JPH03114625A - Production of sulphur double layered free cutting steel with continuous casting - Google Patents
Production of sulphur double layered free cutting steel with continuous castingInfo
- Publication number
- JPH03114625A JPH03114625A JP24900989A JP24900989A JPH03114625A JP H03114625 A JPH03114625 A JP H03114625A JP 24900989 A JP24900989 A JP 24900989A JP 24900989 A JP24900989 A JP 24900989A JP H03114625 A JPH03114625 A JP H03114625A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- mold
- continuous casting
- molten steel
- cutting steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000915 Free machining steel Inorganic materials 0.000 title claims abstract description 26
- 238000009749 continuous casting Methods 0.000 title claims abstract description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000005864 Sulphur Substances 0.000 title 1
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 38
- 239000010959 steel Substances 0.000 claims abstract description 38
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 31
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052742 iron Inorganic materials 0.000 claims abstract description 9
- 239000011593 sulfur Substances 0.000 claims description 23
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 23
- 238000005266 casting Methods 0.000 abstract description 7
- 238000007664 blowing Methods 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 238000012856 packing Methods 0.000 abstract 2
- 239000011148 porous material Substances 0.000 description 11
- 239000010410 layer Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 230000007547 defect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 229910001327 Rimmed steel Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、ブルーム・ビレット連続鋳造により硫黄複層
快削鋼を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing sulfur multilayer free-cutting steel by continuous bloom billet casting.
従来の技術
従来、硫黄複層快削鋼は造塊法によって製造されていた
。即ち、リムド鋼またはギャップド鋼を上注法または下
注法により鋳型に注入し、リミングアクションにより所
定の厚みのリム層を凝固させた後に、鋳型上方からFe
・−5とFe−Mnを添加することにより、リム層の内
側にSとMn濃度の高いコア部を形成させる。このコア
部は、SとMnによるリミングアクション鎮静化作用に
より、ギルド鋼のように凝固する。また、リム層の厚み
の調整は、蓋打ち時間(注入終了がらFe−3とFe−
Mn添加までの時間)の調整によって行なわれる。Conventional technology Traditionally, sulfur multilayer free-cutting steel was manufactured by the ingot-forming method. That is, rimmed steel or gapped steel is injected into a mold by the top pouring method or bottom pouring method, a rim layer of a predetermined thickness is solidified by a rimming action, and then Fe is poured from above the mold.
- By adding -5 and Fe-Mn, a core portion with high S and Mn concentrations is formed inside the rim layer. This core portion solidifies like guild steel due to the rimming action suppressing effect of S and Mn. In addition, the thickness of the rim layer can be adjusted by adjusting the capping time (from the end of injection to Fe-3 and Fe-3).
This is done by adjusting the time until Mn addition.
このようにして製造したリムド硫黄複層快削鋼は、表面
欠陥が少なくコア部が被削性に優れているために、溶接
用ナツト等に使われる。溶接用ナツトは、例えば線材を
角型に引抜加工し、剪断後、冷間鍛造によりナツトの外
形が形成される。The rimmed sulfur multilayer free-cutting steel produced in this way has few surface defects and has excellent machinability in the core, so it is used for welding nuts and the like. A welding nut is produced by, for example, drawing a wire rod into a rectangular shape, shearing it, and then cold forging to form the outer shape of the nut.
次いで、横断面中央部を打ち抜きし、タッピング加工に
よりネジ切りして製造される。このように、溶接ナツト
用鋼材においては表面に対して冷間加工性と溶接性が要
求されると共に、コア部には被削性が要求されるので、
硫黄複層快削鋼が最も適している。Next, the central part of the cross section is punched out and threaded by tapping. In this way, steel materials for weld nuts require cold workability and weldability on the surface, and machinability on the core.
Sulfur multilayer free-cutting steel is the most suitable.
従来、この種の硫黄複層快削鋼の連続鋳造による製造に
関して、特開昭82−142053号に鉄被覆硫黄充填
ワイアーにより、コア部に硫黄を添加する製造方法が述
べられている。Conventionally, regarding the manufacture of this type of sulfur multilayer free-cutting steel by continuous casting, Japanese Patent Application Laid-Open No. 82-142053 describes a manufacturing method in which sulfur is added to the core portion using an iron-coated sulfur-filled wire.
発明が解決しようとする課題
造塊法による硫黄複層快削鋼の製造においては、リム層
の厚みが鋼塊ボトム部で厚くトップ部で薄い問題と、コ
ア部のS濃度が偏析によって鋼塊部位で変動する問題が
あり、このためナツトへの加工時に、タッピング不良や
冷間加工割れ等が発生し易いという欠点があった。更に
、造塊法では、鋼塊から成品への一貫歩留が低いために
、連鋳法による製造方法の確立が長年の課題であった。Problems to be Solved by the Invention In the production of sulfur multi-layer free-cutting steel using the ingot-forming method, there are two problems: the thickness of the rim layer is thicker at the bottom of the ingot and thinner at the top, and the S concentration in the core is lower due to segregation. There is a problem in that it varies depending on the location, and as a result, there is a drawback that poor tapping and cold processing cracks are likely to occur during processing into nuts. Furthermore, in the ingot casting method, the consistent yield from steel ingot to finished product is low, so establishing a manufacturing method using continuous casting has been a long-standing challenge.
また特開昭82−142053号における、擬似リムド
硫黄複層快削鋼の製造方法においては、C0.20%以
下、Nn0.30〜2.00%、P 0.040%以下
、So、035%以下、070〜600ppmの成分の
溶鋼を鋳型に注入し、一部凝固シエルを生成させた鋳片
内の鋳型下端以降の位置に、鉄被覆S充填ワイアーによ
りSを添加して、S 0.001〜0、60〜0.40
0%のコアを有する硫黄快削鋼の連続鋳造法が述べられ
ている。In addition, in the method for manufacturing pseudo-rimmed sulfur multilayer free-cutting steel in JP-A No. 82-142053, C0.20% or less, Nn0.30-2.00%, P 0.040% or less, So, 035% Thereafter, molten steel with a composition of 0.070 to 600 ppm is poured into a mold, and S is added to the position of the slab after the lower end of the mold where a partially solidified shell is formed using an iron-coated S-filled wire to reduce S to 0.001 ppm. ~0, 60~0.40
A continuous casting process for sulfur free-cutting steel with 0% core is described.
しかし、リムド鋼を鋳造する場合には、一般に凝固時に
鋳塊表面又は/及び表層下でのCO気孔生成の問題があ
り、溶鋼中のO濃度をCO気気孔生成しない臨界0濃度
以下に調整する必要のあることが知られている。例えば
、鉄凝固時のCO気孔生成に関する小型一方向凝固の実
験結果「橋部、森:鉄と鋼、70(1984)、p44
2Jによれば、CO気孔生成の臨界O濃度は、溶鋼中C
濃度によって変化し、0.06%C鋼では約45ppm
、 0.08%C鋼では約40ppm 、 0.12
%以上では約30ppmで一定としている。However, when casting rimmed steel, there is generally a problem in the formation of CO pores on the ingot surface and/or under the surface layer during solidification, and the O concentration in the molten steel must be adjusted to below the critical 0 concentration at which CO pores are not generated. known to be necessary. For example, the results of small-scale unidirectional solidification experiments regarding CO pore formation during iron solidification, "Hashibe, Mori: Tetsu to Hagane, 70 (1984), p. 44.
According to 2J, the critical O concentration for CO pore formation is C in molten steel.
Varies depending on concentration, approximately 45 ppm for 0.06% C steel
, about 40 ppm for 0.08% C steel, 0.12
% or more, it is kept constant at about 30 ppm.
また、連鋳機で製造した鋳片におけるCO気気孔生成に
関する調査結果「性向、藤井ら:鉄と鋼、Ef9(19
83)、p 101〜0、607Jでは、CO気孔発生
限界を溶鋼中C濃度とO濃度とで整理しており、0.0
6〜0.20%Cでは、限界O濃度は55ppmである
としている。In addition, the results of a survey on the formation of CO pores in slabs produced using a continuous caster, “Propensity,” Fujii et al.: Tetsu to Hagane, Ef9 (19
83), p 101-0, 607J, the CO pore generation limit is organized by C concentration and O concentration in molten steel, and 0.0
At 6-0.20% C, the critical O concentration is said to be 55 ppm.
前記特開昭62−142053号では、0濃度を70〜
01〜0、600 ppmと規定しており、前述の結果
と照らし合わせれば、CO気気孔生成する成分系となっ
ている。従って、CO気気孔ない良好な鋳片を得ること
は出来ない。In the above-mentioned Japanese Patent Application Laid-Open No. 62-142053, the 0 concentration is set to 70~
It is specified as 0.01 to 0.600 ppm, and when compared with the above results, it is a component system that generates CO pores. Therefore, it is impossible to obtain a good slab without CO pores.
連鋳法によりリムド相当鋼を鋳造する方法には、一般に
T−Mを0.05〜0.020%程度添加した低アルミ
ギルド鋼があるが、この鋼種を鋳片サイズが例えばIE
12mmX IE12mmのビレット連鋳用鋳型へ注入
するには、例えば外径90mmφ、内径40mmφ程度
の小径浸漬ノズルを使用せざるを得ない。しかしこの場
合、ノズル内壁に脱酸生成物のM2O3が付着成長して
ノズル閉塞が発生し易いので、防止対策として浸漬ノズ
ル内にArガスを吹き込む方法があるが、鋳片表面にA
r起因のピンホール欠陥が多発する問題があり、マシー
ンスカーフ等による手入れが必要となる。In the method of casting rimmed equivalent steel by continuous casting method, there is generally a low aluminum guild steel with approximately 0.05 to 0.020% of T-M added.
In order to inject into a billet continuous casting mold of 12 mm x IE 12 mm, it is necessary to use a small-diameter immersion nozzle with an outer diameter of 90 mmφ and an inner diameter of 40 mmφ, for example. However, in this case, M2O3, a deoxidation product, adheres and grows on the inner wall of the nozzle, which tends to cause nozzle blockage.Therefore, as a preventive measure, there is a method of blowing Ar gas into the submerged nozzle, but
There is a problem that pinhole defects caused by r occur frequently, and maintenance using a machine scarf or the like is required.
Arガスを吹込まずに浸漬ノズルの閉塞を防止する方法
として、溶鋼中にCaを添加し懸濁しているAi 20
3を低融点のCaO−M2O+系酸化物に形態制御する
方法が有効である。しかしながら、硫黄複層快削鋼では
、鋳型内へ鉄被覆S充填ワイアーを投入してコア部にS
を多量に添加するので、溶存CaとSが反応して高融点
のCaSを生成し易く、これが鋼材の被削性を著しく低
下せしめる問題がある。As a method to prevent clogging of the immersion nozzle without blowing Ar gas, Ca is added and suspended in molten steel.
An effective method is to control the form of 3 into a low melting point CaO-M2O+ type oxide. However, in the case of sulfur multi-layer free-cutting steel, an iron-coated S-filled wire is put into the mold and the core part is S-filled.
Since a large amount of is added, dissolved Ca and S tend to react and produce CaS with a high melting point, which poses a problem of significantly reducing the machinability of the steel material.
従って、硫黄複層快削鋼のブルーム・ビレット連鋳にお
いては、アルミギルド鋼やアルミキルドのCa処理鋼は
適用困難であり、溶鋼の脱酸方法の改善が重要な課題と
なる。Therefore, it is difficult to apply aluminum guild steel or aluminum killed Ca-treated steel to bloom billet continuous casting of sulfur multilayer free-cutting steel, and improving the deoxidization method of molten steel is an important issue.
課題を解決するための手段
本発明は、前記課題を解決するものである。即ち、本発
明は、c o、ot 〜o、eo%、Mn 0.30〜
1.60%、P 0.040%以下、S 0.035%
以下の成分を含有する溶鋼を鋳型に注入し、凝固シェル
を形成させた鋳片内に鋳型上方から鉄被覆S充填ワイア
ーを連続投入して、コア部にS 0.040〜0.30
0%を含有させた硫黄複層快削鋼用ブルーム・ビレット
の連続鋳造において、該溶鋼中の脱酸元素濃度としてT
・Alを0.005%以下、Siを0.04〜0.10
%の範囲に調整した後、ガス吹込みを行わない浸漬ノズ
ルを用いて溶鋼を注入凝固させることにより、表面欠陥
が少なく且つコア部の被削性に優れた快削鋼を製造する
ことを特徴とする連続鋳造による硫黄複層快削鋼の製造
法である。Means for Solving the Problems The present invention solves the above problems. That is, the present invention provides co, ot ~ o, eo%, Mn 0.30 ~
1.60%, P 0.040% or less, S 0.035%
Molten steel containing the following components is injected into the mold, and an iron-coated S-filled wire is continuously introduced from above the mold into the slab to form a solidified shell, so that the core part has an S of 0.040 to 0.30.
In continuous casting of bloom billets for multi-layer free-cutting steel containing 0% sulfur, the deoxidizing element concentration in the molten steel is T
・Al: 0.005% or less, Si: 0.04-0.10
% range, and then inject and solidify the molten steel using a submerged nozzle that does not inject gas, producing free-cutting steel with few surface defects and excellent machinability in the core. This is a method for manufacturing sulfur multilayer free-cutting steel by continuous casting.
本発明で、溶鋼中の各成分濃度を規定する理由を以下に
説明する。The reason why the concentration of each component in molten steel is specified in the present invention will be explained below.
Cは、鋼材が各種構造用部品に使用されるので、要求さ
れる強度や冷間加工性、熱間加工性に合わせて選定出来
るようにすべく、0.01〜0.60%の範囲とする。Since steel materials are used for various structural parts, C should be in the range of 0.01 to 0.60% in order to be able to select according to the required strength, cold workability, and hot workability. do.
Mnは、0.30%未満では熱間加工性が低下し、1.
01〜0、60%を超えると冷間加工性や被削性が劣化
するために、0.30〜1.60%の範囲とする。If Mn is less than 0.30%, hot workability decreases;
If it exceeds 0.01 to 0.60%, cold workability and machinability will deteriorate, so the range is set to 0.30 to 1.60%.
Pは、冷間加工性を確保するために0.040%以下に
する。P is set to 0.040% or less to ensure cold workability.
Sを0.035%以下とする理由は、冷間加工性の確保
と溶接時の割れ防止のためである。また、コア部Sを0
.040〜0.300%とする理由は、Sを0.040
%以」二添加することにより被削性を向上させるためで
あり、0−300%を超えて添加すると冷間加工性や熱
間加工性が低下するためである。The reason for setting S to 0.035% or less is to ensure cold workability and prevent cracking during welding. Also, the core part S is 0
.. The reason for setting S to 0.040% to 0.300% is that S is 0.040%.
This is because adding 2% or more improves machinability, and adding more than 0-300% reduces cold workability and hot workability.
また、溶鋼中O濃度をCO気気孔生成しない臨界O濃度
よりも低くなるように、脱酸目的でMを添加調整する。Further, M is added and adjusted for the purpose of deoxidation so that the O concentration in the molten steel is lower than the critical O concentration at which CO pores are not generated.
T−Mを0.005%以下とする理由は、0.005%
を超えると連続鋳造時に溶鋼中に懸濁しているM2O3
が、浸漬ノズル内壁に付着成長しノズル閉塞を惹起せし
めるためであり、且っM2O3は硬質介在物であるため
に切削工具に構成刃先を形成せしめ、仕上げ面粗さや切
削工具寿命に悪影響を及ぼすためである。The reason why T-M is 0.005% or less is that 0.005%
If it exceeds M2O3 suspended in molten steel during continuous casting,
This is because M2O3 adheres and grows on the inner wall of the immersion nozzle, causing nozzle blockage, and because M2O3 is a hard inclusion, it forms a built-up edge on the cutting tool, which adversely affects the finished surface roughness and the life of the cutting tool. It is.
更に、Siを凝固過程での脱酸を目的に0.04〜0.
10%添加する。Siを0.04%以上含有させる理由
は、M脱酸により溶鋼中O濃度を30〜55pp+w以
下に調整しても、該溶鋼の凝固過程でデンドライト樹間
へ0が濃化し、鋳片表層部にCO気気孔形成するので、
Siの添加により樹間に濃化した0を凝固過程において
二次脱酸するためである。但し、その効果は0.04%
以上で十分であり、0.10%を超えると被削性に悪影
響を与えるため0.10%以下に規定するものである。Furthermore, 0.04 to 0.0.
Add 10%. The reason for containing 0.04% or more of Si is that even if the O concentration in the molten steel is adjusted to 30 to 55 pp+w or less by M deoxidation, O will concentrate in the interdendritic trees during the solidification process of the molten steel, and the surface layer of the slab will Since CO pores are formed in
This is for the purpose of secondary deoxidation of O, which has become concentrated between the trees due to the addition of Si, during the solidification process. However, the effect is 0.04%
The above is sufficient; if it exceeds 0.10%, machinability is adversely affected, so it is specified to be 0.10% or less.
更に、本発明では上記のように調整した溶鋼を、小断面
サイズのブルーム・ビレット用鋳型に、ガス吹込みを行
わない浸漬ノズルを用いて注入することにより、Atそ
の他のガス吹込みに起因する気泡性表面欠陥の防止を図
るものである。Furthermore, in the present invention, by injecting the molten steel adjusted as described above into a bloom/billet mold with a small cross-sectional size using a submerged nozzle that does not perform gas injection, This is intended to prevent bubble-like surface defects.
コア部へのSの添加は、所定の厚みの凝固シェルが形成
した鋳片内に、鋳型上方から鉄被覆S充填ワイアーを連
続投入し、コア部S濃度が0.040〜0.300%と
なるように調整するものである。To add S to the core part, an iron-coated S-filled wire is continuously introduced from above the mold into the slab in which a solidified shell of a predetermined thickness has been formed, and the S concentration in the core part is adjusted to 0.040 to 0.300%. It is to be adjusted so that
作用
溶鋼を上記の成分系に調整することにより、小断面サイ
ズの鋳型にガス吹込のない小径の浸漬ノズルを用いて鋳
造しても、溶鋼中にM2O3系酸化物が少なく且つCa
処理を行わないのでGasも存在しない。このため、ノ
ズル詰りか発生し難く且つコア部の被削性に優れた硫黄
複層快削鋼の製造が可能となる。By adjusting the working molten steel to the above composition system, even when casting into a small cross-sectional mold using a small-diameter submerged nozzle without gas blowing, the molten steel contains less M2O3-based oxides and Ca.
Since no processing is performed, there is no gas. Therefore, it is possible to manufacture sulfur multilayer free-cutting steel that is less likely to cause nozzle clogging and has excellent machinability in the core portion.
同時に、ガス吹込みのない浸漬ノズルを使用することに
より、吹込みガス起因の気泡性欠陥の極めて少ない良好
な表面品質を有する鋳片が得られる。At the same time, by using a submerged nozzle without gas blowing, a slab with good surface quality is obtained with very few bubble defects caused by blowing gas.
実施例
150丁転炉でAl5I 1110相当のリムド鋼を溶
製し、RHにおいて溶鋼成分を0.06%C−0,07
%5iO150%Mm−0.025%F−0,012%
S−0,002%Alに調整した。また、取鍋自溶鋼中
0′a度は、気孔欠陥が生成しないよう酸素濃淡電池を
用いて40ppmに調整した。Example 1 Rimmed steel equivalent to Al5I 1110 was melted in a 50mm converter, and the molten steel composition was reduced to 0.06% C-0.07 at RH.
%5iO150%Mm-0.025%F-0,012%
S-adjusted to 0,002% Al. In addition, the 0'a degree in the ladle self-melting steel was adjusted to 40 ppm using an oxygen concentration battery to prevent the formation of pore defects.
曲率半径12m Rの弯曲型連鋳機で、横断面サイズが
182 mmX 182 ff1mのビレットを、内径
40m+sφの一体型浸漬ノズルを用いて、鋳造速度V
c = 2−2m/winで鋳造した。A billet with a cross-sectional size of 182 mm x 182 ff1 m was cast in a curved continuous casting machine with a radius of curvature of 12 m R using an integrated immersion nozzle with an inner diameter of 40 m + sφ at a casting speed of V.
It was cast at c=2-2m/win.
コア部硫黄濃度がo、oso%Sとなるように、鋳型上
方からワイアー投入機を用いて鋳型と浸漬ノズルとの間
から鋳型内へ、粉末硫黄を充填した外径5.0mmφ、
肉厚1.0 mmの軟鋼製ワイアーを連続的に供給し、
硫黄複層快削鋼を製造した。A wire feeder was used from above the mold to fill the mold with powdered sulfur from between the mold and the immersion nozzle so that the core sulfur concentration was o, oso%S.
Continuously supplies mild steel wire with a wall thickness of 1.0 mm,
Manufactured sulfur multilayer free-cutting steel.
0
比較例1として、転炉及びRHにて0.06%C010
1%Si −0,50%Mn−0,025%F −0,
012%S−0,020%MのMキルド鋼を溶製した後
、ノズル閉塞防止を目的にCaワイアーにより取鍋内溶
鋼中へCaを20ppm添加した溶鋼についても同じよ
うに鋳造し、硫黄複層快削鋼を製造した。0 As Comparative Example 1, 0.06% CO10 in converter and RH
1%Si-0,50%Mn-0,025%F-0,
After melting M-killed steel with 012%S-0,020%M, 20ppm of Ca was added to the molten steel in the ladle using a Ca wire to prevent nozzle clogging, and the molten steel was cast in the same manner. Manufactured layered free-cutting steel.
第1図に、得られたビレットの横断面内S分析値を示し
たが、Sはビレットのコア部において目標とした0、0
90%を満足している。Figure 1 shows the S analysis value in the cross section of the obtained billet.
I am satisfied with 90%.
また、従来法によるリムド硫黄複層快削鋼についても、
比較材とすべく、転炉及びRHにて0.10%c −o
、ot%5i−0,40%Mn−0,025%F −0
,012%SにMとCaはフリーで溶製した後、造塊法
にて鋳型上方からFe−3とFe −Muを添加するこ
とにより製造した。In addition, regarding rimmed sulfur multi-layer free-cutting steel using the conventional method,
For comparison, 0.10% c-o in converter and RH
,ot%5i-0,40%Mn-0,025%F-0
,012%S was melted free of M and Ca, and then Fe-3 and Fe-Mu were added from above the mold using an ingot-forming method.
そのビレットの被削性試験結果を、比較例2として造塊
法による硫黄快削鋼も含め表1に示した。被削性は、工
具5KH57を使用しドリル寿命速度で評価した。本発
明での被削性は、Ca添加した連鋳快削鋼の比較材より
も大幅に良好であり、1
また造塊材の被削性と遜色のない結果が得られている。The machinability test results of the billets are shown in Table 1, including the sulfur free-cutting steel produced by the agglomeration method as Comparative Example 2. Machinability was evaluated by drill life speed using tool 5KH57. The machinability of the present invention is significantly better than that of a comparative continuous cast free-cutting steel with Ca added, 1 and results comparable to the machinability of the ingot material have been obtained.
更に、本発明になる硫黄複層快削鋼を18mmφの線材
に圧延し、溶接用ナツトに加工したところ、図には示さ
ないが従来の造塊材と同等の使用成績が得られた。Further, when the sulfur multi-layer free-cutting steel of the present invention was rolled into a wire rod of 18 mm diameter and processed into a welding nut, although not shown in the figure, the same usage results as conventional agglomerates were obtained.
表 1
発明の詳細
な説明したように、本発明法によれば、表面品質が良好
でコア部の被削性に優れた快削鋼を連鋳法で製造可能と
なり、従来造塊法に比ベコスト削減及び品質安定化に対
する効果は極めて大きい。Table 1 As explained in detail about the invention, according to the method of the present invention, it is possible to produce free-cutting steel with good surface quality and excellent machinability in the core part by a continuous casting method, which is superior to the conventional ingot making method. The effect on cost reduction and quality stabilization is extremely large.
22
第1図は、本発明の実施例におけるビレット横断面内S
分析値を示す図である。FIG. 1 shows S in the billet cross section in an embodiment of the present invention.
It is a figure showing an analysis value.
Claims (1)
P0.040%以下、S0.035%以下の成分を含有
する溶鋼を鋳型に注入し、凝固シェルを形成させた鋳片
内に、鋳型上方から鉄被覆S充填ワイアーを連続投入し
て、コア部にS0.040〜0.300%を含有させた
硫黄複層快削鋼用ブルーム・ビレットの連続鋳造におい
て、該溶鋼中の脱酸元素濃度としてT・Alを0.00
5%以下、Siを0.04〜0.10%の範囲に調整し
た後、ガス吹込みを行わない浸漬ノズルを用いて溶鋼を
注入凝固させることにより、表面欠陥が少なく且つコア
部の被削性に優れた快削鋼を製造することを特徴とする
連続鋳造による硫黄複層快削鋼の製造法。C0.01-0, 60%, Nn0.30-1, 60%,
Molten steel containing components of P0.040% or less and S0.035% or less is injected into the mold, and an iron-coated S-filled wire is continuously introduced from above the mold into the slab to form a solidified shell to form the core part. In continuous casting of bloom billets for sulfur multilayer free-cutting steel containing 0.040 to 0.300% of S, the deoxidizing element concentration in the molten steel is T.Al of 0.00%.
After adjusting the Si content to 5% or less and in the range of 0.04 to 0.10%, molten steel is injected and solidified using a submerged nozzle without gas injection. A method for producing sulfur multilayer free-cutting steel by continuous casting, which is characterized by producing free-cutting steel with excellent properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24900989A JPH03114625A (en) | 1989-09-27 | 1989-09-27 | Production of sulphur double layered free cutting steel with continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24900989A JPH03114625A (en) | 1989-09-27 | 1989-09-27 | Production of sulphur double layered free cutting steel with continuous casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03114625A true JPH03114625A (en) | 1991-05-15 |
JPH0587348B2 JPH0587348B2 (en) | 1993-12-16 |
Family
ID=17186653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24900989A Granted JPH03114625A (en) | 1989-09-27 | 1989-09-27 | Production of sulphur double layered free cutting steel with continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03114625A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017106104A (en) * | 2015-11-27 | 2017-06-15 | 新日鐵住金株式会社 | Sulfur material added to molten steel, and method for producing sulfur-added steel |
-
1989
- 1989-09-27 JP JP24900989A patent/JPH03114625A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017106104A (en) * | 2015-11-27 | 2017-06-15 | 新日鐵住金株式会社 | Sulfur material added to molten steel, and method for producing sulfur-added steel |
Also Published As
Publication number | Publication date |
---|---|
JPH0587348B2 (en) | 1993-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6918969B2 (en) | Cast steel and steel material with excellent workability, method for processing molten steel therefor and method for manufacturing the cast steel and steel material | |
CN115821150B (en) | Control method for avoiding bubble defect of welding rod steel H08A | |
JPH03114625A (en) | Production of sulphur double layered free cutting steel with continuous casting | |
US3990887A (en) | Cold working steel bar and wire rod produced by continuous casting | |
JP3395699B2 (en) | Method for producing ferritic stainless steel | |
JPH0464767B2 (en) | ||
JP3474451B2 (en) | Manufacturing method of continuous cast billet of mild steel | |
JP3505389B2 (en) | Steel for strip, Si-killed steel, and production method by continuous casting | |
JP4250008B2 (en) | Manufacturing method of steel for strip steel | |
US4405381A (en) | Steel products such as bars, compositionally non-rimming and internally aluminum killed, having good surface condition | |
JP3660811B2 (en) | Steel wire rod and manufacturing method thereof | |
JP3631629B2 (en) | Mild steel for strips and its manufacturing method | |
SU1073296A1 (en) | Semikilled steel deoxidation process | |
JPH04127946A (en) | Method for continuously casting bloom/billet for bar and wire rod | |
JPH06114500A (en) | Production of low-carbon sulfur free-cutting steel | |
JPH06212237A (en) | Prduction of high carbon steel for high strength extra fine wire | |
JP2000042698A (en) | Method for continuously casting silicon killed steel billet | |
CA1165515A (en) | Steel products such as bars, compositionally non- rimming and internally aluminum killed, having good surface condition | |
CN117737599A (en) | High-nitrogen vanadium microalloyed steel and preparation method thereof | |
JPH0745094B2 (en) | Manufacturing method of free-cutting steel by continuous casting | |
KR840001144B1 (en) | Process for continuous casting of a slightly deoxidized steel slab | |
JP2008043979A (en) | Continuous casting method for low aluminum steel | |
JP2001089807A (en) | Treating method of molten steel | |
JP3843590B2 (en) | Method for producing Ti deoxidized ultra-low carbon steel | |
JPH0225966B2 (en) |