A JP H03115140A
Authority
JP
Japan
Prior art keywords
fibers
boron nitride
matrix
boron
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2179400A
Other languages
Japanese (ja)
Inventor
Willard H Sutton
ウィラード・エイチ・サットン
Richard D Veltri
リチャード・ディー・ベルトリ
Francis S Galasso
フランシス・エス・ガラソ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JPH03115140A publication Critical patent/JPH03115140A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/22Deposition from the vapour phase
    • C03C25/223Deposition from the vapour phase by chemical vapour deposition or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Fibers (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE: To obtain a composite material that is enhanced in fracture toughness by introducing reactant gases containing B and N into a reactor with a carrier and forming thick BN films around fibers, and thereby, reducing chemical reaction between the fibers and a matrix.
CONSTITUTION: Various reactant gases containing B and N, e.g. reactant gases consisting of specially BCl3 and NH3 are introduced into the reactor by using inert gas such as Ar as the carrier gas and contacted with the fibers to be incorporated in the matrix. Then the BN coatings having a thickness of at least 0.40 microns are formed on the surfaces of the fibers from the reactant gases at a temperature of approximately 100 to 1300°C. When the fibers coated with the BN films are incorporated in the matrix of glass, ceramic, etc., the compound material having the above-mentioned characteristic can be obtained.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 [発明の目的] 〈産業上の利用分野〉 本発明は、繊維の被覆に関し、特に窒化硼素の厚膜を繊
維に被覆する方法及びその結果得られる被覆繊維に関す
る。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION <Industrial Field of Application> The present invention relates to the coating of fibers, and more particularly to a method of coating fibers with a thick film of boron nitride and the resulting coated fibers.

〈従来の技術〉 ガラス、ガラス−セラミック、セラミックス、金属、熱
硬化性材料及び熱可塑性材料は、繊維強化によって強度
が増加し、適用範囲を拡大することができる。しかしな
がら、特にセラミックス複合材に於ける強力なマトリッ
クス/繊維結合は、実質的に全く繊維のプルアウト(p
lllout ) 、即ち繊維が引き出された状態では
なく概ね平坦な破壊表面となる脆性破壊が生じ、破壊靭
性が低下する。繊維のプルアウトは、破損クラックが進
む距離を増大させ、その表面積を増加させて複合材の靭
性を向上させる。
<Prior Art> Glass, glass-ceramics, ceramics, metals, thermosetting materials, and thermoplastic materials can be reinforced with fibers to increase their strength and expand their range of applications. However, strong matrix/fiber bonds, especially in ceramic composites, result in virtually no fiber pull-out (p
llout ), that is, brittle fracture occurs in which the fibers are not pulled out but have a generally flat fracture surface, resulting in a decrease in fracture toughness. Fiber pull-out increases the distance that the failure crack travels, increasing its surface area and improving the toughness of the composite.

マトリックスを形成する前に繊維に例えば炭素等の皮膜
を形成することによって、マトリックス/繊維の結合及
び化学的相互作用を低減させることができ、破壊靭性が
向上する。カーボン皮膜(米国特許箱4.425,40
7号及び第4,731、298号明細書を参照)は、容
易に酸化されかつ高い導電性を有し、或る条件下での使
用が制限されている。
By forming a coating, such as carbon, on the fibers before forming the matrix, matrix/fiber bonding and chemical interactions can be reduced, improving fracture toughness. Carbon coating (U.S. Patent Box 4.425,40
7 and 4,731,298) are easily oxidized and have high conductivity, limiting their use under certain conditions.

高い電気抵抗と優れた熱衝撃抵抗と不燃性を有する窒化
硼素(BN)が同様に繊維の皮膜として使用されている
。(例えば米国特許箱4,642。
Boron nitride (BN), which has high electrical resistance, excellent thermal shock resistance, and non-flammability, has also been used as a fiber coating. (For example, U.S. Patent Box 4,642.

271号明細書を参照。)窒化硼素は、そのグラファイ
トに類似の六角板構造によって、炭素に類似しているが
、炭素が有するいくつかの制限を有しておらず、有効な
代替物である。
See specification No. 271. ) Boron nitride, although similar to carbon due to its graphite-like hexagonal plate structure, does not have some of the limitations that carbon has and is an effective substitute.

〈発明が解決しようとする課題〉 BN皮膜は、約り50℃〜約2200℃の範囲内の温度
でCVD (化学蒸着法)を用いて形成することができ
る。しかしながら、理論的BN皮膜は1700℃以上の
析出温度に於でのみ達成されているが、この温度では通
常繊維に重大な劣化がもたらされる。このような温度に
繊維を加熱し、冷却し、かつ室温で試験した場合、その
元の強度を維持することができない。更に、従来技術を
用いて得られたBN皮膜は一般に約0.35ミクロン以
下で薄く、厚い皮膜は約760℃(1400″F)以上
の温度に於でのみ達成される(米国特許箱4.481,
257号明細書を参照)。この結果、より改善された繊
維の被覆及び皮膜形成方法が引き続き要望されている。
<Problems to be Solved by the Invention> The BN film can be formed using CVD (chemical vapor deposition) at a temperature within the range of about 50°C to about 2200°C. However, theoretical BN coatings have only been achieved at precipitation temperatures above 1700°C, which typically results in significant fiber degradation. When a fiber is heated to such a temperature, cooled and tested at room temperature, it is unable to maintain its original strength. Furthermore, BN coatings obtained using prior art techniques are generally thin, less than about 0.35 microns, and thick coatings are only achieved at temperatures above about 760° C. (1400"F) (see US Patent Box 4. 481,
257). As a result, there continues to be a need for improved fiber coating and coating methods.

[発明の構成] 〈課題を解決するための手段及び作用〉本発明は、繊維
とマトリックスの間の化学反応を減少させ、かつ破壊靭
性を向上させるべ(BNで繊維を被覆することに関する
。繊維はCVD反応器内に配置されて加熱される。硼素
と窒素とを含む反応ガスが前記反応器内にキャリアガス
によって導入される。これらガスが反応してBNを生成
し、析出が生じ、厚いBN皮膜(即ち約0.40ミクロ
ン以上)が前記繊維の周囲に形成される。
[Structure of the Invention] Means and Effects for Solving the Problems The present invention relates to coating fibers with BN to reduce chemical reactions between fibers and matrix and improve fracture toughness. is placed in a CVD reactor and heated. Reactant gases containing boron and nitrogen are introduced into said reactor by a carrier gas. These gases react to form BN, resulting in a thick deposit. A BN coating (ie, about 0.40 microns or greater) is formed around the fibers.

この厚さは、繊維とマトリックスとの間の化学反応を低
減させかつ所望の靭性を得るのに必要な厚さである。
This thickness is that necessary to reduce chemical reactions between the fibers and matrix and to obtain the desired toughness.

上述した本発明の特徴及び他の特徴並びに利点について
は、以下に添付図面を参照しつつ詳細に説明する。
The above-mentioned features and other features and advantages of the invention will be explained in detail below with reference to the accompanying drawings.

く実施例〉 セラミックマトリックス内に埋め込まれた非被覆繊維ま
たは薄い被覆繊維からなるセラミックス複合材にとって
、脆性破壊は重要な問題である。
Examples: Brittle fracture is an important problem for ceramic composites consisting of uncoated fibers or thin coated fibers embedded within a ceramic matrix.

複合材の脆性によって、応力による破壊から生じるクラ
ックは複合材の中を概ね真直に走るように形成される。
Due to the brittleness of the composite material, cracks resulting from stress failure form in a generally straight line through the composite material.

しかしながら、マトリックス内の繊維6<BNで十分に
被覆されている場合には、BN皮膜がクラックディフレ
クション及びブランティング即ちクラック先端の鈍化を
介して破壊靭性を増大させ、脆性破壊を防止する。BN
被覆繊維を有する複合材に応力を作用させると、円滑な
破壊面ではなく繊維のプルアウトが生じる。しかし、全
てのBN皮膜が繊維のプルアウトを生じるのではない。
However, if the fibers in the matrix are sufficiently coated with 6 < BN, the BN coating increases fracture toughness through crack deflection and blunting, or blunting of the crack tips, and prevents brittle fracture. B.N.
Applying stress to a composite with coated fibers results in fiber pull-out rather than a smooth fracture surface. However, not all BN coatings result in fiber pull-out.

BN皮膜の厚さが約0.30ミクロン程度またはそれ以
下の場合には、非被覆繊維を含む複合材と同様に円滑な
破壊面が生じる。
When the thickness of the BN coating is on the order of about 0.30 microns or less, a smooth fracture surface is produced similar to a composite material containing uncoated fibers.

第1図は、ガラスマトリックスに埋め込まれたネクステ
ル(Newtel)  (登録商標)繊維からなる被覆
繊維複合材と非被覆繊維複合材との曲げ強さの試験結果
を示している。本発明によるBN被覆繊維を有する複合
材(1)は、非被覆繊維を有する複合材(5)と比較し
て非常に大きな曲げ強さを有する。第2A図、第2B図
及び第2C図によって、それぞれ0.08ミクロンの厚
さのBN皮膜(第2A図)についての破壊面及び0.1
6ミクロンの厚さを有するBN皮膜(第2B図)(米国
特許第4.642,271号明細書に於て開示されてい
る。)の破壊面を比較する。前記両面は概ね円滑な破壊
面を示している。他方、第2C図は、0.14ミクロン
の厚さのBN皮膜を有する繊維について実質的に繊維の
プルアウトを示している。
FIG. 1 shows the results of testing the flexural strength of coated and uncoated fiber composites consisting of Newtel® fibers embedded in a glass matrix. The composite material (1) with BN coated fibers according to the invention has a much higher bending strength compared to the composite material (5) with uncoated fibers. Figures 2A, 2B and 2C show the fracture surface and 0.1 micron thickness for a 0.08 micron thick BN film (Fig. 2A), respectively.
Compare the fracture surface of a BN coating (FIG. 2B) (disclosed in U.S. Pat. No. 4,642,271) having a thickness of 6 microns. Both surfaces exhibit generally smooth fracture surfaces. On the other hand, FIG. 2C shows substantial fiber pullout for a fiber with a 0.14 micron thick BN coating.

この方法には窒化シリコン、ムライト、アルミナを主成
分とする繊維等の様々な繊維を使用することができ、米
国ミネソタ州の3Mカンパニーにより製造されているネ
クステル(Newtel)  (登録商標)480及び
スミトモ(Sumitomo)  (登録商標)A12
03が好都合である。ガラス、ガラス−セラミック、セ
ラミックス(CVI炭化珪素及び窒化シリコンを含む)
、熱可塑性材料、熱硬化性材料及び金属のようなマトリ
ックスを用いて上述した繊維を被包することができる。
A variety of fibers can be used in this method, including silicon nitride, mullite, and alumina-based fibers, including Newtel® 480 and Sumitomo fibers manufactured by 3M Company, Minnesota, USA. (Sumitomo) (registered trademark) A12
03 is convenient. Glass, glass-ceramic, ceramics (including CVI silicon carbide and silicon nitride)
Matrices such as thermoplastic materials, thermoset materials, and metals can be used to encapsulate the fibers described above.

更に、硼素と窒素とを含む様々な反応ガスを使用するこ
とができる。特に三塩化硼素(BCl2)及びアンモニ
ア(NH3)が適していることが証明されている。これ
らの反応ガスはキャリアガスによって反応器に導入され
る。
Additionally, various reactive gases can be used, including boron and nitrogen. In particular boron trichloride (BCl2) and ammonia (NH3) have proven suitable. These reaction gases are introduced into the reactor by a carrier gas.

一般にキャリアガスとして使用される水素(H2)は上
記工程に適していないことが判明した。
It has been found that hydrogen (H2), commonly used as carrier gas, is not suitable for the above process.

H2は繊維の劣化及び弱体化を引き起こす。アルゴン(
Ar )のような不活性ガスは、通常一般的な基準ガス
H2よりも繊維を劣化させない。この結果として、特に
Arの不活性ガスを本発明のキャリアガスとして使用し
た。
H2 causes fiber degradation and weakening. Argon(
Inert gases such as Ar) usually degrade the fibers less than the common reference gas H2. As a result of this, an inert gas, in particular Ar, was used as a carrier gas in the present invention.

次の表は、H2またはArをキャリアガスとして3分間
所定の温度に維持された被覆ネクステル(Nextel
) 480繊維の試験結果を示している。
The following table lists the coated Nextel samples maintained at a given temperature for 3 minutes with H2 or Ar as carrier gas.
) 480 fiber test results are shown.

(以下余白) パージガス 温度”CRT引張強さkgf’/cm2(
ksi)H2105010898(155) H210808578(122) H21100計測不可 Ar  1050 26577  (378)Ar  
1060 17648  (251)Ar  1100
  9070  (129)Ar  1150  68
90   (98)Ar  1200  5906  
 (84)本発明を以下の実施例を用いてより詳細に説
明する。
(Left below) Purge gas temperature "CRT tensile strength kgf'/cm2 (
ksi) H2105010898 (155) H210808578 (122) H21100 measurement impossible Ar 1050 26577 (378) Ar
1060 17648 (251) Ar 1100
9070 (129) Ar 1150 68
90 (98) Ar 1200 5906
(84) The present invention will be explained in more detail using the following examples.

実施例1 以下の方法を用いてネタステル480繊維」二にBN皮
膜が形成される。
Example 1 A BN coating is formed on Netaster 480 fibers using the following method.

(1)内部にネクステル繊維を配設した直径5゜08c
m(2,0インチ)(壁の厚さ0.32cm(1/8イ
ンチ))長さ10.16cm(4,0インチ)のグラフ
ァイト製サセプタを、直径7.62cm(3,0インチ
)長さ40. 64cm (16゜0 cm)のCVD
反応器内に装着する。(第3図参照) (2)前記反応器の圧力を200ミクロンにし、かつ温
度を1500°Cまで加熱する。
(1) Diameter 5°08c with Nextel fiber inside
m (2,0 in.) (wall thickness 0.32 cm (1/8 in.)) and 10.16 cm (4.0 in.) long graphite susceptor with a diameter of 7.62 cm (3.0 in.) long. Sa40. 64cm (16°0 cm) CVD
Install inside the reactor. (See Figure 3) (2) Bring the pressure of the reactor to 200 microns and heat the temperature to 1500°C.

(3)前記反応ガス及びキャリアガスを前記システムの
中に流通させる。即ち、BCl3を流量67 cc/分
で、NH3を67CC/分で、Arを約208CC/分
で3分間流通させる。約1.30ミクロンの厚さのBN
皮膜が形成される。
(3) flowing the reactant gas and carrier gas through the system; That is, BCl3 is flowed at a flow rate of 67 cc/min, NH3 is flowed at a flow rate of 67 cc/min, and Ar is flowed at a flow rate of about 208 cc/min for 3 minutes. approximately 1.30 micron thick BN
A film is formed.

実施例2 実施例1に於けるネタステル480繊維をスミトモの繊
維に置き換えて実施例1と同じパラメータで実行すると
、厚さ約O,SOミクロンの皮膜が得られる。
Example 2 If the Netastel 480 fiber in Example 1 is replaced with Sumitomo fiber and the same parameters as in Example 1 are used, a film with a thickness of about O, SO microns is obtained.

上記実施例1及び2に於て得られた皮膜の厚さは、BC
l3及びN H3の濃度を変更する(キャリアガスAr
の量を減少させる)ことによって、または運転時間を増
加することによって増大させることができる。
The thickness of the film obtained in Examples 1 and 2 above was BC
Change the concentration of l3 and N H3 (carrier gas Ar
) or by increasing the operating time.

以上本発明について実施例を用いて詳細に説明したが、
当業者にとって明らかなように本発明はその技術的範囲
内に於て様々な変形・変更を加えて実施することができ
る。
The present invention has been explained in detail using examples above, but
As will be apparent to those skilled in the art, the present invention can be implemented with various modifications and changes within its technical scope.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、複合材内の被覆繊維と非被覆繊維の温度対曲
げ強さを示す線図である。 第2A図乃至第2C図は、それぞれ異なるBN皮膜厚さ
の破壊断面に於ける組織の形状を示す拡大写真である。 第3図は、BN皮膜の形成に使用されるCVD反応器ア
センブリを示す構成図である。 1.5・・・曲線
FIG. 1 is a diagram showing the bending strength versus temperature of coated and uncoated fibers in a composite material. FIGS. 2A to 2C are enlarged photographs showing the shapes of structures in fracture cross sections of different BN film thicknesses. FIG. 3 is a block diagram showing a CVD reactor assembly used to form a BN film. 1.5...Curve

Claims (7)

【特許請求の範囲】[Claims] (1)少なくとも0.40ミクロンの厚さを有し、マト
リックス内に埋め込まれる繊維を包囲し、それによって
前記マトリックスと前記繊維との間の物理的結合及び化
学的相互作用の双方を妨げ、前記繊維/マトリックスシ
ステムに応力が作用すると繊維のプルアウト(pull
out)が生じるように破壊靭性をクラックディフレク
ション及びブランティング(blunting)を介し
て増大させたことを特徴とする窒化硼素皮膜。
(1) having a thickness of at least 0.40 microns and surrounding the fibers embedded within the matrix, thereby preventing both physical bonding and chemical interaction between the matrix and the fibers; Fiber pull-out occurs when stress is applied to the fiber/matrix system.
1. A boron nitride film characterized in that fracture toughness is increased through crack deflection and blunting so as to cause crack deflection and blunting.
(2)キャリアガスを使用し、反応ガスから生成される
窒化硼素皮膜をセラミックマトリックス内に埋め込まれ
る繊維に形成する方法であって、a.硼素と窒素とを含
む反応ガスを使用する工程と、 b.前記キャリアガスとして不活性ガスを使用する工程
と、 c.約1000℃と1300℃との間の温度で前記皮膜
を形成する工程とからなり、かつ 前記温度が前記窒化硼素皮膜の所望の純度と予想される
繊維の劣化とのバランスによって決定されることを特徴
とする窒化硼素皮膜形成方法。
(2) A method of forming a boron nitride coating produced from a reactive gas on fibers embedded within a ceramic matrix using a carrier gas, the method comprising: a. using a reactive gas comprising boron and nitrogen; b. using an inert gas as the carrier gas; c. forming the coating at a temperature between about 1000°C and 1300°C, and wherein the temperature is determined by a balance between the desired purity of the boron nitride coating and expected fiber degradation. Characteristic boron nitride film formation method.
(3)前記不活性ガスキャリアガスとしてアルゴンを使
用することを特徴とする第2請求項に記載の窒化硼素皮
膜形成方法。
(3) The method for forming a boron nitride film according to claim 2, characterized in that argon is used as the inert gas carrier gas.
(4)反応ガスとして三塩化硼素(BCl_3)とアン
モニア(NH_3)とを使用することを特徴とする第2
請求項に記載の窒化硼素皮膜形成方法。
(4) A second method characterized in that boron trichloride (BCl_3) and ammonia (NH_3) are used as reaction gases.
A boron nitride film forming method according to the claims.
(5)ムライト、窒化珪素、及びアルミナを主成分とす
る繊維からなる群から選択された繊維であって、その表
面に少なくとも約0.40ミクロンの厚さの窒化硼素(
BN)の皮膜が形成され、ガラス、ガラス−セラミック
、セラミックス(CVI炭化珪素及び窒化珪素を含む)
、熱硬化性材料、熱可塑性材料及び金属からなる群から
選択されるマトリックスに複合されることを特徴とする
被覆繊維。
(5) fibers selected from the group consisting of mullite, silicon nitride, and alumina-based fibers having at least about 0.40 micron thickness of boron nitride (
BN) films are formed on glass, glass-ceramics, and ceramics (including CVI silicon carbide and silicon nitride).
A coated fiber, characterized in that it is composited with a matrix selected from the group consisting of thermosetting materials, thermoplastic materials and metals.
(6)配列された窒化硼素被覆繊維とマトリックスとか
らなり、破壊時に繊維のプルアウトを生じることを特徴
とする窒化硼素被覆繊維を有する複合材料。
(6) A composite material having boron nitride-coated fibers, which is composed of arranged boron nitride-coated fibers and a matrix, and is characterized in that the fibers pull out when fractured.
(7)前記窒化硼素被覆繊維の皮膜の厚さが少なくとも
約0.40ミクロンであることを特徴とする第6請求項
に記載の複合材料。
7. The composite material of claim 6, wherein the coating thickness of the boron nitride coated fiber is at least about 0.40 microns.
JP2179400A 1989-07-07 1990-07-06 Boron nitride film, method for forming boron nitride film, boron nitride-coated fiber and composite material having boron-nitride- coated fiber Pending JPH03115140A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37737789A 1989-07-07 1989-07-07
US377,377 1989-07-07

Publications (1)

Publication Number Publication Date
JPH03115140A true JPH03115140A (en) 1991-05-16

Family

ID=23488872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2179400A Pending JPH03115140A (en) 1989-07-07 1990-07-06 Boron nitride film, method for forming boron nitride film, boron nitride-coated fiber and composite material having boron-nitride- coated fiber

Country Status (4)

Country Link
JP (1) JPH03115140A (en)
DE (1) DE4021243A1 (en)
FR (1) FR2649393A1 (en)
GB (1) GB2236540A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096659A (en) * 2004-09-28 2006-04-13 General Electric Co <Ge> Method for manufacturing high performance ceramic matrix composite material at low cost
CN105016631A (en) * 2015-07-20 2015-11-04 湖北菲利华石英玻璃股份有限公司 Boron nitride-coated quartz fiber preparation method
EP3527547A2 (en) 2014-12-12 2019-08-21 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198302A (en) * 1990-04-23 1993-03-30 Corning Incorporated Coated inorganic fiber reinforcement materials and ceramic composites comprising the same
US5842342A (en) * 1997-02-21 1998-12-01 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite internal combustion engine intake/exhaust port liners
US6593255B1 (en) 1998-03-03 2003-07-15 Ppg Industries Ohio, Inc. Impregnated glass fiber strands and products including the same
US8105690B2 (en) 1998-03-03 2012-01-31 Ppg Industries Ohio, Inc Fiber product coated with particles to adjust the friction of the coating and the interfilament bonding
US6419981B1 (en) 1998-03-03 2002-07-16 Ppg Industries Ohio, Inc. Impregnated glass fiber strands and products including the same
US6770176B2 (en) 2002-08-02 2004-08-03 Itn Energy Systems. Inc. Apparatus and method for fracture absorption layer
US8062746B2 (en) 2003-03-10 2011-11-22 Ppg Industries, Inc. Resin compatible yarn binder and uses thereof
US7867554B2 (en) 2005-01-06 2011-01-11 United Technologies Corporation Boron nitride coated fibers and composite articles containing same
US8242375B2 (en) 2008-09-18 2012-08-14 United Technologies Corporation Conductive emissions protection
US8524317B2 (en) * 2010-09-30 2013-09-03 United Technologies Corporation Composite article and method therefor
CN107326648A (en) * 2017-06-30 2017-11-07 长兴泓矿炉料有限公司 A kind of bibulous mullite fiber fire smothering blanket

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1358140A (en) * 1962-05-31 1964-04-10 Gen Electric High strength fused silica fibers
GB2014972B (en) * 1977-12-29 1982-04-28 Defence Secret Of State For Boron nitride fibre
US4481257A (en) * 1979-11-26 1984-11-06 Avco Corporation Boron coated silicon carbide filaments
ZA833150B (en) * 1982-05-28 1984-01-25 Int Standard Electric Corp Coating an optical fibre
FR2567874B1 (en) * 1984-07-20 1987-01-02 Europ Propulsion PROCESS FOR MANUFACTURING A COMPOSITE MATERIAL WITH REFRACTORY FIBROUS REINFORCEMENT AND CERAMIC MATRIX, AND STRUCTURE AS OBTAINED BY THIS PROCESS
US4642271A (en) * 1985-02-11 1987-02-10 The United States Of America As Represented By The Secretary Of The Navy BN coating of ceramic fibers for ceramic fiber composites
JPS61223183A (en) * 1985-03-04 1986-10-03 Res Dev Corp Of Japan Production of rhombohedral system boron nitride
JPS6212671A (en) * 1985-07-10 1987-01-21 株式会社日立製作所 Fiber reinforced ceramics
DE3568571D1 (en) * 1985-11-18 1989-04-13 Battelle Memorial Institute Method and apparatus for the on-line coating of silica based fibers with boron-nitride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096659A (en) * 2004-09-28 2006-04-13 General Electric Co <Ge> Method for manufacturing high performance ceramic matrix composite material at low cost
EP3527547A2 (en) 2014-12-12 2019-08-21 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material
US11142483B2 (en) 2014-12-12 2021-10-12 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material
CN105016631A (en) * 2015-07-20 2015-11-04 湖北菲利华石英玻璃股份有限公司 Boron nitride-coated quartz fiber preparation method

Also Published As

Publication number Publication date
FR2649393A1 (en) 1991-01-11
DE4021243A1 (en) 1991-01-17
GB9014729D0 (en) 1990-08-22
GB2236540A (en) 1991-04-10

Similar Documents

Publication Publication Date Title
US6291058B1 (en) Composite material with ceramic matrix and SiC fiber reinforcement, method for making same
US4472476A (en) Composite silicon carbide/silicon nitride coatings for carbon-carbon materials
JPH03115140A (en) Boron nitride film, method for forming boron nitride film, boron nitride-coated fiber and composite material having boron-nitride- coated fiber
US4980202A (en) CVD SiC matrix composites containing carbon coated fibers
US4487799A (en) Pyrolytic graphite pretreatment for carbon-carbon composites
US5558907A (en) Pseudo-porous fiber coating for toughened ceramic composite materials and method of producing same
JPH01501933A (en) Sealing coating for optical fiber
US20090088038A1 (en) Multilayered boron nitride/silicon nitride fiber coatings
US4610896A (en) Method for repairing a multilayer coating on a carbon-carbon composite
Kmetz et al. Synthesis, characterization, and tensile strength of CVI SiC/BN/SiC composites
Moore et al. Improved interface coatings for SiC fibers in ceramic composites
WO1996029445A1 (en) Chemical vapor deposition of rhenium on carbon substrates
May et al. CVD diamond-coated fibres
US5429870A (en) Boron carbide coated refractory fibers
Partridge et al. Chemical vapour deposited diamond fibres: manufacture and potential properties
JP4707854B2 (en) Method for producing high-strength SiC fiber / SiC composite material
Foltz SiC fibers for advanced ceramic composites
JPH0789777A (en) Improvement of oxidation stability of composite material containing fibrous reinforcement and glass, glass-ceramic or ceramic matrix
Kmetz et al. Silicon carbide/silicon and silicon carbide/silicon carbide composites produced by chemical vapor infiltration
GB2161151A (en) Composite SiC/Si3N4 coating for carbon-carbon materials
JPH0578977A (en) Production of surface-coated carbon fiber
JP2567455B2 (en) Coated carbon material
JPH05125660A (en) Thermally decomposed carbon composite material and heat insulating material for high-temperature furnace
JPH08253876A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
May et al. NM Everittº, PG Partridge º