FR2675141A1 - Composite material with a ceramic matrix with lamellar interphase between refractory reinforcing fibres and matrix, and process for its manufacture - Google Patents
Composite material with a ceramic matrix with lamellar interphase between refractory reinforcing fibres and matrix, and process for its manufacture Download PDFInfo
- Publication number
- FR2675141A1 FR2675141A1 FR9104304A FR9104304A FR2675141A1 FR 2675141 A1 FR2675141 A1 FR 2675141A1 FR 9104304 A FR9104304 A FR 9104304A FR 9104304 A FR9104304 A FR 9104304A FR 2675141 A1 FR2675141 A1 FR 2675141A1
- Authority
- FR
- France
- Prior art keywords
- matrix
- interphase
- reinforcement
- fibers
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62857—Coating fibres with non-oxide ceramics
- C04B35/6286—Carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62897—Coatings characterised by their thickness
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/614—Gas infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9669—Resistance against chemicals, e.g. against molten glass or molten salts
- C04B2235/9684—Oxidation resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Ceramic Products (AREA)
Abstract
Description
Matériau composite à matrice céramique avec interphase lamellaire entre fibres de renfort réfractaires et matrice, et procédé pour sa fabrication.Composite material with ceramic matrix with lamellar interphase between refractory reinforcing fibers and matrix, and process for its production.
La présente invention concerne les matériaux composites à matrice céramique comprenant un renfort fibreux constitué de fibres réfractaires et densifié par la matrice céramique. The present invention relates to composite materials with a ceramic matrix comprising a fibrous reinforcement made of refractory fibers and densified by the ceramic matrix.
Plus particulièrement, L'invention concerne des matériaux composites de ce type dans lesquels une couche intermédiaire, ou interphase, est formée entre les fibres du renfort et la matrice céramique. More particularly, the invention relates to composite materials of this type in which an intermediate layer, or interphase, is formed between the fibers of the reinforcement and the ceramic matrix.
Dans un matériau composite à renfort fibreux, l'obtention de résistance en traction élevée demande en principe une liaison relativement forte entre Les fibres du renfort et la matrice afin d'assurer une bonne transmission au renfort des efforts appliqués au matériau. Or, par sa nature, une matrice céramique a une faible résistance aux chocs et une grande sensibilité à l'entaille. In a composite material with fibrous reinforcement, obtaining high tensile strength in principle requires a relatively strong bond between the fibers of the reinforcement and the matrix in order to ensure good transmission to the reinforcement of the forces applied to the material. However, by its nature, a ceramic matrix has a low impact resistance and a high sensitivity to notching.
L'obtention d'un matériau composite à matrice céramique peu sensible aux chocs et à la propagation des fissures demande alors en principe une Liaison relativement faible entre les fibres et la matrice, faute de quoi une fissure atteignant une fibre après titre propagée dans la matrice continue sa propagation dans la fibre et la rompt.Obtaining a composite material with a ceramic matrix that is not very sensitive to shocks and to the propagation of cracks then in principle requires a relatively weak bond between the fibers and the matrix, failing which a crack reaching a fiber after title propagated in the matrix. continues to spread through the fiber and breaks it.
Pour résoudre ce dilemme, il a été proposé dans le document EP-A-O 172 082 de former entre les fibres du renfort et la matrice une couche intermédiaire en un matériau à structure lamel- laire. Cette couche intermédiaire, ou interphase, adhère aux fibres et à la matrice et assure ainsi la transmission des efforts entre la matrice et le renfort fibreux. Toutefois, du fait de sa nature lamellaire, L'interphase présente une capacité de déformation en cisaillement permettant une relaxation des contraintes à fond de fissure lorsqu'une fissure, s'étant propagée à travers la matrice, atteint L'interphase. Si le niveau de contrainte à fond de fissure est inférieur à la contrainte à rupture locale de L'interphase, la fissure est arretée.Sinon, la fissure se propage (avec absorption de l'énergie de fissuration), mais cette fissure, compte tenu des propriétés anisotropes de L'interphase, peut être déviée et se propager sans induire nécessairement la rupture de La fibre adjacente à L'interphase. To resolve this dilemma, it has been proposed in document EP-A-O 172 082 to form between the fibers of the reinforcement and the matrix an intermediate layer of a material with a laminar structure. This intermediate layer, or interphase, adheres to the fibers and to the matrix and thus ensures the transmission of the forces between the matrix and the fibrous reinforcement. However, due to its lamellar nature, the interphase has a shear deformation capacity allowing stress relaxation at the bottom of the crack when a crack, having propagated through the matrix, reaches the interphase. If the stress level at bottom of crack is lower than the local breaking stress of Interphase, the crack is stopped.Otherwise, the crack propagates (with absorption of the energy of cracking), but this crack, taking into account Anisotropic properties of the interphase, can be deviated and propagate without necessarily inducing the rupture of the fiber adjacent to the interphase.
Dans le document EP-A-O 172 082, te concept d'interphase lamellaire est mis en oeuvre, avec de très bons résultats, au moyen de pyrocarbone ou de nitrure de bore. In document EP-A-O 172 082, the concept of lamellar interphase is implemented, with very good results, using pyrocarbon or boron nitride.
Toutefois, pour des applications à températures élevées, le pyrocarbone et le nitrure de bore présentent un inconvénient consistant dans leur faible résistance à l'oxydation. However, for applications at high temperatures, pyrocarbon and boron nitride have a drawback consisting in their low resistance to oxidation.
Aussi, la présente invention a-t-elle pour but de proposer un matériau composite à matrice céramique muni d'une nouvelle interphase lamellaire ayant une tenue améliorée à l'oxydation aux températures élevées. The object of the present invention is therefore to propose a composite material with a ceramic matrix provided with a new lamellar interphase having improved resistance to oxidation at high temperatures.
Ce but est atteint du fait que, conformément à t'inven- tion, L'interphase lamellaire entre fibres du renfort et matrice céramique est constituée d'un carbure de silicium et de titane contenant majoritairement le composé Ti3SiC2, que l'on appellera par la suite "Ti SiC "
Dans L'interphase lamellaire, te composé ternaire "Ti3SiC25 peut être associé à des composés tels que carbure de titane ou siliciures de titane, présents en tant qu'espèces minori taies. This object is achieved by the fact that, in accordance with the invention, the lamellar interphase between fibers of the reinforcement and ceramic matrix consists of a silicon carbide and titanium containing mainly the compound Ti3SiC2, which will be called by the "Ti SiC" suite
In the lamellar interphase, the ternary compound "Ti3SiC25 can be associated with compounds such as titanium carbide or titanium silicides, present as minor species.
L'invention a aussi pour but de fournir un procédé permettant La formation de cette interphase lamellaire "Ti3SiC2". The invention also aims to provide a method for the formation of this lamellar interphase "Ti3SiC2".
Le carbure de titane et de silicium "Ti3SiC2" a une structure en "feuillets" très anisotrope lui conférant Les qualités mécaniques nécessaires pour constituer une interphase lamellaire. The titanium and silicon carbide "Ti3SiC2" has a very anisotropic "sheet" structure giving it the mechanical qualities necessary to constitute a lamellar interphase.
En outre, "Ti3SiC2" peut supporter des hautes tempéra o tures jusqu'à 1 000 C en mi lieu oxydant sans dégradation substan- tielle. Ainsi, dans le cas d'un matériau composite dont le renfort et la matrice sont en un matériau, tel qu'une céramique, résistant à l'oxydation, l'utilisation d'une interphase en "Ti3SiC2" peut permettre d'éviter l'adjonction d'une protection antioxydation pour des températures d'utilisation n'excédant pas 1 0000C environ. Il en est ainsi, en particulier, pour un matériau composite de type SiC/SiC (fibres du renfort et matrice essentiel liement en carbure de silicium). In addition, "Ti3SiC2" can withstand high temperatures up to 1000 C in an oxidizing environment without substantial degradation. Thus, in the case of a composite material of which the reinforcement and the matrix are made of a material, such as a ceramic, resistant to oxidation, the use of an interphase made of "Ti3SiC2" can make it possible to avoid the addition of antioxidant protection for operating temperatures not exceeding approximately 1 000C. This is the case, in particular, for a composite material of the SiC / SiC type (reinforcing fibers and essential matrix bonding in silicon carbide).
A titre de comparaison, le pyrocarbone de type Laminaire et le nitrure de bore ont des températures Limites d'utilisation en mi lieu oxydant respectivement égales à environ 4000C et 800 C. By way of comparison, the Laminar type pyrocarbon and the boron nitride have temperature limits of use in oxidizing medium respectively equal to about 4000C and 800 C.
Par rapport au pyrocarbone, "Ti3SiC2,, présente donc
L'avantage d'une possible utilisation en mi lieu oxydant à une température notablement plus élevée.Compared to pyrocarbon, "Ti3SiC2 ,, therefore presents
The advantage of a possible use in an oxidizing environment at a significantly higher temperature.
Par rapport au nitrure de bore, "Ti3SiC2" présente
L'avantage de former, par oxydation, une phase vitreuse TiO2-SiO2 ayant de meilleures propriétes que la phase B203 formée par oxydation du nitrure de bore. En particulier, la phase TiO2-SiO2 a un meilleur comportement visqueux (moins "liquide") que B203 et peut donc assurer une fonction d'autocicatrisation vis-à-vis de fissures. De plus, la phase TiO2-SiO2 a une tension de vapeur plus faible que celle de B203 et est donc moins sujette à l'évaporation sous trésfaible pression ; en outre, elle est moins sensible à
L'humidité que B203.Par conséquent, pour certaines utilisatoins telles que dans des éléments de structure d'avions ou engins spatiaux subissant des échauffements importants dans l'atmosphère et exposés à de très faibles pressions à haute altitude, l'inter- phase "Ti3SiC2" confère au matériau composite un avantage particulier par rapport à L'interphase BN en raison du caractère autoprotecteur de la phase TiO2-SiO2, ce qui n'est pas le cas de B203.Compared to boron nitride, "Ti3SiC2" has
The advantage of forming, by oxidation, a glassy phase TiO2-SiO2 having better properties than the phase B203 formed by oxidation of boron nitride. In particular, the TiO2-SiO2 phase has a better viscous behavior (less "liquid") than B203 and can therefore provide a self-healing function with regard to cracks. In addition, the TiO2-SiO2 phase has a lower vapor pressure than that of B203 and is therefore less subject to evaporation under very low pressure; moreover, it is less sensitive to
The humidity as B203. Consequently, for certain uses such as in structural elements of airplanes or spacecraft undergoing significant heating in the atmosphere and exposed to very low pressures at high altitude, the inter-phase " Ti3SiC2 "gives the composite material a particular advantage over Interphase BN due to the self-protective nature of the TiO2-SiO2 phase, which is not the case for B203.
Le domaine d'application de L'invention est préférentiellement ce lui des matériaux composites de type céramique/céramique, mais n'est pas limité à ce domaine. Il englobe aussi les matériaux composites à matrice céramique et à renfort en matériau réfractaire autre que céramique, par exemple à renfort en fibres de carbone. Dans ce dernier cas, une protection anti-oxydation est à L'évidence nécessaire pour protéger les fibres de renfort pour des utilisations en mi lieu oxydant à température élevée. The field of application of the invention is preferably that of composite materials of the ceramic / ceramic type, but is not limited to this field. It also includes composite materials with a ceramic matrix and with reinforcement in refractory material other than ceramic, for example with carbon fiber reinforcement. In the latter case, anti-oxidation protection is obviously necessary to protect the reinforcing fibers for uses in an oxidizing environment at high temperature.
L'interphase "Ti3SiC2,, doit entourer chaque fibre élémen- taire. L'effet recherché est atteint dès lors que L'interphase lamellaire est présente de façon continue sur la surface de chaque fibre. L'épaisseur minima le de L'interphase "Ti3SiC2,, peut donc être très faible, c'est-à-dire de quelques dizaines de nanomètres, par exemple 50 nanomètres. L'interphase "Ti3SiC2,, doit laisser les fibres substantiellement indépendantes, c'est-à-dire ne pas créer de pontages entre les fibres pour qu'elles remplissent au mieux leur fonction de renfort au sein de la matrice céramique. Aussi, l'épaisseur de L'interphase "Ti3SiC2" doit être Limitée pour ne pas constituer en fait une première phase de matrice emprisonnant com plètement le renfort.C'est pourquoi L'interphase "Ti3SiC2" a une épaisseur au plus de quelques microns, de préférence inférieure à 0,5 micron. The interphase "Ti3SiC2 ,, must surround each elementary fiber. The desired effect is achieved as soon as the lamellar interphase is continuously present on the surface of each fiber. The minimum thickness of the interphase" Ti3SiC2 ,, can therefore be very small, that is to say a few tens of nanometers, for example 50 nanometers. The interphase "Ti3SiC2 ,, must leave the fibers substantially independent, that is to say not create bridges between the fibers so that they best fulfill their reinforcing function within the ceramic matrix. Also, the the thickness of the "Ti3SiC2" interphase must be limited so as not to constitute in fact a first phase of matrix completely trapping the reinforcement. This is why the interphase "Ti3SiC2" has a thickness at most of a few microns, preferably less than 0.5 micron.
L'interphase lamellaire est de préférence formée par infiltration chimique en phase vapeur, technique qui permet de réaliser un revêtement continu et sensiblement uniforme sur chaque fibre élémentaire du renfort. La technique d'infiltration chimique en phase vapeur est bien connue. Elle consiste, dans des conditions de température et de pression déterminées, à amener au contact d'un substrat une phase gazeuse contenant des constituants qui, par réaction, donne le matériau à infiltrer au sein du substrat. The lamellar interphase is preferably formed by chemical vapor infiltration, a technique which makes it possible to produce a continuous and substantially uniform coating on each elementary fiber of the reinforcement. The technique of chemical vapor infiltration is well known. It consists, under determined temperature and pressure conditions, of bringing into contact with a substrate a gaseous phase containing constituents which, by reaction, gives the material to infiltrate within the substrate.
Un exemple de réalisation d'un matériau composite à matrice céramique muni d'une interphase lamellaire "Ti3SiC2,, sera maintenant décrit. An exemplary embodiment of a ceramic matrix composite material provided with a lamellar interphase "Ti3SiC2 ,, will now be described.
Exemple
Une texture de renfort est réalisée par empilement à plat de strates de tissu essentiellement en carbure de silicium formé de fibres "Nicalon" de la société japonaise NIPPON CARBON, le taux volumique de fibres étant environ égal à 40 X (pourcentage du volume total apparent de la texture effectivement occupé par les fibres).Example
A reinforcing texture is produced by stacking flat layers of fabric essentially of silicon carbide formed of "Nicalon" fibers from the Japanese company NIPPON CARBON, the volume content of fibers being approximately equal to 40 X (percentage of the total apparent volume of the texture actually occupied by the fibers).
La texture de renfort SiC est placée dans un four d'infiltration chimique en phase vapeur où la température est portée à environ 1 0000C. Une phase gazeuse est admise dans le four, comprenant un mélange de dichlorosilane (SiH2Cl2), chlorure de titane (TiCl4), propane (C H ) et gaz hydrogène (H2). La pression totale de la phase gazeuse dans le four est d'environ 5 kPa, les pressions partielles de SiH2CL2, Tical4, C3H8 et H2 étant environ égales à, respectivement, 1 kPa, 1,4 kPa, 0,8 kPa et 1,8 kPa. The SiC reinforcement texture is placed in a chemical vapor infiltration oven where the temperature is brought to approximately 1 0000C. A gas phase is allowed in the oven, comprising a mixture of dichlorosilane (SiH2Cl2), titanium chloride (TiCl4), propane (C H) and hydrogen gas (H2). The total pressure of the gas phase in the furnace is approximately 5 kPa, the partial pressures of SiH2CL2, Tical4, C3H8 and H2 being approximately equal to, respectively, 1 kPa, 1.4 kPa, 0.8 kPa and 1, 8 kPa.
Les constituants de la phase gazeuse réagissent entre eux pour donner le carbure de silicium et de titane "Ti3SiC2" recherche å partir du mécanisme réactionnel suivant :
The constituents of the gas phase react with each other to give the silicon and titanium carbide "Ti3SiC2" research from the following reaction mechanism:
Des espèces minoritaires autres que le compose ternaire
Ti3SiC2 sont formées, notamment carbure de titane et siliciures de
3 titane.Minority species other than the ternary compound
Ti3SiC2 are formed, in particular titanium carbide and silicides of
3 titanium.
L'infiltration est poursuivie jusqu'à donner un revête ment de "Ti3SiC2" sur les fibres d'une épaisseur de 0,1 micron
'2 environ.The infiltration is continued until a coating of "Ti3SiC2" on the fibers with a thickness of 0.1 micron
'2 approximately.
D'autres conditions d'infiltration pourraient être choisies, par exemple, en remplaçant le dichlorosilane par un autre compose contenant du silicium et du chlore, ou le propane par un autre hydrocarbure. Other infiltration conditions could be chosen, for example, by replacing the dichlorosilane by another compound containing silicon and chlorine, or the propane by another hydrocarbon.
Après formation de l'interphase lamellaire, la texture de renfort ainsi revêtue est densifiée par du carbure de silicium. La densification peut être réalisée dans le meme four d'infiltration, dans la continuité du dépôt de "Ti3SiC2", en adaptant la compositionde la phase gazeuse et les conditions de température et pression. De façon connue en soi, la matrice en carbure de silicium est formée par infiLtration chimique en phase vapeur à une température d'environ 1 000 C à partir d'une phase gazeuse contenant un mélange de methyltrichlorosilane (CH3SiCl3) et d'hydrogène (H2), comme décrit dans le brevet français n 2 401 888. After formation of the lamellar interphase, the reinforcement texture thus coated is densified with silicon carbide. Densification can be carried out in the same infiltration oven, in the continuity of the deposition of "Ti3SiC2", by adapting the composition of the gas phase and the temperature and pressure conditions. In a manner known per se, the silicon carbide matrix is formed by chemical vapor infiltration at a temperature of approximately 1000 C from a gas phase containing a mixture of methyltrichlorosilane (CH3SiCl3) and hydrogen (H2 ), as described in French Patent No. 2,401,888.
n 01 888. n 01 888.
Des échantillons du matériau composite SiC(Ti3SiC2)/SiC ainsi obtenu sont soumis à un essai de traction qui donne les résultats suivants :
RT = 195 MPa
#R = 0,22 %
E = 189 GPa,
où RT est la résistance à rupture en traction, R le taux
R d'allongement à rupture et E le module d'elasticite. Samples of the SiC (Ti3SiC2) / SiC composite material thus obtained are subjected to a tensile test which gives the following results:
RT = 195 MPa
#R = 0.22%
E = 189 GPa,
where RT is the tensile strength, R the rate
R of elongation at break and E the modulus of elasticity.
Le matériau présente un comportement à rupture non fragile (présence de "pull out" ou déchaussement des fibres)
D'autres échantillons du matériau composite avec interphase "Ti3SiC2" subissent un traitement thermique à 1 0000C sous air pendant 20 heures. Aucune variation de poids, signe d'une oxydation substantielle, n'est observée.The material exhibits a non-fragile breaking behavior (presence of "pull out" or loosening of the fibers)
Other samples of the composite material with interphase "Ti3SiC2" undergo a heat treatment at 1 0000C in air for 20 hours. No change in weight, a sign of substantial oxidation, was observed.
A titre de comparaison, un même essai à rupture est réalisé sur des échantillons en matériau SiC/SiC obtenu comme précédemment à l'exclusion de la formation de l'interphase "Ti3SiC2". By way of comparison, the same rupture test is carried out on samples of SiC / SiC material obtained as above, excluding the formation of the "Ti3SiC2" interphase.
Les résultats obtenus sont
RT = 80 à 100 MPa = 0,05 %
E = 200 GPa.The results obtained are
RT = 80 to 100 MPa = 0.05%
E = 200 GPa.
Le matériau présente un comportement à rupture fragile. The material exhibits a fragile breaking behavior.
Sa résistance à rupture en traction et son allongement à rupture sont bien inférieurs à ceux du matériau conforme à L'invention. Its tensile breaking strength and its elongation at break are much lower than that of the material according to the invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9104304A FR2675141B1 (en) | 1991-04-09 | 1991-04-09 | COMPOSITE MATERIAL WITH A CERAMIC MATRIX WITH LAMELLAR INTERPHASE BETWEEN REFRACTORY REINFORCEMENT FIBERS AND MATRIX, AND METHOD FOR THE PRODUCTION THEREOF. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9104304A FR2675141B1 (en) | 1991-04-09 | 1991-04-09 | COMPOSITE MATERIAL WITH A CERAMIC MATRIX WITH LAMELLAR INTERPHASE BETWEEN REFRACTORY REINFORCEMENT FIBERS AND MATRIX, AND METHOD FOR THE PRODUCTION THEREOF. |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2675141A1 true FR2675141A1 (en) | 1992-10-16 |
FR2675141B1 FR2675141B1 (en) | 1993-08-06 |
Family
ID=9411631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR9104304A Expired - Fee Related FR2675141B1 (en) | 1991-04-09 | 1991-04-09 | COMPOSITE MATERIAL WITH A CERAMIC MATRIX WITH LAMELLAR INTERPHASE BETWEEN REFRACTORY REINFORCEMENT FIBERS AND MATRIX, AND METHOD FOR THE PRODUCTION THEREOF. |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2675141B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999040239A1 (en) * | 1998-02-09 | 1999-08-12 | Advanced Refractory Technologies, Inc. | Materials for use in electrochemical smelting of metals from ore |
WO2001046083A1 (en) * | 1999-12-22 | 2001-06-28 | Drexel University | Process for forming 312 phase materials and process for sintering the same |
CN1120816C (en) * | 1998-08-19 | 2003-09-10 | 中国科学院金属研究所 | Process for preparing titaniferous silicon carbide powder |
CN1120817C (en) * | 1998-10-07 | 2003-09-10 | 中国科学院金属研究所 | In-situ hot pressing solid-liquid phase reaction process to prepare silicon titanium-carbide material |
FR2907117A1 (en) * | 2006-10-17 | 2008-04-18 | Snecma Propulsion Solide Sa | PROCESS FOR MANUFACTURING A COMPOSITE MATERIAL PART WITH A CERAMIC MATRIX CONTAINING CRACKING MATRIX PHASES AND CRACKING DEVIATOR |
EP2905271A1 (en) * | 2014-02-11 | 2015-08-12 | Alstom Technology Ltd | Ceramic matrix composite for high temperature application containing ceramic fibers coated with a MAX phase |
CN107010985A (en) * | 2017-04-20 | 2017-08-04 | 湖南锴博新材料科技有限公司 | A kind of Carbon fibe enhancing ceramic matrix friction material of the phase containing Ti3SiC2 and preparation method thereof |
CN113278250A (en) * | 2021-03-30 | 2021-08-20 | 上海凌云工业科技有限公司凌云汽车技术分公司 | Ti3SiC2Method for preparing ceramic reinforced composite material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106868331B (en) * | 2017-01-20 | 2018-09-14 | 华南理工大学 | A kind of preparation method of three-dimensional netted Metal Substrate titanium Si-C composite material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0256828A1 (en) * | 1986-08-08 | 1988-02-24 | Ube Industries, Ltd. | Inorganic fibrous material as reinforcement for composite materials and process for production thereof |
EP0380375A1 (en) * | 1989-01-13 | 1990-08-01 | Societe Europeenne De Propulsion | Composit material with multiples interphases between refractory reinforcing fibers and ceramic matrix |
-
1991
- 1991-04-09 FR FR9104304A patent/FR2675141B1/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0256828A1 (en) * | 1986-08-08 | 1988-02-24 | Ube Industries, Ltd. | Inorganic fibrous material as reinforcement for composite materials and process for production thereof |
EP0380375A1 (en) * | 1989-01-13 | 1990-08-01 | Societe Europeenne De Propulsion | Composit material with multiples interphases between refractory reinforcing fibers and ceramic matrix |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6312570B1 (en) | 1998-02-09 | 2001-11-06 | Advanced Refractory Technologies, Inc. | Materials for use in electrochemical smelting of metals from ore |
WO1999040239A1 (en) * | 1998-02-09 | 1999-08-12 | Advanced Refractory Technologies, Inc. | Materials for use in electrochemical smelting of metals from ore |
CN1120816C (en) * | 1998-08-19 | 2003-09-10 | 中国科学院金属研究所 | Process for preparing titaniferous silicon carbide powder |
CN1120817C (en) * | 1998-10-07 | 2003-09-10 | 中国科学院金属研究所 | In-situ hot pressing solid-liquid phase reaction process to prepare silicon titanium-carbide material |
US6461989B1 (en) | 1999-12-22 | 2002-10-08 | Drexel University | Process for forming 312 phase materials and process for sintering the same |
JP2003517991A (en) * | 1999-12-22 | 2003-06-03 | ドレクセル ユニバーシティー | Method for producing 312 phase material and sintering method thereof |
WO2001046083A1 (en) * | 1999-12-22 | 2001-06-28 | Drexel University | Process for forming 312 phase materials and process for sintering the same |
FR2907117A1 (en) * | 2006-10-17 | 2008-04-18 | Snecma Propulsion Solide Sa | PROCESS FOR MANUFACTURING A COMPOSITE MATERIAL PART WITH A CERAMIC MATRIX CONTAINING CRACKING MATRIX PHASES AND CRACKING DEVIATOR |
WO2008047038A2 (en) * | 2006-10-17 | 2008-04-24 | Snecma Propulsion Solide | Process for manufacturing a part made of a ceramic matrix composite containing matrix phases for healing and deflecting cracks |
WO2008047038A3 (en) * | 2006-10-17 | 2008-06-19 | Snecma Propulsion Solide | Process for manufacturing a part made of a ceramic matrix composite containing matrix phases for healing and deflecting cracks |
US8980027B2 (en) | 2006-10-17 | 2015-03-17 | Herakles | Process for manufacturing a part made of a ceramic matrix composite containing matrix phases for healing and deflecting cracks |
EP2905271A1 (en) * | 2014-02-11 | 2015-08-12 | Alstom Technology Ltd | Ceramic matrix composite for high temperature application containing ceramic fibers coated with a MAX phase |
CN107010985A (en) * | 2017-04-20 | 2017-08-04 | 湖南锴博新材料科技有限公司 | A kind of Carbon fibe enhancing ceramic matrix friction material of the phase containing Ti3SiC2 and preparation method thereof |
CN107010985B (en) * | 2017-04-20 | 2019-12-27 | 湖南中南智造新材料协同创新有限公司 | Ti3SiC2 phase-containing carbon fiber reinforced ceramic matrix friction material and preparation method thereof |
CN113278250A (en) * | 2021-03-30 | 2021-08-20 | 上海凌云工业科技有限公司凌云汽车技术分公司 | Ti3SiC2Method for preparing ceramic reinforced composite material |
Also Published As
Publication number | Publication date |
---|---|
FR2675141B1 (en) | 1993-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0172082B1 (en) | Method of making a composite material with refractory fibre reinforcement and ceramic matrix, and structure obtained thereby | |
EP0721438B1 (en) | Method of manufacturing a composite material with lamellar interphase between reinforcing fibres and matrix, and material obtained | |
EP0866783B1 (en) | High-temperature composite materials with carbon or carbon-coated fibre reinforcements and enhanced oxidation resistance | |
EP0359614B1 (en) | Composite material containing reinforcing carbon fibres, and process for its production | |
EP0817762B1 (en) | Composite material protected from oxidation by a self-healing matrix, and method for making same | |
EP0948469B1 (en) | COMPOSITE MATERIAL WITH CERAMIC MATRIX AND SiC FIBER REINFORCEMENT, METHOD FOR MAKING SAME | |
EP0375537B1 (en) | Process for protecting carbon containing composite material from oxidation and products made by this process | |
EP0619801A1 (en) | Process for protecting products made of composite material containing carbon against oxydation, and products obtained by said pro cess. | |
FR2611198A1 (en) | COMPOSITE MATERIAL WITH MATRIX AND CARBON REINFORCING FIBERS AND METHOD FOR MANUFACTURING THE SAME | |
EP2483073B1 (en) | Composite material part having a ceramic matrix, and method for manufacturing same | |
EP0550305A1 (en) | Method of protecting a composite material against oxidation, and products protected in this way | |
FR2641776A1 (en) | COMPOSITE MATERIAL WITH MULTIPLE INTERPHASES BETWEEN REFRACTORY REINFORCEMENT FIBERS AND CERAMIC MATRIX | |
EP0482994B1 (en) | Carbon composite material, protected against oxidation and method, of producing said material | |
FR2669622A1 (en) | COMPOSITE MATERIAL WITH REFRACTORY FIBROUS REINFORCEMENT AND MANUFACTURING METHOD THEREOF. | |
FR2675141A1 (en) | Composite material with a ceramic matrix with lamellar interphase between refractory reinforcing fibres and matrix, and process for its manufacture | |
CA1335928C (en) | Thermal treatment of silicon/carbon based ceramic fibers and other similar laminated structure fibers | |
EP0451043B1 (en) | Process for production of a thermostructural composite material with carbon intermediary phase between the reinforcing fibres and the matrix | |
FR2637890A1 (en) | COMPOSITE MATERIAL WITH ZIRCONIA MATRIX | |
EP0955281B1 (en) | Carbon/carbon type composite material having an increased oxidation resistance | |
EP0482968B1 (en) | Silicon carbide matrix composite useable as flame protection layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TP | Transmission of property | ||
CD | Change of name or company name | ||
TP | Transmission of property | ||
ST | Notification of lapse |