JPH03114268A - Thin film diode - Google Patents

Thin film diode

Info

Publication number
JPH03114268A
JPH03114268A JP24385690A JP24385690A JPH03114268A JP H03114268 A JPH03114268 A JP H03114268A JP 24385690 A JP24385690 A JP 24385690A JP 24385690 A JP24385690 A JP 24385690A JP H03114268 A JPH03114268 A JP H03114268A
Authority
JP
Japan
Prior art keywords
layer
electrode
cuprous oxide
copper
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24385690A
Other languages
Japanese (ja)
Inventor
Sugiro Shimoda
杉郎 下田
Yuichi Haruta
春田 裕一
Shingo Matsui
松井 眞悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP24385690A priority Critical patent/JPH03114268A/en
Publication of JPH03114268A publication Critical patent/JPH03114268A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the title thin film diode to be easily manufactured in a compact manufacturing facility by a method wherein a cuprous oxide layer to be electrolytically separated forming a Schottky junction with the first electrode layer as well as the second electrode layer forming ohmic junction are formed. CONSTITUTION:A substrate 10 with an electroless plated layer formed thereon is immersed in an electrolyte using the electroless plated layer as a cathode as well as a coper electrode as an anode and then the substrate 10 is supplied with direct current for one minute to produce a cuprous oxide on the electroless plated layer. Next, a resist layer is formed while any needless part of the cuprous oxide layer 12 is etched away to form the pattern of the cuprous oxide layer 12. Furthermore, another resist layer is formed on the specified part of the non-electrolytic plated layer while the copper of the electroless plated layer of the needless part and a nickel are simultaneously etched away to form another pattern of a scanning electrode 11 (copper).

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明は、液晶、エレクトロルミネセンス(EL) 、
エレクトロクロミズム(EC)などの表示要素からなる
アクティブマトリックス型表示装置に好適に用いられる
薄膜ダイオードに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to liquid crystals, electroluminescence (EL),
The present invention relates to a thin film diode that is suitably used in an active matrix display device that includes display elements such as electrochromism (EC).

[従来の技術1 液晶、エレクトロルミネセンス(EL)、エレクトロク
ロミズム(EC)などの表示要素を用いたマトリックス
型表示装置において、表示パネルのコントラスト比を低
下させることなく画素数を増やし、大面積の表示パネル
を実現する方式として、各画素に薄膜状のトランジスタ
ー素子、ダイオード素子などのスイッチ素子を設けたア
クティブマトリックス方式が注目されている。
[Conventional technology 1] In matrix display devices using display elements such as liquid crystal, electroluminescence (EL), and electrochromism (EC), the number of pixels is increased without reducing the contrast ratio of the display panel, and it is possible to As a method for realizing a display panel, an active matrix method, in which each pixel is provided with a switching element such as a thin film transistor element or diode element, is attracting attention.

特にダイオード素子はトランジスター素子よりもスイッ
チ素子の製造工程が簡単であるため、高い歩留りが期待
できるものと考えられる。
In particular, since the manufacturing process of diode elements is simpler than that of transistor elements, it is thought that high yields can be expected.

従来、ダイオード素子としては、半導体層に水素化アモ
ルファスシリコン(特開昭60−138515号公報)
、水素化アモルファスシリコンカーバイト(特開昭60
−50962号公報)、ポリシリコン(特開昭58−7
9280号公報)などを用いたものが知られている。
Conventionally, diode elements have been made using hydrogenated amorphous silicon (Japanese Unexamined Patent Publication No. 138515/1983) as a semiconductor layer.
, hydrogenated amorphous silicon carbide (JP-A-60)
-50962), polysilicon (Japanese Unexamined Patent Publication No. 58-7
9280) and the like are known.

[発明が解決しようとする課題] しかし、これらの水素化アモルファスシリコン、水素化
アモルファスシリコンカーバイトまたはポリシリコンな
どの半導体層を用いたダイオード素子は、これらの半導
体層の製造にスパッタリング法、 CVD法などを用い
る必要があるため、真空成膜装置を使用する必要がある
[Problems to be Solved by the Invention] However, diode elements using semiconductor layers such as hydrogenated amorphous silicon, hydrogenated amorphous silicon carbide, or polysilicon require sputtering or CVD methods to manufacture these semiconductor layers. It is necessary to use a vacuum film forming apparatus.

従って、多数の薄膜ダイオードを形成したアクティブマ
トリックス基板を大量に製造するためには大規模な製造
設備が必要であるという問題があり、製造コストが高く
なるという不利もある。
Therefore, there is a problem in that large-scale manufacturing equipment is required to mass-produce active matrix substrates on which a large number of thin film diodes are formed, and there is also the disadvantage of increased manufacturing costs.

そこで、本発明の目的は、真空成膜装置などの特殊な装
置を使用する必要がなく、小型の製造設備で簡便に製造
することができる薄膜ダイオードを提供することにある
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a thin film diode that does not require the use of special equipment such as a vacuum film forming apparatus and can be easily manufactured using small manufacturing equipment.

[課題を解決するための手段1 本発明は、前記の課題を解決するために、基板上に無電
解めっきによって形成された銅層からなる第1の電極と
、該第1の電極上に電解析出され、第1の電極層とショ
ットキー接合を形成する酸化第1銅層と、該酸化第1銅
層上に形成され、酸化第1銅層とオーミック接合を形成
する第2の電極層とを有する薄膜ダイオードを提供する
ものである。
[Means for Solving the Problems 1] In order to solve the above-mentioned problems, the present invention provides a first electrode made of a copper layer formed on a substrate by electroless plating, and an electrode on the first electrode. A cuprous oxide layer that is analyzed and forms a Schottky junction with the first electrode layer, and a second electrode layer that is formed on the cuprous oxide layer and forms an ohmic contact with the cuprous oxide layer. The present invention provides a thin film diode having the following.

本発明の薄膜ダイオードを形成する基板の材料としては
、例えばガラス、エポキシ樹脂、ポリエステル、ポリウ
レタン、ポリイミドなどの絶縁性材料やこれらの絶縁性
材料にニッケル、銀、クロム、酸化インジウムスズ、酸
化インジウム、酸化スズ、酸化スズ−アンチモンなどの
導電層を形成した基板を挙げることができる。
Examples of materials for the substrate forming the thin film diode of the present invention include insulating materials such as glass, epoxy resin, polyester, polyurethane, and polyimide, and nickel, silver, chromium, indium tin oxide, indium oxide, etc. Examples include substrates on which conductive layers such as tin oxide and tin oxide-antimony are formed.

本発明の無電解メッキで基板上に形成される第1の銅電
極層の厚さは、通常、0.1〜5μmで、この電極層が
薄すぎると欠陥が生じやすくなり、厚すぎると電極層の
剥離が生じやすくなる。なお、第1の電極層は、半導体
層を形成した後にパターン状に形成することもできる。
The thickness of the first copper electrode layer formed on the substrate by electroless plating of the present invention is usually 0.1 to 5 μm; if this electrode layer is too thin, defects are likely to occur; if it is too thick, the Peeling of layers is likely to occur. Note that the first electrode layer can also be formed in a pattern after forming the semiconductor layer.

第1の銅電極層上に電解析出で半導体層として形成され
る酸化第1銅層の厚さは、通常、0.01〜10μm、
好ましくは0.1〜5μmで、この半導体層が薄すぎる
と欠陥が生じやすく、厚すぎるとダイオードの抵抗が太
き(なりすぎる。
The thickness of the cuprous oxide layer formed as a semiconductor layer by electrolytic deposition on the first copper electrode layer is usually 0.01 to 10 μm,
The thickness is preferably 0.1 to 5 μm; if this semiconductor layer is too thin, defects are likely to occur, and if it is too thick, the resistance of the diode becomes too thick.

酸化第1銅を電解析出により形成する際に用いる電解液
としては、例えば■無水硫酸第2銅または硫酸第2銅五
永和物0.1〜1モル/2、■水酸化カルシウム、水酸
化ナトリウム、アンモニア。
The electrolytic solution used when forming cuprous oxide by electrolytic deposition includes, for example, ■ anhydrous cupric sulfate or cupric sulfate pentate 0.1 to 1 mol/2, ■ calcium hydroxide, hydroxide. Sodium, ammonia.

トリエチルアミンなどの塩基性化合物0.1〜lOモル
/2、および■塩基性溶液下において銅と錯体形成が可
能な配位子化合物0.1〜5モル/βを水に溶解させた
金属錯体水溶液が挙げられる。
An aqueous metal complex solution in which 0.1 to 10 mol/2 of a basic compound such as triethylamine and 0.1 to 5 mol/β of a ligand compound capable of forming a complex with copper in a basic solution are dissolved in water. can be mentioned.

この電解液に使用される配位子化合物としては、例えば
アスパラギン酸、乳酸、エチレンジアミンニ酢酸、エチ
レンジアミン四酢酸、プロピレンジアミン四酢酸、イミ
ノニ酢酸、マロン酸、ニトリロ三酢酸またはこれら配位
子化合物のナトリウム塩などが用いられ、塩基性水溶液
中に可溶な金属錯体が形成できれば配位子化合物は特に
制限されない。
Examples of the ligand compounds used in this electrolytic solution include aspartic acid, lactic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, propylenediaminetetraacetic acid, iminoniacetic acid, malonic acid, nitrilotriacetic acid, or sodium of these ligand compounds. The ligand compound is not particularly limited as long as a salt or the like can be used and a metal complex soluble in a basic aqueous solution can be formed.

陰極と陽極の間に印加する電圧は、通常、0.01〜1
Ov(DC)、好ましくは0.05〜IV (DC) 
テあり、酸化第1銅を析出させる電極槽に流れる電流の
電流密度は、通常、0.01〜50mA/cが、好まし
くは1〜20mA/cm”である。電流密度が低すぎる
と、酸化第2銅(Cub)が析出しやす(なり、一方高
すぎると銅が析出しやすくなる。
The voltage applied between the cathode and the anode is usually 0.01 to 1
Ov(DC), preferably 0.05-IV(DC)
The current density of the current flowing through the electrode bath for depositing cuprous oxide is usually 0.01 to 50 mA/c, preferably 1 to 20 mA/cm. If the current density is too low, oxidation Cupric (Cub) tends to precipitate (on the other hand, if the temperature is too high, copper tends to precipitate).

また電解液の温度は、電解液が凝固もしくは沸騰しない
範囲であればいずれの温度でもよいが、30〜90℃の
範囲にあることが好ましい。電解液温度が低すぎると、
酸化第2銅が析出すやすくなる。
Further, the temperature of the electrolytic solution may be any temperature as long as the electrolytic solution does not solidify or boil, but is preferably in the range of 30 to 90°C. If the electrolyte temperature is too low,
Cupric oxide tends to precipitate.

以上に述べた条件による電解析出法によって、比抵抗1
01〜106Ω・cmの酸化第1銅からなる半導体層が
形成される。
By the electrolytic deposition method under the conditions described above, a resistivity of 1
A semiconductor layer made of cuprous oxide having a thickness of 01 to 10 6 Ω·cm is formed.

該半導体層の上に形成される第2の電極層は導電性材料
からなる膜であり、例えばクロム、ニッケル、銀、金、
炭素などからなる導電膜を挙げることができる。
The second electrode layer formed on the semiconductor layer is a film made of a conductive material, such as chromium, nickel, silver, gold,
A conductive film made of carbon or the like can be mentioned.

これらの第2の電極層の厚さは、通常、0.1〜5μm
で、この電極層が薄すぎると欠陥が生じやす(なり、厚
すぎると電極層の剥離が生じやすくなる。
The thickness of these second electrode layers is usually 0.1 to 5 μm.
If this electrode layer is too thin, defects are likely to occur (and if it is too thick, the electrode layer is likely to peel off).

第2の電極層は、例えばクロム、ニッケル。The second electrode layer is made of, for example, chromium or nickel.

銀、金、炭素などの導電膜をスパッタ法、蒸着法、無電
解メッキ法などの方法で形成した後、エツチングによっ
てパターン状にすることにより得ることができ、また、
銀、金などの金属粒子をバインダー中に分散させたペー
ストを印刷等によりパターン状に塗布し、焼付けて形成
することもできる。電極層が炭素膜により形成される場
合は、炭素粒子をバインダー中に分散させたペーストを
印刷等によりパターン状に塗布し、乾燥することによっ
て得ることができる。
It can be obtained by forming a conductive film of silver, gold, carbon, etc. by a method such as sputtering, vapor deposition, or electroless plating, and then patterning it by etching.
It can also be formed by applying a paste in which metal particles such as silver or gold are dispersed in a binder in a pattern by printing or the like, and then baking the paste. When the electrode layer is formed of a carbon film, it can be obtained by applying a paste in which carbon particles are dispersed in a binder in a pattern by printing or the like, and drying it.

前記ダイオード素子が整流特性を有し、スイッチ素子と
して機能するためには、第1の電極である銅層と半導体
層である酸化第1銅層でショットキー接合を形成するこ
とが必要であるが、酸化第1銅層な電解析出で形成する
際、第1の電極層を無電解メッキにより形成することに
より良好なショットキー接合が形成される。
In order for the diode element to have rectifying properties and function as a switch element, it is necessary to form a Schottky junction with the copper layer that is the first electrode and the cuprous oxide layer that is the semiconductor layer. When forming a cuprous oxide layer by electrolytic deposition, a good Schottky junction can be formed by forming the first electrode layer by electroless plating.

【実施例1 以下、図面を参照して本発明の実施例を詳細に説明する
[Embodiment 1] Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図に示す本発明の薄膜ダイオードを形成した液晶表
示装置用アクティブマトリックス基板を下記のようにし
て製造した。
An active matrix substrate for a liquid crystal display on which the thin film diode of the present invention shown in FIG. 1 was formed was manufactured in the following manner.

、なお、第1図(A)は平面図であり、第1図(B)は
第1図(A)におけるB−8’線に沿った断面図である
1(A) is a plan view, and FIG. 1(B) is a sectional view taken along line B-8' in FIG. 1(A).

(1)寸法1 mmX 50mmX 60mmの酸化ケ
イ素コートガラス基板10上にニッケル無電解メッキ法
によりニッケル層11Aを形成した。無電解メッキの方
法は公知の方法である。すなわち、ガラ(2) ス基板lOを洗浄し、塩化パラジウム水溶液に浸漬して
活性化した後、硫酸ニッケル2註リウムlog#2,ク
エン酸ナトリウム5g/2および乳酸3g#/βからな
るメッキ浴に浸漬してメッキを行った後水洗した。かく
して0.2μm厚のニッケルメッキ層を得た。さらにこ
のニッケル層の上に常法に従った無電解メッキ法により
銅層を形成した。硫酸銅5g/ρ。
(1) A nickel layer 11A was formed on a silicon oxide coated glass substrate 10 having dimensions of 1 mm x 50 mm x 60 mm by electroless nickel plating. The electroless plating method is a known method. That is, after cleaning the glass (2) substrate 1O and immersing it in an aqueous palladium chloride solution to activate it, a plating bath consisting of nickel sulfate 2 log #2, sodium citrate 5 g/2 and lactic acid 3 g #/β was applied. After plating, it was washed with water. In this way, a 0.2 μm thick nickel plating layer was obtained. Furthermore, a copper layer was formed on this nickel layer by a conventional electroless plating method. Copper sulfate 5g/ρ.

ロッシェル塩25g/l,ホルマリンlog/I2およ
び水酸化ナトリウム7g#2からなるメッキ浴を用いた
。無電解ニッケルメッキを施したガラス基板を洗浄後,
塩化パララム水溶液に浸漬し活性化した後、上記メッキ
浴に浸漬しメッキを行った後水洗した。かくして、厚さ
0、15μmの銅メッキ層を得た。
A plating bath consisting of 25 g/l of Rochelle salt, formalin log/I2 and 7 g of sodium hydroxide #2 was used. After cleaning the glass substrate with electroless nickel plating,
After being immersed in an aqueous pararam chloride solution for activation, it was immersed in the above plating bath for plating, and then washed with water. In this way, a copper plating layer with a thickness of 0.15 μm was obtained.

一方、ガラス容器を用い、硫酸第2銅五水和物99.8
g 、水酸化ナトリウム158.2gおよび乳酸270
. 2gを純水中に溶解し、銅錯体を含む電解液100
0 m12を調製した。
On the other hand, using a glass container, cupric sulfate pentahydrate 99.8
g, sodium hydroxide 158.2g and lactic acid 270g
.. Electrolyte solution containing copper complex 100 g dissolved in pure water
0 ml was prepared.

(3) (4) このようにして調製した電解液に、上記(1)で無電解
メッキ層を形成した基板を浸漬し、該無電解メッキ層を
陰極とし、陽極として別途銅電極を電解液に浸漬し、電
解液の温度60℃、陰極側電流密度10mA/cm”の
条件で直流電流を1分間通電したところ、無電解メッキ
層上に約1μmの膜厚の酸化第1銅が生成した。
(3) (4) The substrate on which the electroless plating layer was formed in (1) above is immersed in the electrolyte solution prepared in this way, and the electroless plating layer is used as a cathode, and a separate copper electrode is placed as an anode in the electrolyte solution. When a direct current was applied for 1 minute at an electrolyte temperature of 60°C and a current density of 10 mA/cm on the cathode side, cuprous oxide with a thickness of about 1 μm was generated on the electroless plating layer. .

次に、形成した酸化第1銅層のうち、ダイオードとなる
部分にリソグラフィーによってレジスト層を形成し、ア
ンモニア17g/9の水溶液をエツチング剤として酸化
第1銅層の不要部分をエツチングにより除去し、酸化第
1銅層12のパターンを形成した。
Next, a resist layer is formed by lithography on the portion of the formed cuprous oxide layer that will become the diode, and unnecessary portions of the cuprous oxide layer are removed by etching using an aqueous solution of 17 g/9 ammonia as an etching agent. A pattern of the cuprous oxide layer 12 was formed.

さらに前記無電解メッキ層の所定部分に、リソグラフィ
ーによってレジスト層を形成し、塩化第2鉄50g/β
および塩酸50g/I2の水溶液に基板を浸漬し、不要
部分の無電解メッキ層の銅とニッケルを同時にエツチン
グ除去し、走査電極11のパターンを形成した。
Furthermore, a resist layer was formed on a predetermined portion of the electroless plating layer by lithography, and 50 g/β of ferric chloride was formed.
Then, the substrate was immersed in an aqueous solution containing 50 g of hydrochloric acid/I2, and unnecessary portions of the copper and nickel of the electroless plating layer were simultaneously etched away to form a pattern for the scanning electrodes 11.

(5)次に、絶縁層13として環化ポリイソプレン(商
品名: ClR702、日本合成ゴム■製)のパターン
をフォトリソグラフィーにより形成した。
(5) Next, as the insulating layer 13, a pattern of cyclized polyisoprene (trade name: ClR702, manufactured by Japan Synthetic Rubber ■) was formed by photolithography.

(6)次にITOコーティング液をスクリーン印刷し、
透明電極14のパターンを形成した。
(6) Next, screen print the ITO coating liquid,
A pattern of transparent electrodes 14 was formed.

(7)最後に銀ペーストをスクリーン印刷し、電極15
を形成し、第1図に示されたダイオード素子を有するマ
トリックス基板を得た。
(7) Finally, screen print the silver paste and
A matrix substrate having diode elements shown in FIG. 1 was obtained.

得られたマトリックス基板のダイオード素子のI−V特
性を測定したところ、第2図に実線で示す整流特性が確
認された。
When the IV characteristics of the diode elements of the obtained matrix substrate were measured, the rectification characteristics shown by the solid line in FIG. 2 were confirmed.

[比較例] 実施例における銅層の形成を無電解メッキに替えて蒸着
法により形成し、他は実施例と同条件でアクティブマト
リックス基板を製造した。得られたマトリックス基板の
ダイオード素子の■−■特性を測定したところ、第2図
に点線で示す整流特性が観測された。明らかに本発明の
ダイオード素子が逆方向電流が小さく、スイッチ素子と
して特性がすぐれていることが確認された。
[Comparative Example] An active matrix substrate was manufactured under the same conditions as in the example except that the copper layer in the example was formed by vapor deposition instead of electroless plating. When the ■-■ characteristics of the diode element of the obtained matrix substrate were measured, the rectification characteristics shown by the dotted line in FIG. 2 were observed. It was clearly confirmed that the diode element of the present invention has a small reverse current and has excellent characteristics as a switch element.

[発明の効果] 以上説明したように、本発明の薄膜ダイオードは、半導
体層の形成に真空成膜装置を使用する必要がなく、小型
の製造設備で簡便に製造することができる。また、製造
コストを低減できるので廉価なアクティブマトリックス
型表示装置を提供することができる利点も有する。
[Effects of the Invention] As explained above, the thin film diode of the present invention does not require the use of a vacuum film forming apparatus for forming the semiconductor layer, and can be easily manufactured using small-sized manufacturing equipment. Furthermore, since manufacturing costs can be reduced, there is also the advantage that an inexpensive active matrix type display device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明による薄膜ダイオードを用いた液
晶表示装置用アクティブマトリックス基板の平面図であ
り、第1図(B)はその断面図、第2図は本発明の薄膜
ダイオード素子および比較例の薄膜ダイオード素子の整
流特性を示すI−V特性曲線である。 11・・・走査電極、 12・・・酸化第1銅、 13・・・絶縁層、 14・・・透明電極、 15・・・電極。 第1 図
FIG. 1(A) is a plan view of an active matrix substrate for a liquid crystal display device using a thin film diode according to the present invention, FIG. 1(B) is a cross-sectional view thereof, and FIG. It is an IV characteristic curve which shows the rectification characteristic of the thin film diode element of a comparative example. 11... Scanning electrode, 12... Cuprous oxide, 13... Insulating layer, 14... Transparent electrode, 15... Electrode. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に無電解メッキによって形成された銅層か
らなる第1の電極と、 該第1の電極上に電解析出され、第1の電極層とショッ
トキー接合を形成する酸化第1銅層と、 該酸化第1銅層上に形成され、酸化第1銅層とオーミッ
ク接合を形成する第2の電極層とを有することを特徴と
する薄膜ダイオード。
(1) A first electrode made of a copper layer formed on a substrate by electroless plating, and an oxidized first electrode electrolytically deposited on the first electrode to form a Schottky junction with the first electrode layer. A thin film diode comprising: a copper layer; and a second electrode layer formed on the cuprous oxide layer and forming an ohmic contact with the cuprous oxide layer.
JP24385690A 1990-09-17 1990-09-17 Thin film diode Pending JPH03114268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24385690A JPH03114268A (en) 1990-09-17 1990-09-17 Thin film diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24385690A JPH03114268A (en) 1990-09-17 1990-09-17 Thin film diode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01157321 Division 1989-06-20 1989-06-20

Publications (1)

Publication Number Publication Date
JPH03114268A true JPH03114268A (en) 1991-05-15

Family

ID=17109981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24385690A Pending JPH03114268A (en) 1990-09-17 1990-09-17 Thin film diode

Country Status (1)

Country Link
JP (1) JPH03114268A (en)

Similar Documents

Publication Publication Date Title
US6897135B2 (en) Method for fabricating metal interconnections
JP3410667B2 (en) Reflective liquid crystal display device and method of manufacturing the same
US6798032B2 (en) Metal film pattern and manufacturing method thereof
JPH03109526A (en) Active matrix substrate for liquid crystal display device
US6319741B1 (en) Method for fabricating metal interconnections and wiring board having the metal interconnections
TWI278522B (en) Film forming method, electronic device and electronic apparatus
JP2010040897A (en) Organic thin film transistor, production method thereof, and electronic device
US4478690A (en) Method of partially metallizing electrically conductive non-metallic patterns
EP2863435A1 (en) Array substrate, manufacturing method of same, and display device
JP2003051463A (en) Method of forming metal wiring and metal wiring substrate using the method
JPH03114268A (en) Thin film diode
US6806189B2 (en) Method of silver (AG) electroless plating on ITO electrode
JPH04302436A (en) Thin-film semiconductor element and manufacture thereof
JP2778133B2 (en) Thin film transistor array and method of manufacturing the same
KR100333248B1 (en) A method for fabricating a TFT
JPH04357692A (en) Thin film heater and manufacture thereof
JPH0575238A (en) Circuit board and its manufacture
JPS614094A (en) Electro-optic function element and manufacture thereof
JP4341380B2 (en) Flexible wiring board, manufacturing method of flexible wiring board, electronic device, and electronic apparatus
JPH0496022A (en) Active matrix substrate and production thereof and liquid crystal display element formed by using this substrate
JP2738439B2 (en) Manufacturing method of liquid crystal display device
JPH04302173A (en) Thin film diode
JPS6174365A (en) Thin film semiconductor element and manufacture thereof
JPH11167989A (en) Film formation method and manufacture of display panel
JPS62270921A (en) Liquid crystal device