FR2649393A1 - BORON NITRIDE COATING, PROCESS FOR PRODUCING SUCH A COATING ON FIBERS AND COMPOSITE MATERIAL COMPRISING FIBERS SO COATED - Google Patents

BORON NITRIDE COATING, PROCESS FOR PRODUCING SUCH A COATING ON FIBERS AND COMPOSITE MATERIAL COMPRISING FIBERS SO COATED Download PDF

Info

Publication number
FR2649393A1
FR2649393A1 FR9008623A FR9008623A FR2649393A1 FR 2649393 A1 FR2649393 A1 FR 2649393A1 FR 9008623 A FR9008623 A FR 9008623A FR 9008623 A FR9008623 A FR 9008623A FR 2649393 A1 FR2649393 A1 FR 2649393A1
Authority
FR
France
Prior art keywords
fibers
coating
matrix
boron nitride
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR9008623A
Other languages
French (fr)
Inventor
Willard H Sutton
Richard D Veltri
Francis S Galasso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of FR2649393A1 publication Critical patent/FR2649393A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/22Deposition from the vapour phase
    • C03C25/223Deposition from the vapour phase by chemical vapour deposition or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

La présente invention concerne un revêtement de nitrure de bore, ledit revêtement ayant une épaisseur d'au moins 0,40 micromètre, entourant des fibres destinées à être enrobées à l'intérieur d'une matrice. Ce revêtement est caractérisé en ce qu'il est suffisant pour inhiber à la fois la liaison physique et l'interaction chimique entre la matrice et les fibres, la résistance à la rupture étant augmentée par déviation et émoussement des criques, ce qui provoque une saillie des fibres, lorsqu'une contrainte est appliquée au système de matrice/fibres.The present invention relates to a boron nitride coating, said coating having a thickness of at least 0.40 microns, surrounding fibers to be coated within a matrix. This coating is characterized in that it is sufficient to inhibit both the physical bond and the chemical interaction between the matrix and the fibers, the tensile strength being increased by deflection and blunting of the cracks, causing protrusion. fibers, when stress is applied to the matrix / fiber system.

Description

La présente invention concerne le revêtement de fibres et spécialement leThe present invention relates to the coating of fibers and especially the

revêtement de fibres au moyen d'une couche épaisse de nitrure de bore ainsi que les fibres  fiber coating by means of a thick layer of boron nitride and the fibers

revêtues résultantes.resulting coatings.

Le renforcement, au moyen de fibres, de matériaux en verre, vitrocéramique, céramique, métal, thermodurcissables et thermoplastiques, peut augmenter leur résistance, en  The reinforcement, by means of fibers, of glass, glass-ceramic, ceramic, metal, thermosetting and thermoplastic materials, can increase their resistance,

élargissant ainsi l'éventail de leurs applications possibles..  thus expanding the range of their possible applications.

Cependant des forces de liaison élevées entre fibres et matrice, spécialement dans le cas de matériaux composites en céramique, peuvent provoquer une rupture de fragilité qui se traduit par des surfaces de rupture sensiblement planes, ne possédant pratiquement pas de fibres en saillie, et provoquant une diminution de la résistance à la rupture. Des fibres en saillie augmentent la distance traversée par les fissures amorces de rupture, augmentant leur surface  However, high bonding strengths between fibers and matrix, especially in the case of ceramic composite materials, can cause a brittle fracture which results in substantially planar failure surfaces having substantially no protruding fibers and causing decrease in breaking strength. Projecting fibers increase the distance traversed by the crack initiation cracks, increasing their surface

spécifique et la résistance du composite.  specific and the strength of the composite.

L'application d'un revêtement, par exemple de carbone, sur les fibres, préalablement à la formation d'une matrice, peut réduire la force de liaison entre fibres et matrice et l'interaction chimique, améliorant la résistance à la rupture. Les revêtements de carbone (voir par exemple les brevets US NO 4 425 407 et 4 731 298 cités en tant que référence) qui sont facilement oxydés et sont de bons conducteurs électriques, ont vu leur utilisation limitée dans  Applying a coating, for example carbon, to the fibers, prior to matrix formation, can reduce the bond strength between fibers and matrix and the chemical interaction, improving the breaking strength. Carbon coatings (see, e.g., U.S. Patent Nos. 4,425,407 and 4,731,298 cited as reference) which are readily oxidized and are good electrical conductors, have seen their limited use in

certaines conditions.certain conditions.

Le nitrure de bore, possédant une grande résistance électrique, une résistance excellente aux chocs thermiques et une non-combustibilité, est, de façon similaire, utilisé en tant que revêtement de fibres (voir le brevet US N 4 642 271 cité à titre de référence). En raison de sa structure plane hexagonale similaire au graphite, le nitrure de bore est similaire au carbone, sans présenter certaines des limitations de celuici, et il constitue un produit de remplacement intéressant. Les revêtements de nitrure de bore peuvent être appliqués en utilisant la technique DCV (dépôt chimique sous vapeur) dans des domaines de température d'environ 850"C à environ 2200 C. Cependant des revêtements stoechiométriques en nitrure de bore n'ont été obtenus qu'à des températures de dépôt supérieures à 17000C, températures qui, habituellement, provoquent une dégradation significative de la fibre. Lorsque les fibres sont chauffées à de telles températures, refroidies, et testées à température ambiante, elles ne conservent pas leur résistance originelle. De plus les revêtements en nitrure de bore, tels que ceux réalisés suivant l'art antérieur, sont des revêtements fins, généralement inférieurs à 0,35 micromètre, et des revêtements épais sont seulement obtenus à des températures au-dessus de 1400"C (brevet US 4 481 257 cité à titre de référence). En conséquence on continue les recherches pour améliorer les  Boron nitride, having high electrical resistance, excellent thermal shock resistance and non-combustibility, is similarly used as a fiber coating (see US Patent No. 4,642,271 cited for reference ). Because of its hexagonal planar structure similar to graphite, boron nitride is similar to carbon without any of its limitations, and it is an interesting substitute. Boron nitride coatings can be applied using DCV (Chemical Vapor Deposition) in temperature ranges from about 850 ° C to about 2200 ° C. However, stoichiometric boron nitride coatings have only been obtained on at deposition temperatures above 17000C, temperatures which usually cause significant fiber degradation When the fibers are heated to such temperatures, cooled, and tested at room temperature, they do not retain their original strength. more boron nitride coatings, such as those made in the prior art, are thin coatings, generally less than 0.35 micron, and thick coatings are only obtained at temperatures above 1400 ° C (patent US 4,481,257 cited for reference). As a result, research is continuing to improve

revêtements de fibres et les méthodes d'application.  fiber coatings and methods of application.

La présente invention concerne le revêtement de fibres avec du nitrure de bore afin d'augmenter la résistance à la rupture et de diminuer les réactions chimiques entre les fibres et la matrice. Les fibres sont placées à l'intérieur d'un réacteur DCV et sont chauffées. Les gaz réactifs, contenant à la fois du bore et de l'azote, sont introduits dans le réacteur au moyen d'un gaz vecteur. Les gaz réagissent pour produire du nitrure de bore, le dépôt se réalise, et un revêtement épais (c'est-àdire supérieur à 0,40 micromètre) de nitrure de bore est formé autour des fibres; cette épaisseur étant nécessaire pour obtenir la résistance désirée et diminuer la réaction chimique entre les fibres et la matrice. On décrira ci-après, à titre d'exemple non limitatif, une forme d'exécution de ia présente invention, en référence au dessin annexé sur lequel: La figure 1 représente un graphique de la variation de la résistance à la flexion, en fonction de la température, de fibres revêtues et non-revêtues à l'intérieur d'un  The present invention relates to the coating of fibers with boron nitride in order to increase the tensile strength and to decrease the chemical reactions between the fibers and the matrix. The fibers are placed inside a DCV reactor and are heated. The reactive gases, containing both boron and nitrogen, are introduced into the reactor by means of a carrier gas. The gases react to produce boron nitride, deposition occurs, and a thick (ie, greater than 0.40 micron) coating of boron nitride is formed around the fibers; this thickness being necessary to obtain the desired resistance and to reduce the chemical reaction between the fibers and the matrix. One embodiment of the present invention will be described hereinafter by way of nonlimiting example, with reference to the appended drawing, in which: FIG. 1 represents a graph of the variation of the bending strength, as a function of temperature, coated and uncoated fibers inside a

matériau composite.composite material.

Les figures 2A,2B et 2C représentent une comparaison des surfaces de rupture pour différentes épaisseurs du  FIGS. 2A, 2B and 2C show a comparison of the fracture surfaces for different thicknesses of the

revêtement en nitrure de bore.boron nitride coating.

La figure 3 représente un ensemble réacteur DCV  FIG. 3 represents a DCV reactor assembly

utilisé dans l'application du revêtement en nitrure de bore.  used in the application of boron nitride coating.

La rupture de fragilité est un problème important dans les matériaux composites en céramique constitués de fibres non-revêtues, ou revêtues très finement, enrobées dans une matrice de céramique. La fragilité des matériaux composites provoque des criques, provenant de fissures dues aux contraintes, qui se propagent en ligné droite à travers le matériau composite. Cependant, si les fibres à l'intérieur de la matrice sont suffisamment revêtues de nitrure de bore, le revêtement de nitrure de bore augmente la résistance à la rupture, par une déviation et un émoussement des criques, empêchant la rupture de fragilité. L'application d'une contrainte au matériau composite comportant des fibres revêtues de nitrure de bore provoque une saillie des fibres, a l'opposé d'une surface de rupture lisse. Cependant tous les revêtements de nitrure de bore n'aboutissent pas à une saillie des fibres. En effet si l'épaisseur du revêtement de nitrure de bore se situe autour ou au-dessous de 0,30 micromètre, il en résulte une surface de fracture lisse, similaire à celle des matériaux composites contenant des  Brittle fracture is a significant problem in ceramic composite materials made of uncoated fibers, or very finely coated, embedded in a ceramic matrix. The fragility of composite materials causes cracks, resulting from cracks due to stresses, which propagate in a straight line through the composite material. However, if the fibers inside the matrix are sufficiently coated with boron nitride, the boron nitride coating increases the breaking strength, by deflection and blunting of the cracks, preventing breakage of brittleness. The application of a stress to the composite material comprising boron nitride-coated fibers causes the fibers to protrude away from a smooth fracture surface. However, all boron nitride coatings do not result in a protrusion of the fibers. Indeed, if the thickness of the boron nitride coating is around or below 0.30 micrometer, a smooth fracture surface results, similar to that of composite materials containing

fibres non-revêtues.uncoated fibers.

La figure 1 représente la variation de la résistance à la flexion de matériaux composites à fibres connues sous le nom de "NEXTEL", revêtues et non-revêtues, enrobées dans une matrice de verre. Le matériau composite comportant des fibres revêtues de nitrure de bore suivant l'invention (courbe 1), possède une résistance à la flexion significativemenit plus grande que celle du matériau composite comportant des fibres  Figure 1 shows the variation in flexural strength of fiber composite materials known as "NEXTEL", coated and uncoated, embedded in a glass matrix. The composite material comprising boron nitride-coated fibers according to the invention (curve 1) has a significantly greater flexural strength than that of the composite material comprising fibers.

non-revêtues ( courbe 5).uncoated (curve 5).

Les figures 2A,2B, et 2C montrent une comparaison de surfaces de rupture pour un revêtement de nitrure de bore d'une épaisseur de 0,08 micromètre (figure 2A) et de 0,16 micromètre (figure 2B) (comme revendiqué dans le brevet US N04 642 271). Les deux surfaces montrent des surfaces de rupture relativement lisses. La figure 2C, quant à elle, montre une saillie sensible des fibres pourvues d'un revêtement de nitrure de bore d'une épaisseur de 1,14 micromètre. Différentes fibres; telles que des fibres à base de nitrure de silicium, de mullite et d'alumine, peuvent être utilisées dans ce procédé, des fibres en "Nextel 480" produites par la Société 3M, Co., MN et A1203 de SUMITOMO étant préférées. Des matrices telles que des matrices de verre, vitrocéramique, céramique, (incluant le carbure de silicium CVI et le nitrure de silicium), de matériaux thermoplastiques, de matériaux thermodurcissables et de métal, peuvent être utilisées pour enfermer les fibres  FIGS. 2A, 2B, and 2C show a comparison of fracture surfaces for a boron nitride coating with a thickness of 0.08 micrometer (FIG. 2A) and 0.16 micrometer (FIG. 2B) (as claimed in FIG. U.S. Patent No. 4,642,271). Both surfaces show relatively smooth fracture surfaces. As for FIG. 2C, it shows a sensitive projection of the fibers provided with a boron nitride coating with a thickness of 1.14 microns. Different fibers; such as silicon nitride, mullite and alumina fibers can be used in this process, "Nextel 480" fibers produced by SUMITOMO Company 3M, Co., MN and A1203 being preferred. Matrices such as glass, glass-ceramic, ceramic matrices (including CVI silicon carbide and silicon nitride), thermoplastic materials, thermosetting materials and metal can be used to enclose the fibers.

mentionnées précédemment.previously mentioned.

De plus, différents gaz réactifs contenant du bqre et de l'azote peuvent également être utilisés; BC13 (trichlorure de bore) et NH3 (ammoniac) ont démontré leur capacité. Ces gaz réactifs sont introduits dans le réacteur  In addition, different reactive gases containing beer and nitrogen may also be used; BC13 (boron trichloride) and NH3 (ammonia) have demonstrated their capacity. These reactive gases are introduced into the reactor

par un gaz vecteur.by a vector gas.

L'hydrogène (H2), souvent utilisé comme gaz vecteur, a démontré son incapacité pour ce procédé. L'hydrogène provoque une dégradation et un affaiblissement des fibres. Un gaz inerte, tel que de l'argon (Ar), dégrade habituellement moins les fibres que le gaz habituel H2. Il en résulte qu'un gaz inerte, l'argon en particulier, a été utilisé comme gaz  Hydrogen (H2), often used as a carrier gas, has demonstrated its inability for this process. Hydrogen causes degradation and weakening of the fibers. An inert gas, such as argon (Ar), usually degrades the fibers less than the usual H2 gas. As a result, an inert gas, argon in particular, has been used as a gas

vecteur pour cette invention.vector for this invention.

Le tableau suivant montre les résultats de fibres de "Nextel 480" revêtues portées à la température indiquée  The following table shows the results of coated "Nextel 480" fibers at the specified temperature

pendant 3 minutes avec H2 ou Ar comme gaz vecteur.  for 3 minutes with H2 or Ar as carrier gas.

à____________at____________

Gaz vecteur: Temp.OC: Résistance à la traction RT (MPa)  Vector gas: Temp.OC: RT tensile strength (MPa)

H2: 1050: 1068H2: 1050: 1068

H2: 1080: 841H2: 1080: 841

H2: 1100: trop faible pour être testé Ar: 1050: 2604 Ar: 1060: 1729 Ar: 1100: 889 Ar: 1150: 675 Ar: 1200: 579 La présente invention sera clarifiée par référence  H2: 1100: too weak to be tested Ar: 1050: 2604 Ar: 1060: 1729 Ar: 1100: 889 Ar: 1150: 675 Ar: 1200: 579 The present invention will be clarified by reference

aux exemples ci-après.to the examples below.

Exemple 1:Example 1

5. La procédure suivante a été utilisée (figure 3) pour former un revêtement en nitrure de bore sur des fibres "Nextel 480", 1. Un mandrin de graphite 10, de 5,8 cm de diamètre (0,3 mm d'épaisseur de paroi) et 10, 2 cm de long, qui comporte des fibres "Nextel" 11 disposées à l'intérieur, est chargé dans un réacteur DCV 12 de 7,6 cm de diamètre et de 40,6 cm de longueur (voir  5. The following procedure was used (FIG. 3) to form a boron nitride coating on "Nextel 480" fibers. 1. A graphite mandrel 10, 5.8 cm in diameter (0.3 mm diameter wall thickness) and 10.2 cm long, which has "Nextel" fibers 11 disposed therein, is loaded into a DCV reactor 12 7.6 cm in diameter and 40.6 cm in length (see FIG.

figure 3).Figure 3).

2. Le réacteur est mis sous pression à 27 Pa, par un générateur de vide 13 et chauffé à  2. The reactor is pressurized to 27 Pa, by a vacuum generator 13 and heated to

10500C.10500C.

3. Les gaz réactif et vecteur sont amenés à s'écouler dans le réacteur 12, en passant à travers des vannes à trois voies 14, des débitmètres 15 et des vannes à aiguille 16: BC13 à 67 cm3/min, NH3 à 67 cm3/min et Ar à approximativement 208 cm3/min, pendant 3 minutes, ce qui produit un revêtement de nitrure de bore d'approximativement 1,3  3. The reactant and carrier gases are allowed to flow into the reactor 12, passing through three-way valves 14, flow meters 15 and needle valves 16: BC13 at 67 cc / min, NH3 at 67 cc / min and Ar at approximately 208 cm3 / min, for 3 minutes, resulting in a coating of approximately 1.3 boron nitride

micromètre d'épaisseur.micrometer thickness.

Exemple 2:Example 2

Les paramètres donnés dans l'exemple 1 sont suivis, et en changeant la fibre "Nextel 480" pour une fibre "Sumitomo", on peut obtenir un revêtement d'approximativement  The parameters given in Example 1 are followed, and by changing the fiber "Nextel 480" for a fiber "Sumitomo", it is possible to obtain a coating of approximately

0,80 micromètre d'épaisseur.0.80 micrometer thick.

L'épaisseur du revêtement, donnée dans les exemples 1 et 2, peut être augmentée en modifiant la concentration de BC13 et de NE3 (diminution de la quantité de gaz vecteur Ar)  The thickness of the coating, given in Examples 1 and 2, can be increased by modifying the concentration of BC13 and NE3 (reduction of the amount of carrier gas Ar)

ou en augmentant le temps de réaction.  or by increasing the reaction time.

Claims (7)

REVENDICATIONS 1.- Revêtement de nitrure de bore, ledit revêtement ayant une épaisseur d'au moins 0,40 micromètre, entourant des fibres destinées à être enrobées à l'intérieur d'une matrice, caractérisé en ce que ce revêtement est suffisant pour inhiber à la fois la liaison physique et l'interaction chimique entre la matrice et les fibres, la résistance à la rupture étant augmentée par déviation et émoussement des criques, ce qui provoque une saillie des fibres, lorsqu'une  1.- coating with boron nitride, said coating having a thickness of at least 0.40 micrometer, surrounding fibers intended to be coated inside a matrix, characterized in that this coating is sufficient to inhibit both the physical bonding and the chemical interaction between the matrix and the fibers, the breaking strength being increased by deflection and blunting of the cracks, which causes a protrusion of the fibers, when a contrainte est appliquée au système de matrice/fibres.  stress is applied to the matrix / fiber system. 2.- Procédé de fabrication d'un revêtement de nitrure de bore sur des fibres destinées à être enrobées -à l'intérieur d'une matrice de céramique, en-utilisant un gaz vecteur, ce revêtement étant produit par des gaz réactifs, caractérisé en ce qu'il comprend les étapes consistant à utiliser les gaz réactifs, lesdits gaz contenant du bore et de l'azote, à utiliser un gaz inerte comme gaz vecteur, et à appliquer le revêtement à une température comprise entre environ 1000 C et 13000C, la température étant déterminée par un équilibre entre la pureté souhaitée du revêtement en  2. A process for producing a boron nitride coating on fibers intended to be coated inside a ceramic matrix, using a carrier gas, this coating being produced by reactive gases, characterized in that it comprises the steps of using the reactive gases, said boron-containing gases and nitrogen, to use an inert gas as carrier gas, and to apply the coating at a temperature of between about 1000 C and 13000C , the temperature being determined by a balance between the desired purity of the coating in nitrure de bore et la dégradation possible de la fibre.  boron nitride and the possible degradation of the fiber. 3.- Procédé suivant la revendication 2 caractérisé en  3. A process according to claim 2 characterized in ce qu'on utilise de l'argon comme gaz vecteur.  argon is used as the carrier gas. 4.- Procédé suivant la revendication 2 caractérisé en ce que l'on utilise du trichlorure de bore (BC13) et de  4. A process according to claim 2 characterized in that boron trichloride (BC13) and l'ammoniac (NH3) comme gaz réactifs.  ammonia (NH3) as reagent gases. 5.- Fibre sélectionnée parmi un groupe comprenant des fibres à base de mullite, de nitrure de silicium et d'alumine, ladite fibre comportant, sur sa surface, un revêtement de nitrure de bore d'au moins 0,40 micromètre d'épaisseur environ, ladite fibre revêtue étant enrobée dans une matrice sélectionnée parmi le groupe comprenant des matériaux en verre, vitrocéramique, céramique (comprenant le carbure de silicium CVI, et le nitrure de silicium), les matériaux thermodurcissables, les matériaux thermoplastiques,  5. A fiber selected from a group comprising mullite-based fibers, silicon nitride and alumina, said fiber comprising, on its surface, a coating of boron nitride at least 0.40 micrometer thick. approximately, said coated fiber being embedded in a matrix selected from the group consisting of glass, glass-ceramic, ceramic materials (including CVI silicon carbide, and silicon nitride), thermosetting materials, thermoplastic materials, et les matériaux métalliques.and metallic materials. 6.- Matériau composite comprenant des fibres recouvertes de nitrure de bore, lesdites fibres étant disposées en réseau, et une matrice, ledit composite  6. Composite material comprising fibers coated with boron nitride, said fibers being arranged in a network, and a matrix, said composite montrant, au cours d'une rupture, une saillie de fibres.  showing, during a break, a protrusion of fibers. 7.- Matériau composite suivant la revendication 6 caractérisé en ce que l'épaisseur du revêtement de nitrure de  7. Composite material according to claim 6, characterized in that the thickness of the nitride coating of * bore est d'au moins 0,40 micromètre.  * boron is at least 0.40 micrometer.
FR9008623A 1989-07-07 1990-07-06 BORON NITRIDE COATING, PROCESS FOR PRODUCING SUCH A COATING ON FIBERS AND COMPOSITE MATERIAL COMPRISING FIBERS SO COATED Pending FR2649393A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37737789A 1989-07-07 1989-07-07

Publications (1)

Publication Number Publication Date
FR2649393A1 true FR2649393A1 (en) 1991-01-11

Family

ID=23488872

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9008623A Pending FR2649393A1 (en) 1989-07-07 1990-07-06 BORON NITRIDE COATING, PROCESS FOR PRODUCING SUCH A COATING ON FIBERS AND COMPOSITE MATERIAL COMPRISING FIBERS SO COATED

Country Status (4)

Country Link
JP (1) JPH03115140A (en)
DE (1) DE4021243A1 (en)
FR (1) FR2649393A1 (en)
GB (1) GB2236540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453704A2 (en) * 1990-04-23 1991-10-30 Corning Incorporated Coated silicon nitride fiber reinforcement materials and glass or glass-ceramic composites comprising the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842342A (en) * 1997-02-21 1998-12-01 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite internal combustion engine intake/exhaust port liners
US8105690B2 (en) 1998-03-03 2012-01-31 Ppg Industries Ohio, Inc Fiber product coated with particles to adjust the friction of the coating and the interfilament bonding
US6593255B1 (en) 1998-03-03 2003-07-15 Ppg Industries Ohio, Inc. Impregnated glass fiber strands and products including the same
US6419981B1 (en) 1998-03-03 2002-07-16 Ppg Industries Ohio, Inc. Impregnated glass fiber strands and products including the same
US6770176B2 (en) 2002-08-02 2004-08-03 Itn Energy Systems. Inc. Apparatus and method for fracture absorption layer
US8062746B2 (en) 2003-03-10 2011-11-22 Ppg Industries, Inc. Resin compatible yarn binder and uses thereof
EP1640352B1 (en) * 2004-09-28 2007-05-30 General Electric Company Low cost manufacturing process for high performance ceramic matrix composites
US7867554B2 (en) * 2005-01-06 2011-01-11 United Technologies Corporation Boron nitride coated fibers and composite articles containing same
US8242375B2 (en) 2008-09-18 2012-08-14 United Technologies Corporation Conductive emissions protection
US8524317B2 (en) * 2010-09-30 2013-09-03 United Technologies Corporation Composite article and method therefor
CA2974485C (en) 2014-12-12 2024-01-16 Kyoto University Silicon carbide fiber reinforced silicon carbide composite material
CN105016631A (en) * 2015-07-20 2015-11-04 湖北菲利华石英玻璃股份有限公司 Boron nitride-coated quartz fiber preparation method
CN107326648A (en) * 2017-06-30 2017-11-07 长兴泓矿炉料有限公司 A kind of bibulous mullite fiber fire smothering blanket

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2505009A1 (en) * 1974-02-07 1975-08-14 Ciba Geigy Ag PROCESS FOR COATING INORGANIC SUBSTRATES WITH CARBIDES, NITRIDES AND / OR CARBONITRIDES
EP0172082A1 (en) * 1984-07-20 1986-02-19 SOCIETE EUROPEENNE DE PROPULSION (S.E.P.) Société Anonyme dite: Method of making a composite material with refractory fibre reinforcement and ceramic matrix, and structure obtained thereby
EP0209320A1 (en) * 1985-07-10 1987-01-21 Hitachi, Ltd. Fiber-reinforced ceramics
US4642271A (en) * 1985-02-11 1987-02-10 The United States Of America As Represented By The Secretary Of The Navy BN coating of ceramic fibers for ceramic fiber composites
EP0216932A1 (en) * 1985-03-04 1987-04-08 Research Development Corporation of Japan Rhombohedral polycrystalline boron nitride and process for its production
EP0222960A1 (en) * 1985-11-18 1987-05-27 Battelle Memorial Institute Method and apparatus for the on-line coating of silica based fibers with boron-nitride

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1358140A (en) * 1962-05-31 1964-04-10 Gen Electric High strength fused silica fibers
GB2014972B (en) * 1977-12-29 1982-04-28 Defence Secret Of State For Boron nitride fibre
US4481257A (en) * 1979-11-26 1984-11-06 Avco Corporation Boron coated silicon carbide filaments
ZA833150B (en) * 1982-05-28 1984-01-25 Int Standard Electric Corp Coating an optical fibre

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2505009A1 (en) * 1974-02-07 1975-08-14 Ciba Geigy Ag PROCESS FOR COATING INORGANIC SUBSTRATES WITH CARBIDES, NITRIDES AND / OR CARBONITRIDES
EP0172082A1 (en) * 1984-07-20 1986-02-19 SOCIETE EUROPEENNE DE PROPULSION (S.E.P.) Société Anonyme dite: Method of making a composite material with refractory fibre reinforcement and ceramic matrix, and structure obtained thereby
US4642271A (en) * 1985-02-11 1987-02-10 The United States Of America As Represented By The Secretary Of The Navy BN coating of ceramic fibers for ceramic fiber composites
EP0216932A1 (en) * 1985-03-04 1987-04-08 Research Development Corporation of Japan Rhombohedral polycrystalline boron nitride and process for its production
EP0209320A1 (en) * 1985-07-10 1987-01-21 Hitachi, Ltd. Fiber-reinforced ceramics
EP0222960A1 (en) * 1985-11-18 1987-05-27 Battelle Memorial Institute Method and apparatus for the on-line coating of silica based fibers with boron-nitride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, File supplier JAPS. &JP-A-62070533(Toyota Motor Co.)01.04.1987 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453704A2 (en) * 1990-04-23 1991-10-30 Corning Incorporated Coated silicon nitride fiber reinforcement materials and glass or glass-ceramic composites comprising the same
EP0453704A3 (en) * 1990-04-23 1993-03-10 Corning Incorporated Coated silicon nitride fiber reinforcement materials and glass or glass-ceramic composites comprising the same

Also Published As

Publication number Publication date
GB2236540A (en) 1991-04-10
JPH03115140A (en) 1991-05-16
DE4021243A1 (en) 1991-01-17
GB9014729D0 (en) 1990-08-22

Similar Documents

Publication Publication Date Title
FR2649393A1 (en) BORON NITRIDE COATING, PROCESS FOR PRODUCING SUCH A COATING ON FIBERS AND COMPOSITE MATERIAL COMPRISING FIBERS SO COATED
EP0493148B1 (en) Composite material with refractory fibrous reinforcement and its process of production
CA1337032C (en) Hermetically sealed optical fibers
JP4024865B2 (en) COMPOSITE MATERIAL CONTAINING CERAMIC MATRIX AND SiC FIBER REINFORCEMENT AND METHOD FOR PRODUCING THE SAME
EP0172082B1 (en) Method of making a composite material with refractory fibre reinforcement and ceramic matrix, and structure obtained thereby
EP0359614B1 (en) Composite material containing reinforcing carbon fibres, and process for its production
US4735856A (en) Hermetic coatings for optical fiber and product
FR2611198A1 (en) COMPOSITE MATERIAL WITH MATRIX AND CARBON REINFORCING FIBERS AND METHOD FOR MANUFACTURING THE SAME
WO1993013033A1 (en) Process for protecting products made of composite material containing carbon against oxydation, and products obtained by said pro cess
JPS58184103A (en) Coating film for optical fiber
EP0427629B1 (en) Method of producing a composite material, protected against oxydation, and material obtained by this procedure
US4481257A (en) Boron coated silicon carbide filaments
US4319803A (en) Optical fiber coating
EP0598631A1 (en) Oxidation-resistant carbon-carbon composite material with SiC-doped matrix and method of producing said material
FR2697518A1 (en) Method and system for protection against oxidation of an oxidizable material.
FR2675141A1 (en) Composite material with a ceramic matrix with lamellar interphase between refractory reinforcing fibres and matrix, and process for its manufacture
US5429870A (en) Boron carbide coated refractory fibers
Kmetz et al. Silicon carbide/silicon and silicon carbide/silicon carbide composites produced by chemical vapor infiltration
JPH0789777A (en) Improvement of oxidation stability of composite material containing fibrous reinforcement and glass, glass-ceramic or ceramic matrix
JP2567455B2 (en) Coated carbon material
FR2825699A1 (en) Densification and anti-corrosion treatment of a thermostructural composite material includes chemical vapor phase infiltration with carbon and/or silicon carbide molecules
JPH01167290A (en) Method for carrying out oxidation resistance traeatment of carbon material
FR2643088A1 (en) Process for coating based on an element of metallic type of a substrate made of ceramic oxide and ceramic oxides thus coated
JPS6350343A (en) Heating element for spinning
JPS62215068A (en) Surface coated carbon fiber and its production