JPH03113118A - Bearing ring and manufacture thereof - Google Patents

Bearing ring and manufacture thereof

Info

Publication number
JPH03113118A
JPH03113118A JP24764989A JP24764989A JPH03113118A JP H03113118 A JPH03113118 A JP H03113118A JP 24764989 A JP24764989 A JP 24764989A JP 24764989 A JP24764989 A JP 24764989A JP H03113118 A JPH03113118 A JP H03113118A
Authority
JP
Japan
Prior art keywords
heat
resistant steel
ceramic
ring
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24764989A
Other languages
Japanese (ja)
Inventor
Kazuo Toyama
外山 和男
Mitsusachi Yamamoto
三幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24764989A priority Critical patent/JPH03113118A/en
Publication of JPH03113118A publication Critical patent/JPH03113118A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a bearing ring whose tracking surface is hard to be damaged, being excellent is heat resistance, and can be manufactured with a low cost by providing intermediate layers whose compositions are different from one other between the ring like tracking surface made of ceramic and an anti- tracking surface made of heat resistant steel. CONSTITUTION:Parts on the side of a rolling body 3, that is, track surfaces, of inner and outer rings 1, 2 are made of ceramic and anti-tracking sides are made of heat resistant steel. An intermediate layer therebetween is formed by sintering a ring like multilayer green consisting of mixture powder of heat- resistant steel and ceramic having different mixture ratio continuously or stepwise, in non-oxidation atomosphere. Generation of damage on the tracking surface is prevented due to ceramic, high toughness is obtained due to heat- resistant steel. Concentration of thermal strain on an interface of between metal and ceramic is prevented due to the intermediate layer. The products are obtained with a low cost.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はジェットエンジンやガスタービン、あるいは
製鉄設備等において、長時間高温に曝される機械要素に
用いられる軸受軌道輪およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a bearing ring used in a mechanical element exposed to high temperatures for a long period of time, such as in a jet engine, gas turbine, or steel manufacturing equipment, and a method for manufacturing the same.

従来の技術 軸受軌道輪は相対的に連動する1物体間に、大きな変位
あるいは回転を許容しながら荷重を伝達するために用い
られる軸受を構成す、る主要な要素で、外輪および内輪
より成る。
BACKGROUND OF THE INVENTION Bearing races are the main elements constituting a bearing used to transmit loads between relatively interlocking objects while allowing large displacements or rotations, and are composed of an outer ring and an inner ring.

軸受軌道輪には、大きな荷重が作用しても変形しない高
強度と、転動体と繰返し接触してもその軌道面に剥離を
生じないための高硬度が要求される。
Bearing races are required to have high strength so that they do not deform even when large loads are applied to them, and high hardness so that their raceway surfaces do not peel off even when they repeatedly come into contact with rolling elements.

このため現在は軸受用材料としてJIS G4805に
規定される SUJ鋼や、JIS G4052に規定さ
れる構造用合金鋼を浸炭あるいは高周波焼入して使用し
ている。しかし、これらの材料では高温雰囲気で用いら
れる軸受としての機能が十分に発揮されないという欠点
がある。
For this reason, SUJ steel specified in JIS G4805 and structural alloy steel specified in JIS G4052 are currently used as bearing materials after being carburized or induction hardened. However, these materials have the disadvantage that they do not function satisfactorily as a bearing used in a high-temperature atmosphere.

そこで、このような高温雰囲気下における高温用軸受材
料として、JIS SKH4鋼やAMS M2O鋼が用
いられている。しかし、これらの材料は合金元素が多量
に添加されているため、偏析や巨大炭化物の析出・残留
等、製造上多くの問題があるばかりでなく、使用可能な
最高温度も 500℃が限界である。
Therefore, JIS SKH4 steel and AMS M2O steel are used as high-temperature bearing materials in such a high-temperature atmosphere. However, since these materials contain large amounts of alloying elements, they not only have many manufacturing problems such as segregation and precipitation/retention of giant carbides, but also have a maximum usable temperature limit of 500°C. .

一方、これらの問題を根本的に解決するため、最近では
セラミックスを利用した軸受が開発されている(N S
 K  Technical  J ournal  
No 。
On the other hand, in order to fundamentally solve these problems, bearings using ceramics have recently been developed (NS
K Technical Journal
No.

646 (1986)15参照)。646 (1986) 15).

しかしながら、セラミックスは非常に高い硬度と優れた
耐熱性を有しているが、きわめて延性に乏しく、加工が
困難であるという欠点を有して−る。したがって、製造
、組立て時に残留した微細なきすや使用中に発生した小
さな剥離が直ちに軸受軌道輪全体の破壊につながる危険
性がある。特に高温で使用される軸受には熱衝撃や熱応
力が作用することが多く、セラミックス軸受の実用化の
大きな問題となっている。
However, although ceramics have extremely high hardness and excellent heat resistance, they have the disadvantage of extremely poor ductility and are difficult to process. Therefore, there is a risk that fine scratches left during manufacturing and assembly or small peelings that occur during use will immediately lead to destruction of the entire bearing ring. In particular, thermal shock and thermal stress often act on bearings used at high temperatures, which poses a major problem in the practical application of ceramic bearings.

かかる対策として、軌道輪本体を耐熱鋼で製作し、嵌合
部以外の表面にTD処理などでセラミックスを被覆する
方法(特開昭61−92320号公報参照)が提案され
ているが、被覆層が薄いため(6μm。
As a countermeasure against this problem, a method has been proposed in which the bearing ring body is made of heat-resistant steel and the surface other than the fitting part is coated with ceramics by TD treatment (see Japanese Patent Application Laid-open No. 61-92320). Because it is thin (6 μm).

以上10〜15μm)高面圧軸受には適用できないとい
う制約がある。
10 to 15 μm) There is a restriction that it cannot be applied to high surface pressure bearings.

また、別の方法として軌道面側をセラミックスリング、
反軌道面側を耐熱鋼リングとし、これらを焼きばめする
ことも考えられるが1、この方法は両者の熱膨張係数が
異なるため熱負荷に対する抵抗が著しく低下するという
欠点を有する。
Another method is to use a ceramic ring on the raceway side.
It is conceivable to use a heat-resistant steel ring on the opposite raceway surface side and shrink-fit them, but this method has the disadvantage that the resistance to heat load is significantly reduced because the coefficients of thermal expansion are different between the two rings.

発明が解決しようとする課題 従来の軸受軌道輪は前記した通り、基本的には単一素材
であるため、高強度・高硬度と靭性・延性という相反す
る機能を高温下で両立させることは困難である。
Problems to be Solved by the Invention As mentioned above, conventional bearing rings are basically made of a single material, so it is difficult to achieve the contradictory functions of high strength/hardness and toughness/ductility at high temperatures. It is.

かかる対策として、この考案は軌道面側には耐熱性と高
い硬度を有するセラミックスを用い、反軌道面側には耐
熱性と靭性・延性に優れた耐熱鋼を利用し、かつ素材を
複合化することによって、500℃以上の高温で長時間
使用しても変形せず、軌道面の剥離等の損傷に対する耐
久性にも優れていて、しかもセラミックスのような脆性
破壊を生じない高温用軸受軌道輪と、この軸受軌道輪を
低コストで製造し得る方法を提案しようとするものであ
る。
As a countermeasure against this, this idea uses ceramics with heat resistance and high hardness on the raceway side, heat-resistant steel with excellent heat resistance, toughness, and ductility on the opposite raceway side, and uses composite materials. As a result, the high-temperature bearing raceway does not deform even when used for long periods at high temperatures of 500°C or higher, has excellent durability against damage such as raceway surface peeling, and does not cause brittle fracture like ceramics. The purpose of this paper is to propose a method of manufacturing this bearing ring at low cost.

課題を解決するための手段 近年、材料の組成を連続的に変化させ界面をなくし、熱
応力を低下させるという新しい材料の開発が進められて
いる。
Means to Solve the Problems In recent years, progress has been made in the development of new materials in which the composition of the material is continuously changed to eliminate interfaces and reduce thermal stress.

例えば、宇宙往還機の機体のように内外面温度差が10
00℃を超える部材において、高温側にセラミックスを
、低温側に金属を配し、このセラミックス−金属間を構
成するマイクロエレメント (成分、密度、ボイドなと
)を連続的に制御し熱応力を緩和させる材料等である(
日本金属学会誌第51巻第6号(19g?)525−5
29)。
For example, like the body of a spacecraft, the temperature difference between the inside and outside surfaces is 10
For components with temperatures exceeding 00℃, ceramics are placed on the high temperature side and metals are placed on the low temperature side, and the microelements (components, density, voids, etc.) that make up the ceramic-metal space are continuously controlled to alleviate thermal stress. (
Journal of the Japan Institute of Metals Vol. 51 No. 6 (19g?) 525-5
29).

この発明は基本的にはこの考え方を発展させ、高温部材
への金属とセラミックスの接合体の熱応力緩和に加え、
セラミックスのもつ高硬度機能と、金属の優れた延性、
靭性機能を効率的に利用したものである。
This invention basically develops this idea, and in addition to relaxing the thermal stress of a metal-ceramic bonded body to a high-temperature member,
The high hardness of ceramics and the excellent ductility of metals,
This effectively utilizes the toughness function.

すなわち、この発明は軌道面をセラミックス、反軌道面
を耐熱鋼とし、前記セラミックスと耐熱鋼の間に、連続
的に、または段階的に組成を変化させた中間層を介在さ
せて構成した軸受軌道輪を要旨とする。
That is, the present invention provides a bearing raceway in which the raceway surface is made of ceramics, the counter-raceway surface is made of heat-resistant steel, and an intermediate layer whose composition is changed continuously or stepwise is interposed between the ceramics and the heat-resistant steel. The gist is the circle.

また、その製造方法としては、実質的にセラミックスよ
りなるリング状の軌道面と、耐熱鋼からなるリング状の
反軌道面との間に、連続的に、または段階的に混合比の
異なる耐熱鋼粉とセラミックス粉の混合粉よりなるリン
グ状グリーンを挿入して予備成形品とし、この予備成形
品を非酸化性雰囲気で焼結する方法を要旨とし、 また、実質的にセラミックスよりなる板状グリーンと耐
熱鋼よりなる板状グリーンとの間に、連続的に、または
段階的に混合比の異なる耐熱鋼粉とセラミックス粉の混
合粉よりなる板状グリーンを介在させて板状多層グリー
ンとし、この板状多層グリーンをリング状に成形したの
ち、非酸化性雰囲気で焼結する方法を要旨とする。
In addition, as for its manufacturing method, between a ring-shaped raceway surface made essentially of ceramics and a ring-shaped counter-raceway surface made of heat-resistant steel, heat-resistant steel is mixed continuously or in stages with different mixing ratios. The gist is a method in which a ring-shaped green made of a mixed powder of powder and ceramic powder is inserted to form a preformed product, and this preformed product is sintered in a non-oxidizing atmosphere. A plate-shaped green made of a mixed powder of heat-resistant steel powder and ceramic powder with different mixing ratios is interposed continuously or stepwise between the plate-shaped green made of heat-resistant steel and a plate-shaped green made of heat-resistant steel to form a plate-shaped multilayer green. The gist is a method in which a plate-like multilayer green is formed into a ring shape and then sintered in a non-oxidizing atmosphere.

作    用 軌道面にセラミックスを用いるのは、高温(500℃以
下)に於て金属に比べ硬度の低下が極めて小さく、高い
面圧が繰り返し作用しても損傷が発生し難いためである
The reason why ceramics are used for the working raceway surface is that the decrease in hardness at high temperatures (below 500° C.) is extremely small compared to metals, and damage is difficult to occur even when high surface pressure is repeatedly applied.

反軌道面に耐熱鋼を用いるのは、高温(750℃以下)
に於ても強度の低下が少なく、かつセラミックスに比べ
著しく高い延性、靭性を有するためである。
Heat-resistant steel is used for the anti-raceway surface at high temperatures (750℃ or less).
This is because there is little decrease in strength even in the case of ceramics, and it has significantly higher ductility and toughness than ceramics.

セラミックスからなる軌道面と耐熱鋼からなる反対軌道
面との間を、連続的に、または段階的に変化させた中間
層で構成するのは、金属とセラミックスの界面では熱膨
張係数の相異により熱ひずみが集中し、温度変動(熱衝
撃や熱疲労)に対し容易に剥離を生じるため、このよう
な界面の存在を回避するためである。
The reason for constructing an intermediate layer between the raceway surface made of ceramics and the opposite raceway surface made of heat-resistant steel, which changes continuously or in stages, is due to the difference in coefficient of thermal expansion at the interface between metal and ceramics. This is to avoid the presence of such an interface since thermal strain concentrates and peeling easily occurs due to temperature fluctuations (thermal shock and thermal fatigue).

セラミックスと耐熱鋼との間の組成を連続的に、または
段階的に変える方法としては、溶射法および焼結法を用
いることができる。
A thermal spraying method and a sintering method can be used to continuously or stepwise change the composition between ceramics and heat-resistant steel.

単純なリング状部材の製造法には溶射法は適しているが
、軸受は軌道輪のように凹凸のある部材には機械加工が
必要となる。゛ 中間層は、予め準備した混合比の異なる耐熱鋼粉とセラ
ミックス粉の混合粉より例えば0.1〜0.211I1
1の板状グリーンを製作し、混合比の順に4〜5層重ね
てリングとするか、あるいは連続的に、または段階的に
混合比を変えながら耐熱銅粉とセラミックス粉を供給し
ながら板状多1層グリーンを製作する。
Although thermal spraying is suitable for manufacturing simple ring-shaped members, machining is required for bearings with uneven parts such as bearing rings.゛The intermediate layer is made of a mixed powder of heat-resistant steel powder and ceramic powder prepared in advance with different mixing ratios, for example, 0.1 to 0.211I1.
1, and stack 4 to 5 layers in the order of mixing ratio to form a ring, or continuously or stepwise change the mixing ratio while supplying heat-resistant copper powder and ceramic powder to the plate shape. Create a multi-layer green.

耐熱鋼粉とセラミックス粉の混合比は、連続的に、ある
いは段階的に変化するようにする。例えば、反軌道面で
ある耐熱鋼側よりセラミックス粉の耐熱鋼粉に対する混
合比を20 vo1%、40 vo1%、60 vo1
%、80 vo1%と変化させ、最終的に軌道面が実質
的にセラミックスからなるようにする。
The mixing ratio of heat-resistant steel powder and ceramic powder is changed continuously or stepwise. For example, from the heat-resistant steel side, which is the anti-raceway surface, the mixing ratio of ceramic powder to heat-resistant steel powder is 20 vo1%, 40 vo1%, and 60 vo1.
%, 80 vo1%, and finally the raceway surface is made substantially of ceramics.

しかし、前記セラミックス粉の耐熱鋼粉に対する混合比
は、急激に増加させるよりはなるべく徐々に増加させる
方が好ましい。
However, it is preferable to gradually increase the mixing ratio of the ceramic powder to the heat-resistant steel powder rather than to increase it rapidly.

また、この考案の軸受軌道輪は、最終的に焼結して製造
するが、この焼結は非酸化性雰囲気、例えば不活性ガス
雰囲気、真空中等の条件で行なうが、真空中で焼結する
ことが最も好ましい。
In addition, the bearing ring of this invention is finally manufactured by sintering, but this sintering is performed in a non-oxidizing atmosphere, such as an inert gas atmosphere, or in a vacuum. is most preferable.

また、焼結温度、時間は、焼結雰囲気の種類等によって
若干の差はあるが、後述する実施例で述べるように12
50℃X1hr程度の条件で十分である。
In addition, the sintering temperature and time may vary slightly depending on the type of sintering atmosphere, etc., but as described in the examples below,
Conditions of about 50° C. for 1 hr are sufficient.

実  施  例 第1図はこの発明の対象とする軸受の一例を示す概略図
、第2図はこの発明の製造方法の一例として、軸受軌道
輪を焼結法で製造する手順を示す説明図で、図(A)は
内輪の場合を、図(B)は外輪の場合をそれぞれ示す。
Embodiment FIG. 1 is a schematic diagram showing an example of a bearing to which the present invention is applied, and FIG. 2 is an explanatory diagram showing a procedure for manufacturing a bearing raceway by a sintering method as an example of the manufacturing method of the present invention. , Figure (A) shows the case of the inner ring, and Figure (B) shows the case of the outer ring.

第1図において、(1)は内輪、(2)は外輪、(3)
は転動体である。
In Figure 1, (1) is the inner ring, (2) is the outer ring, and (3)
is a rolling element.

焼結法で内輪(1)を製作する場合は第2図(A)に示
すごとく、セラミックスよりなるリング状の軌道面(1
−1)と、耐熱鋼からなるリング状の反軌道面(1−2
)と、耐熱鋼粉とセラミックス粉との混合粉からなる板
状グリーンの内、セラミックス混合比の高い板状グリー
ンを軌道面側になるようにリング状に成形して中間層(
1−3)とし、これらを重ねて組立てて予備成形品(1
−4)とし、この予備成形品(1−4)を非酸化性雰囲
気で焼結する。
When manufacturing the inner ring (1) using the sintering method, as shown in Figure 2 (A), a ring-shaped raceway surface (1) made of ceramic is used.
-1) and a ring-shaped anti-orbital surface made of heat-resistant steel (1-2
) and a plate-shaped green made of a mixed powder of heat-resistant steel powder and ceramic powder, the plate-shaped green with a high ceramic mixture ratio is formed into a ring shape so that it faces the raceway surface to form an intermediate layer (
1-3) and assemble them together to form a preformed product (1-3).
-4), and this preformed product (1-4) is sintered in a non-oxidizing atmosphere.

また、第2図CB)に示すごとく、外輪(2)の場合は
、セラミックスよりなるリング状の軌道面(2−1)と
、耐熱鋼からなるリング状の反軌道面(2−2)と、耐
熱鋼粉とセラミックス粉との混合粉からなる板状グリー
ンの内、セラミックス混合比の高い板状グリーンを軌道
面側にな、るようリング状に成形して中間層(2−3)
とし、これらを重ねて組立てて予備成形品(2−4)と
し、この予備成形品を非酸化性雰囲気で焼結する。
In addition, as shown in Figure 2 CB), the outer ring (2) has a ring-shaped raceway surface (2-1) made of ceramics and a ring-shaped anti-raceway surface (2-2) made of heat-resistant steel. Among the plate-shaped greens made of a mixed powder of heat-resistant steel powder and ceramic powder, the plate-shaped green with a high ceramic mixture ratio is formed into a ring shape so that it faces the raceway surface side, and an intermediate layer (2-3) is formed.
These are stacked and assembled to form a preform (2-4), and this preform is sintered in a non-oxidizing atmosphere.

次に、この発明に係る軌道輪の圧壊試験結果について説
明する。
Next, the results of a crush test of the bearing ring according to the present invention will be explained.

試験に供した供試体を以下に示す。The specimens used in the test are shown below.

供試体A:  セラミックス(SiiN+)単体供試体
B: 耐熱鋼(IN−100)単体供試体C:  軌道
面側にセラミックス(SisN4)リング、反軌道面側
に耐熱鋼(IN loo)リングとなるよう焼きばめ したもの 供試体D: 軌道面側から反軌道面側へ100%5is
N*/80%5isN++20%lN−100/60%
5isN4+40%lN−100/40%5isN4+
60%lN−100/20%5fsN++80%lN−
1007100%IN〜100と5層のグリーンを重ね
て焼結した本発明品 供試体はいずれも単列深溝玉軸受# 6204であり、
予備成形後、1250℃X lhr真空中で焼結した後
、軌道面のみ仕上研摩した。供試体Cはリングを同条件
で焼結後、嵌合面及び軌道面を研摩し、焼きばめしたも
のである。バインダにはワックスを用いた。
Specimen A: Single ceramic (SiiN+) Specimen B: Single heat-resistant steel (IN-100) Specimen C: Ceramic (SisN4) ring on the raceway side and heat-resistant steel (IN loo) ring on the opposite raceway side. Shrink-fitted specimen D: 100% 5is from raceway side to counter-raceway side
N*/80%5isN++20%lN-100/60%
5isN4+40%lN-100/40%5isN4+
60%lN-100/20%5fsN++80%lN-
The specimens of the present invention, in which 1007100%IN~100 and 5 layers of green were stacked and sintered, were single-row deep groove ball bearings #6204,
After preforming, it was sintered in a vacuum at 1250°C, and then only the raceway surface was finish polished. Specimen C was obtained by sintering the ring under the same conditions, polishing the fitting surface and raceway surface, and shrink-fitting the ring. Wax was used as the binder.

これらを第3図に示す方法で圧壊試験を行ない、第4図
の結果を得た。第3図中、(10)は供試体、(11)
はベース、 (12)は油圧カム、 (13)は変位計
、(工4)は高温槽である。
These were subjected to a crush test using the method shown in FIG. 3, and the results shown in FIG. 4 were obtained. In Figure 3, (10) is the specimen, (11)
is the base, (12) is the hydraulic cam, (13) is the displacement gauge, and (4) is the high temperature tank.

第4図より、供試体Aは低荷重で脆性破壊するのに対し
、供試体Bは大きく変形後破壊した。
From FIG. 4, it can be seen that specimen A suffered brittle fracture under a low load, while specimen B fractured after being significantly deformed.

供試体D(本発明品)は供試体Bに次いで変型量が大き
く、セラミックス軸受けの欠点が著しく改善されている
ことが認められる。
Specimen D (product of the present invention) had the second largest amount of deformation after Specimen B, and it is recognized that the defects of ceramic bearings have been significantly improved.

また、第1表は700℃における実体転勤疲労試験結果
であり、供試体B (IN−100)のみ8.5×10
°回で軌道面に剥離が発生したのに対し、軌道面が5i
sN+である供試体A、C,Dはいずれも 2×107
回で損傷が発生しなかった。この結果より、本発明品が
セラミックス軸受と同職の転勤疲労強度を有することが
確認された。
In addition, Table 1 shows the actual transfer fatigue test results at 700℃, and only specimen B (IN-100) was 8.5×10
While delamination occurred on the raceway surface in the 5i
Specimens A, C, and D, which are sN+, are all 2×107
No damage occurred at times. From this result, it was confirmed that the product of the present invention has the same level of transfer fatigue strength as a ceramic bearing.

また、熱疲労試験結果を第2表に示す。試験は供試体の
軌道面に0.1mmの予亀裂を導入し、700℃の炉へ
5分保持後ジェットエアーで空冷し、これを繰返した。
Further, the thermal fatigue test results are shown in Table 2. In the test, a 0.1 mm pre-crack was introduced into the raceway surface of the specimen, the specimen was kept in a furnace at 700° C. for 5 minutes, and then cooled with jet air, and this process was repeated.

第2表より、供試体A、C1の5isN4が各々2、5
X 10”、 1. LX 10”で破壊したのに対し
、供試体D(本発明品)はBと同様10”回で破断せず
、熱負荷に対し十分な抵抗力を有することが認められた
From Table 2, 5isN4 of specimens A and C1 are 2 and 5, respectively.
X 10", 1.L Ta.

発明の効果 この発明に係る軸受軌道輪は、前記実施例から明らかな
ごとく、セラミックス軸受と同等の高温転勤疲労強度を
有し、かつ金属材料に近い圧壊強度を有し、500℃以
上の高温でも安全に使用できる信頼性に富むものである
Effects of the Invention As is clear from the above examples, the bearing ring according to the present invention has a high-temperature transfer fatigue strength equivalent to that of a ceramic bearing, a crushing strength close to that of a metal material, and is durable even at high temperatures of 500°C or higher. It is highly reliable and safe to use.

また、複合化された素材は一般に単一素材よりコストが
アップするが、この発明方法は基本的にはセラミックス
ベアリングの製造方法に複合化工程が付加されるだけで
あるから、コストアップを最小に抑えることができ、経
済的にも特に問題はない。
In addition, although composite materials generally cost more than a single material, this invention method basically only adds a composite process to the manufacturing method of ceramic bearings, so the cost increase can be minimized. It can be suppressed and there is no particular problem economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の対象とする軸受の一例を示す概略図
、第2図はこの発明の製造方法の一例として、軸受軌道
輪を焼結法で製造する手順を示す説明図で、図(A)は
内輪の場合を、図(B)は外輪の場合をそれぞれ示す。 第3図はこの発明の実施例における圧壊試験方法を示を
概略図、第4図は同上の圧壊試験結果を示す図である。 10・・・供試体11・・・ベース 12・・・油圧カム    13・・・変位計14・・
・高温槽
FIG. 1 is a schematic view showing an example of a bearing to which the present invention is applied, and FIG. A) shows the case of the inner ring, and Figure (B) shows the case of the outer ring. FIG. 3 is a schematic diagram showing a crushing test method in an embodiment of the present invention, and FIG. 4 is a diagram showing the results of the same crushing test. 10...Specimen 11...Base 12...Hydraulic cam 13...Displacement meter 14...
・High temperature bath

Claims (1)

【特許請求の範囲】 1 軌道面をセラミックス、反軌道面を耐熱鋼とし、前記セ
ラミックスと耐熱鋼の間に、連続的に、または段階的に
組成を変化させた中間層を介在させて構成したことを特
徴とする軸受軌道輪。 2 実質的にセラミックスよりなるリング状の軌道面と耐熱
鋼からなるリング状の反軌道面との間に、連続的に、ま
たは段階的に混合比の異なる耐熱鋼粉とセラミックス粉
の混合粉よりなるリング状グリーンを挿入して予備成形
品とし、この予備成形品を非酸化性雰囲気で焼結するこ
とを特徴とする軸受軌道輪の製造方法。 3 実質的にセラミックスよりなる板状グリーンと耐熱鋼よ
りなる板状グリーンとの間に、連続的に、または段階的
に混合比の異なる耐熱鋼粉とセラミックス粉の混合粉よ
りなる板状グリーンを介在させて板状多層グリーンとし
、この板状多層グリーンをリング状に成形したのち、非
酸化性雰囲気で焼結することを特徴とする軸受軌道輪の
製造方法。
[Scope of Claims] 1 The raceway surface is made of ceramic, the counter-raceway surface is made of heat-resistant steel, and an intermediate layer whose composition is changed continuously or stepwise is interposed between the ceramic and the heat-resistant steel. A bearing ring characterized by: 2 Between the ring-shaped raceway surface substantially made of ceramics and the ring-shaped counter-raceway surface made of heat-resistant steel, a mixed powder of heat-resistant steel powder and ceramic powder with varying mixing ratios is continuously or stepwise. A method for producing a bearing raceway, which comprises inserting a ring-shaped green material to form a preform, and sintering the preform in a non-oxidizing atmosphere. 3 Between the plate-shaped green substantially made of ceramics and the plate-shaped green made of heat-resistant steel, a plate-shaped green made of a mixed powder of heat-resistant steel powder and ceramic powder with different mixing ratios is continuously or stepwise added. 1. A method for manufacturing a bearing raceway ring, which comprises interposing the plate-like multilayer green to form a plate-like multilayer green, forming the plate-like multilayer green into a ring shape, and then sintering the plate-like multilayer green in a non-oxidizing atmosphere.
JP24764989A 1989-09-22 1989-09-22 Bearing ring and manufacture thereof Pending JPH03113118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24764989A JPH03113118A (en) 1989-09-22 1989-09-22 Bearing ring and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24764989A JPH03113118A (en) 1989-09-22 1989-09-22 Bearing ring and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03113118A true JPH03113118A (en) 1991-05-14

Family

ID=17166630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24764989A Pending JPH03113118A (en) 1989-09-22 1989-09-22 Bearing ring and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03113118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105065471A (en) * 2015-07-15 2015-11-18 柳州市双铠工业技术有限公司 Non-seal bearing assembly method
CN105179488A (en) * 2015-07-15 2015-12-23 柳州市双铠工业技术有限公司 Assembly method for non-sealing bearing
CN105179465A (en) * 2015-07-15 2015-12-23 柳州市双铠工业技术有限公司 Ceramic bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105065471A (en) * 2015-07-15 2015-11-18 柳州市双铠工业技术有限公司 Non-seal bearing assembly method
CN105179488A (en) * 2015-07-15 2015-12-23 柳州市双铠工业技术有限公司 Assembly method for non-sealing bearing
CN105179465A (en) * 2015-07-15 2015-12-23 柳州市双铠工业技术有限公司 Ceramic bearing
CN105179488B (en) * 2015-07-15 2017-11-10 柳州市双铠工业技术有限公司 Without sealed bearing assembly method
CN105065471B (en) * 2015-07-15 2017-11-10 柳州市双铠工业技术有限公司 One kind is without sealed bearing assembly method
CN105179465B (en) * 2015-07-15 2018-06-01 柳州市双铠工业技术有限公司 Ceramic bearing

Similar Documents

Publication Publication Date Title
JP3157822B2 (en) Titanium poppet valve
US5904993A (en) Joint body of aluminum and silicon nitride and method of preparing the same
US6987339B2 (en) Flywheel secondary bearing with rhenium or rhenium alloy coating
US4703884A (en) Steel bonded dense silicon nitride compositions and method for their fabrication
CN106565244B (en) Surface nitriding method of particle-reinforced ternary layered ceramic part
CN114774907A (en) Preparation method of nano diamond particle enhanced wear-resistant coating on titanium alloy surface
US4704338A (en) Steel bonded dense silicon nitride compositions and method for their fabrication
KR950007666B1 (en) Low-friction structure and method of making the same
JPH03113118A (en) Bearing ring and manufacture thereof
EP0202886B1 (en) Canless method for hot working gas atomized powders
JPH06182409A (en) Combined sleeve roll and its production
WO1996015359A1 (en) Ceramic sliding part
US4983468A (en) Metallic slide members to be used with ceramic slide members and sliding assemblies using the same
CN109317681B (en) Titanium nitride reinforced iron-based composite layer/steel laminated wear-resistant material and preparation method thereof
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
CN112322942B (en) High-strength high-toughness oxidation-resistant metal-based self-lubricating composite material and preparation method thereof
JPS63242408A (en) Composite roll for rolling
EP0252728A2 (en) Metallic slide members to be used with ceramic slide members and sliding assemblies using the same
JP7477418B2 (en) Metal laminate and its use
CN109154040A (en) The processing method and article of workpiece comprising titanium
KR101877715B1 (en) Manufacturing method of Metal material for Valve plates
JPS61218869A (en) Construction and manufacture for cylinder with high resistance to abrasion and erosion
JPH01312055A (en) Wear-resistant coating material
JPH105824A (en) Composite roll made of sintered hard alloy
JPS62234634A (en) Cemented type hot-press working die