JPS62234634A - Cemented type hot-press working die - Google Patents

Cemented type hot-press working die

Info

Publication number
JPS62234634A
JPS62234634A JP7710786A JP7710786A JPS62234634A JP S62234634 A JPS62234634 A JP S62234634A JP 7710786 A JP7710786 A JP 7710786A JP 7710786 A JP7710786 A JP 7710786A JP S62234634 A JPS62234634 A JP S62234634A
Authority
JP
Japan
Prior art keywords
processing
die
hot compression
section
processing section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7710786A
Other languages
Japanese (ja)
Inventor
Masaaki Ikebe
池辺 政昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAN ALLOY KOGYO KK
Original Assignee
SAN ALLOY KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAN ALLOY KOGYO KK filed Critical SAN ALLOY KOGYO KK
Priority to JP7710786A priority Critical patent/JPS62234634A/en
Publication of JPS62234634A publication Critical patent/JPS62234634A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably prolong a service life of a hot-press working die by solid phase diffusion bonding a working part and a supporting part composed of a specific composition of a sintered hard alloy mutually and providing a high wear resistance to the working part and high toughness to the supporting part. CONSTITUTION:The supporting parts 2, 3 are provided outside the working part 1, furthermore, a reinforcing ring 4 of a tool steel is disposed outside thereof. As to the materials of the working part 1 and the supporting parts 2, 3, a sintered hard alloy composed of one or more of carbide and nitride of group IVa, Va and VIa of the periodic law and one or more of Co and Ni are used. Moreover, the high wear resistance and high toughness are provided to the working part 1 and the supporting parts 2, 3, respectively. The connection of both parts is performed mutually by solid phase diffusion bonding. In this way, the characteristics of each part are held as it is, and the service life of the hot-press working die is remarkably prolonged.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱間圧造、熱間鍛造、熱間引抜き等に用いる
圧縮加工用ダイに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a compression die used for hot forging, hot forging, hot drawing, etc.

(従来技術) 従来の圧部加工用ダイは、単一組成の超硬質合金を工具
鋼等の補強リングに圧入または焼けめして使用されてき
た。また、さらに表面硬化層で被覆したコーチインクチ
ップとして使用されてきた。
(Prior Art) Conventional dies for processing pressure parts have been used by press-fitting or baking a single-composition cemented carbide into a reinforcing ring made of tool steel or the like. It has also been used as a coach ink chip further coated with a surface hardening layer.

しかし、従来の圧縮加工用ダイにおいては、使用素材が
単一組成の超硬質合金であったため、耐摩耗性と靭性と
いう材料強度」二の矛盾した2つの制約条件を同時に満
たすことが困難であった。
However, in conventional compression dies, the material used was a single-composition cemented carbide alloy, making it difficult to simultaneously satisfy two contradictory constraints on material strength: wear resistance and toughness. Ta.

この間厘は、特に熱門用ダイにおいて顕著である。例え
ば、従来の熱間用ダイにおいては、ヒートクラックの防
止のため比較的結合金属量の多い超硬質合金が使用され
ているけれども、熱衝撃により金型寿命は短く、数千ン
ヨ?ソトにてヒートクラック、焼付、かじり、割れ等か
生じる場合が多い。熱衝撃とは、繰り返しの加熱・冷却
ザイクルが生じる場合であり、加熱・冷却に伴う膨張、
収縮の繰り返しにより、加工二面にクラックを生じる(
これがヒートトラックである)。ヒートクラック等が発
生ずると、再研磨することにより金型再生を行なってき
た。
This delay is particularly noticeable in hot gate dies. For example, in conventional hot dies, a superhard alloy with a relatively large amount of bonded metal is used to prevent heat cracks, but the life of the mold is shortened due to thermal shock, and the lifespan of the die is several thousand pounds. Heat cracks, seizing, galling, cracking, etc. often occur during processing. Thermal shock is a case where repeated heating/cooling cycles occur, and expansion due to heating/cooling,
Due to repeated shrinkage, cracks occur on the two processed surfaces (
This is the heat track). When heat cracks or the like occur, the mold has been regenerated by re-polishing.

ところで、ヒートクラックを抑制するために結合金属量
を増加させると、超硬質合金の耐摩耗性の低下につなが
る。又、泰画−化層で被覆し丸場 ・合、超硬質合金母
材の硬度が低いために、表面硬化層に剥離や欠(]を生
じる。一方、表面硬化層の剥離を防止するために、結合
金属量の少ない超硬質合金母材に硬化層を被覆した場合
、超硬質合金の弾性係数が高いために、繰返し応力集中
箇所にてクラックが生じ、疲労破壊につながる。
Incidentally, increasing the amount of bonded metal to suppress heat cracks leads to a decrease in the wear resistance of the superhard alloy. In addition, if the hardened surface layer is coated with a hardened layer, peeling or chipping may occur in the hardened surface layer due to the low hardness of the cemented carbide base material.On the other hand, to prevent the hardened surface layer from peeling off, Furthermore, when a hardened layer is coated on a cemented carbide base material with a small amount of bonded metal, cracks occur at locations where repeated stress is concentrated due to the high elastic modulus of the cemented carbide, leading to fatigue failure.

(発明が解決しようとする問題点) そこで、耐摩耗性によりすぐれた超硬質合金(加工部)
に加工を受けもたせ、靭性によりすぐれた超硬質合金(
支持部)に加工部を支持させることが考えられる。
(Problem to be solved by the invention) Therefore, a superhard alloy with excellent wear resistance (machined part)
A super-hard alloy with excellent toughness that can be processed easily.
It is conceivable to have the processed part supported by the support part).

従来、2種以上の超硬質合金を組み合わu・(原料粉末
の圧粉体の焼結品)、融点以」二に加熱することによる
液相拡散接合型の超硬質合金が生産されてきた。しかし
、この方法では、融点以」−に加熱することから生成さ
れる中間相が存在するため、異なった特性を合わせもつ
という設計通りの材料特性が得にくく、かつ、特性値に
もバラツキを生、−4− じていた。
BACKGROUND ART Conventionally, liquid phase diffusion bonding type superhard alloys have been produced by combining two or more types of superhard alloys (sintered products of green compacts of raw material powders) and heating them above their melting point. However, with this method, because there is an intermediate phase generated by heating above the melting point, it is difficult to obtain material properties as designed that have different properties, and it also causes variations in property values. , -4-

本出願人は、特II賜fhΩ−48535号において、
同相拡散接合型用いて加工[部と支持部を接合した接合
型工具を開示した。同相拡散接合型用いているので、接
合部材の融点より下にて接合するため中間相も存在せず
設計通りの材料特性が得られる。 ゛ この固体拡散接合型工具は、冷間加工用ダイとしては著
しく寿命が改善されたが、熱間圧縮加工用ダイとしては
さらにヒートクラック等の発生の頻度を減少させ、寿命
を改善することが望ましい。
The present applicant, in Patent II No. fhΩ-48535,
A bonding type tool is disclosed in which a processing part and a support part are bonded using an in-phase diffusion bonding type. Since the in-phase diffusion bonding type is used, the bonding is performed below the melting point of the bonded members, so there is no intermediate phase and the material properties as designed can be obtained.゛This solid diffusion bonding type tool has a significantly improved lifespan as a die for cold working, but as a die for hot compression processing, it is possible to further improve the lifespan by reducing the frequency of occurrence of heat cracks, etc. desirable.

本発明の目的は、耐摩耗性と靭性どの両方の特性につい
てずぐれた熱間圧縮加工用接合型タイを提供することで
ある。
An object of the present invention is to provide a bonded tie for hot compression processing that is superior in both wear resistance and toughness properties.

(問題点を解決するための手段) 本発明に係る第1の接合型熱間圧縮加工用ダイは、被加
工素材の熱間圧縮加工を行なう加工部と、この加工部の
外側でこの加工部をリング構造をなして順次支持する複
数層の支持部とからなり、上記の加工部と支持部の各層
は相互に固相拡散接合により接合され、上記の加工部と
上記の支持部とは同種の材料でそれぞれ形成され、上記
の同種の材料が周期律のIVa族、Va族、VIa族元
素の炭化物、窒化物、炭窒化物の1種以上と、結合金属
、主としてコバルト、ニッケルの1種以上とからなる超
硬質合金であり、加工部は同種の材料のうちより高耐摩
耗性の材料からなり、且つ支持部はより高靭性の材料か
らなる。
(Means for Solving the Problems) The first joining type hot compression die according to the present invention has a processing section for performing hot compression processing on a workpiece material, and a processing section outside the processing section. The processed part and each layer of the supporting part are bonded to each other by solid-phase diffusion bonding, and the processed part and the supporting part are of the same type. The above-mentioned similar materials include one or more carbides, nitrides, and carbonitrides of elements of groups IVa, Va, and VIa of the periodic table, and one or more bonding metals, mainly cobalt and nickel. It is a super hard alloy consisting of the above, the processed part is made of a material with higher wear resistance among the same types of materials, and the support part is made of a material with higher toughness.

本発明に係る第2の接合型熱間圧縮加工用ダイは、さら
に、上記の熱間圧縮加工用ダイの表面が遷移金属の各種
炭化物、窒化物、炭窒化物、硼化物もしくは硅化物、お
よび/あるいは、アルミニウム、イツトリウム、亜鉛等
の酸化物の単層、複層または複々層である硬化層で被覆
されていることを特徴とする。
The second bonded hot compression die according to the present invention further includes a surface of the hot compression die made of various carbides, nitrides, carbonitrides, borides, or silicides of transition metals, and Alternatively, it is characterized by being coated with a hardened layer that is a single layer, multiple layers, or multiple layers of oxides such as aluminum, yttrium, and zinc.

(作 用) 従来一体型として考えられてきた超硬質合金金型につい
て、被加工素材の加工を行なう加工部とその加工部を支
持する複数層の支持部とに分割設計することにより、加
工部は耐摩耗性重視の材料設計がなされ、支持部は靭性
重視と熱衝撃緩和の材料設計がなされる。さらに、ごの
加工部と支持部とを同相拡散接合する接合型構造により
、各部の特性はそのまま保持され、上記材料強度上の矛
盾点も解決できる。さらに、支持部を複数層にすること
により、熱衝撃を緩和できる。また、硬化層で被覆した
コーティングデツプについても、母材である加工部材料
に高硬度重視の材料設計がなされることにより、被覆硬
化層の剥離、欠けの防止に対する有効な手段となり得る
(Function) The ultra-hard alloy mold, which was conventionally thought of as an integrated type, has been designed to be divided into a processing section that processes the workpiece material and a multi-layered support section that supports the processing section. The material is designed with an emphasis on wear resistance, and the support part is designed with an emphasis on toughness and thermal shock mitigation. Furthermore, by using a bonding type structure in which the processed part and the support part are in-phase diffusion bonded, the characteristics of each part are maintained as they are, and the above-mentioned contradiction in material strength can be resolved. Furthermore, by forming the support portion in multiple layers, thermal shock can be alleviated. Furthermore, regarding the coating depth covered with a hardened layer, if the material of the processed part, which is the base material, is designed with an emphasis on high hardness, it can be an effective means for preventing peeling and chipping of the hardened coating layer.

固相拡散接合による接合型ダイでは以下の項目について
の作用効果が大きい。
A bonded die using solid-phase diffusion bonding has significant effects on the following items.

(1)加工部材料に高硬度超硬質合金を採用しているた
め、加工部の耐摩耗性が大きい。
(1) Since high-hardness cemented carbide is used as the material for the machined part, the wear resistance of the machined part is high.

(2)加工部材料に高弾性係数超硬質合金を採用してい
るため、同一加工応力条件下における弾性変形量が小さ
い。このノコめ、加工部の寸法変化が少ない。
(2) Since a high-elastic modulus super-hard alloy is used for the material of the machined part, the amount of elastic deformation under the same processing stress conditions is small. With this saw, there is little dimensional change in the machined part.

(3)支持部を多層化し、外側超硬質合金素材に靭性に
すぐれたものを順次採用できるため、熱衝撃緩和性にす
ぐれる。
(3) Since the support part is made multi-layered and a material with excellent toughness can be sequentially adopted as the outer cemented carbide material, it has excellent thermal shock mitigation properties.

(4)ダイの多重構造化に合わせて外側超硬質合金素材
に熱膨張係数の大きいものを順次採用できるため、接合
型ダイ自体に多重リング構造による締りばめ効果がある
。したがって、圧縮予応力効果が大きい。
(4) In accordance with the multi-layer structure of the die, materials with large coefficients of thermal expansion can be sequentially adopted for the outer super-hard alloy material, so that the joining type die itself has an interference fit effect due to the multi-ring structure. Therefore, the compressive prestress effect is large.

(5)加工部超硬質合金が高硬度、高弾性係数であるた
め、加工応力下における超硬母材変形量が小さく、その
ため表面硬化層の剥離や欠けが生じにくい。すなわち、
表面硬化層の寿命が長い。
(5) Since the processed part cemented carbide has high hardness and high elastic modulus, the amount of deformation of the cemented carbide base material under processing stress is small, and therefore the hardened surface layer is less likely to peel or chip. That is,
The life of the hardened surface layer is long.

(6)上記(1)〜(5)の相乗効果により、耐ヒート
クラツク特性が向上する。
(6) The synergistic effect of the above (1) to (5) improves heat crack resistance.

(実施例) 本発明の実施例の熱間鍛造用の接合型ダイは、被加工素
材の加工を行なう加工部lと、この加工部を支持する2
層の支持部2.3とからなり、これらは相互に固相拡散
接合により接合され、上記の加工部と上記の支持部とは
同種の材料(超硬質合金)でそれぞれ形成され、加工部
は超硬質合金のうちより高耐摩耗性の材料からなり、且
つ、支持部はより高靭性の拐t−’lからなる。この超
硬質合金は、周期律のIVa族、Va族、Vla族元素
の炭化物、窒化物、炭窒化物の1種以−にど、結合金属
量としてコバルト、ニッケルの1種以」−とからなる合
金である。
(Example) A joining type die for hot forging according to an example of the present invention includes a processing section l for processing a workpiece material, and a processing section l for supporting this processing section.
The supporting parts 2 and 3 of the layer are joined to each other by solid-phase diffusion bonding, the above-mentioned processed part and the above-mentioned supporting part are respectively formed of the same kind of material (superhard alloy), and the processed part is It is made of a material with higher wear resistance among ultra-hard alloys, and the support part is made of tungsten, which has higher toughness. This super-hard alloy is made of one or more carbides, nitrides, and carbonitrides of elements of the IVa, Va, and Vla groups of the periodic table, and one or more of cobalt and nickel as a combined metal content. It is an alloy.

第1図は熱間鍛造用タイの断面図を示す。加工用の貫通
孔を有する加工部(耐摩耗用超硬質合金V2相当)■の
外側に、支持部(耐摩耗耐衝撃用超硬質合金■3相当)
2)支持部(耐衝撃用超硬質合金V5相当)3を、さら
にその外側に補強リング(工具鋼)4を配置する。
FIG. 1 shows a sectional view of a hot forging tie. A supporting part (equivalent to wear-resistant and impact-resistant super-hard alloy ■3) is placed on the outside of the processing part (equivalent to wear-resistant super-hard alloy V2) that has a through-hole for processing.
2) A reinforcing ring (tool steel) 4 is arranged on the outside of the support part 3 (corresponding to impact-resistant superhard alloy V5).

製作されるタイに対して被加工品形状、被加工材料、計
算応力等から接合部+、I’l、2.3の材質(たとえ
ば、WC粒度、結合金属の種類または量)、接合位置、
接合面形状を設計B−る。WC粒度は、それが大きいほ
ど耐衝撃性がすぐれ、小さいほど、耐摩耗性にすぐれる
。高温強度の面では、やや複雑となり、ある程度粗粒の
ものが強度がすぐれる。
For the tie to be manufactured, the material of joint +, I'l, 2.3 (for example, WC grain size, type or amount of bonding metal), joint position,
Design the joint surface shape. The larger the WC particle size, the better the impact resistance, and the smaller the WC particle size, the better the wear resistance. In terms of high-temperature strength, it is a little more complicated, and those with coarse grains have better strength.

また、結合金属量は、それが多いほと耐衝撃性が向上し
、少ないほど耐摩耗性が向上する。高温強度の面では、
結合金属量が少ない程高温強度は向上するが繰り返し熱
衝撃に対して弱い。加工部lの材料としては、より高耐
摩耗性の超硬質合金が選ばれ、支持部3の材料としては
、より靭性にすぐれた超硬質合金が選択される。支持部
2の材料としては、加工部Iと支持部3との中間の性質
の材料が用いられる。ダイの外側の層になるほど、結合
金属の量が多く、したがって、熱膨張係数が大きい。結
合金属量の少ない加工部は、その肉厚を必要最小限度に
することで、より結合金属量の多い支持部への熱伝導を
容易にし、そのために加工部の蓄熱里が低減するために
加工部膨張、収縮差が低く抑えられる効果がある。
Furthermore, as the amount of bonded metal increases, the impact resistance improves, and as the amount decreases, the wear resistance improves. In terms of high temperature strength,
The smaller the amount of bonded metal, the higher the high temperature strength, but the weaker it is against repeated thermal shock. As the material for the processed portion 1, a superhard alloy with higher wear resistance is selected, and as the material for the support portion 3, a superhard alloy with better toughness is selected. As the material of the support part 2, a material with properties intermediate between those of the processed part I and the support part 3 is used. The outer layers of the die have a higher amount of bonded metal and therefore a higher coefficient of thermal expansion. By reducing the wall thickness of processed parts with a small amount of bonded metal to the minimum necessary, heat conduction to the supporting parts with a larger amount of bonded metal is facilitated, and therefore, the heat storage area in the processed part is reduced. This has the effect of keeping the difference in partial expansion and contraction low.

本実施例では、加工部1の材料のWC粒度は1〜3μで
あり、結合金属量は4〜9%である。支持部2のWC粒
度は2〜4μであり、結合金属量は9〜13%である。
In this example, the WC grain size of the material of the processed part 1 is 1 to 3 microns, and the amount of bonded metal is 4 to 9%. The WC particle size of the support part 2 is 2 to 4 microns, and the amount of bonded metal is 9 to 13%.

また、支持部3のWC粒度は4〜7μであり、結合金属
量は、14〜18%である。
Further, the WC particle size of the support portion 3 is 4 to 7 μ, and the amount of bonded metal is 14 to 18%.

次に、加工部1と支持部2.3の接合方法であるが、カ
プセル封入方式を用いて同相拡散接合型行なう。第2図
にカプセル封入法を模式的に示す。
Next, as for the method of joining the processed part 1 and the support part 2.3, in-phase diffusion joining is performed using an encapsulation method. Figure 2 schematically shows the encapsulation method.

これは接合部材1,2.3を圧媒粒子5とともに軟銅製
カプセル6中に真空封入し、I−i I P拡散接合(
1000〜1350°C,500〜1000気圧)を行
なう。通常は、固体拡散接合の温度は、熱間圧縮加工時
のダイの温度(たとえば、1000°C)より十分高い
ので、各部の熱膨張係数の差による締りばめの効果が生
じる。下記の例11例2は、ダイ処理条件を示す。最後
に、最終形状品の成形加工が行なわれる。
In this method, the bonding members 1, 2.3 are vacuum-sealed together with pressure medium particles 5 in an annealed copper capsule 6, and I-i IP diffusion bonding (
(1000-1350°C, 500-1000 atm). Normally, the temperature of solid-state diffusion bonding is sufficiently higher than the die temperature (for example, 1000° C.) during hot compression processing, so that an interference fit effect occurs due to the difference in the coefficient of thermal expansion of each part. Examples 11 and 2 below illustrate die processing conditions. Finally, the final shaped product is molded.

(例1);接合型ダイを約500〜600°Cてケーシ
ングの後、研歴仕−1−を行なう。
(Example 1); After casing the bonded die at about 500 to 600°C, a training process-1- is performed.

(例2)・接合型ダイをCV I)処理(800〜12
00°C)により表面硬化層を形成する。次にケーシン
グの後、研摩仕」二を行なう。
(Example 2) - CV I) processing (800 to 12
00°C) to form a surface hardening layer. Next, after the casing, a polishing process is performed.

例2においては、例1の接合型ダイ表面にCVD処理(
800〜1200°C)により、硬化層が析−11= 出被覆される。この硬化層としては、遷移金属の各種炭
化物、窒化物、炭窒化物、硼化物もしくは硅化物、およ
び/あるいは、アルミニウム、イツトリウム、ジルコニ
ウム等の酸化物の単層、複層または複々層を被覆する。
In Example 2, the bonded die surface of Example 1 was subjected to CVD treatment (
800-1200°C), a hardened layer is deposited. This hardened layer is coated with a single layer, multiple layers, or multiple layers of various carbides, nitrides, carbonitrides, borides, or silicides of transition metals, and/or oxides such as aluminum, yttrium, and zirconium. do.

表に、以上のようにして製造したダイを用いて、被鍛造
材(インコネル)を鍛造したときの金型1個当たりの製
作数量を示す。比較のために、従来の一体型ダイ(超硬
質合金■5相当)についても記している。
The table shows the production quantity per die when a material to be forged (Inconel) is forged using the die produced as described above. For comparison, a conventional one-piece die (corresponding to cemented carbide ■5) is also described.

表 表より明らかなように、本発明にかかる接合型ダイの寿
命は、従来の一体型ダイに比べて著しく長くなった。こ
の効果は、被覆硬化層を設けた場合(例2)、さらに大
きい。
As is clear from the table, the life of the bonded die according to the present invention was significantly longer than that of the conventional integrated die. This effect is even greater when a coating hardening layer is provided (Example 2).

(発明の効果) 本発明により、従来型ダイと比較してダイ寿命は犬「1
]に増大する。
(Effects of the Invention) The present invention has a die life of 100% compared to conventional dies.
].

用途、使用条件により、接合部位、接合方法を変えるこ
とにより、最も効果的な接合型ダイを得ることができる
The most effective bonded die can be obtained by changing the bonding location and bonding method depending on the application and usage conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の接合型ダイの断面図である
。 第2図は、カプセル封入法を説明するための図である。 ■・・加工部、  2.3・・・支持部、4・・・補強
リング。
FIG. 1 is a cross-sectional view of a bonded die according to an embodiment of the present invention. FIG. 2 is a diagram for explaining the encapsulation method. ■... Processing part, 2.3... Support part, 4... Reinforcement ring.

Claims (5)

【特許請求の範囲】[Claims] (1)被加工素材の熱間圧縮加工を行なう加工部と、こ
の加工部の外側でこの加工部をリング構造をなして順次
支持する複数層の支持部とからなり、上記の加工部と支
持部の各層は相互に固相拡散接合により接合され、上記
の加工部と上記の支持部とは同種の材料でそれぞれ形成
され、上記の同種の材料が周期律のIVa族、Va族、V
Ia族元素の炭化物、窒化物、炭窒化物の1種以上と、
結合金属、主としてコバルト、ニッケルの1種以上とか
らなる超硬質合金であり、加工部は同種の材料のうちよ
り高耐摩耗性の材料からなり、且つ支持部はより高靭性
の材料からなる接合型熱間圧縮加工用ダイ。
(1) Consisting of a processing section that performs hot compression processing of the workpiece material, and a plurality of layers of support sections that sequentially support the processing section in a ring structure outside of this processing section, the processing section and the support section are The respective layers of the section are bonded to each other by solid-phase diffusion bonding, and the processed section and the supporting section are respectively formed of the same kind of material, and the same kind of material is used to form groups IVa, Va, and V of the periodic table.
one or more carbides, nitrides, and carbonitrides of Group Ia elements;
The joining metal is a super hard alloy made of one or more of cobalt and nickel, and the processed part is made of a material with higher wear resistance among the same types of materials, and the supporting part is made of a material with higher toughness. Die for mold hot compression processing.
(2)特許請求の範囲第1項に記載された接合型熱間圧
縮加工用ダイにおいて、上記の加工部は、結合金属とし
てニッケルを含む超硬質合金からなり、上記の支持部は
結合金属としてニッケルもしくはコバルトもしくはニッ
ケルおよびコバルトを含む超硬合金からなる接合型熱間
圧縮加工用ダイ。
(2) In the joining type hot compression die described in claim 1, the processing section is made of a superhard alloy containing nickel as a bonding metal, and the supporting section is made of a superhard alloy containing nickel as a bonding metal. A joining type hot compression die made of nickel or cobalt, or a cemented carbide containing nickel and cobalt.
(3)特許請求の範囲第1項に記載された接合型熱間圧
縮加工用ダイにおいて、上記の加工部の材料としては結
合金属量のより少ない超硬質合金が用いられ、上記の支
持部の材料としては、加工部材料と同等かもしくは、よ
り多い結合金属を有する超硬質合金が用いられることを
特徴とする接合型熱間圧縮加工用ダイ。
(3) In the joining type hot compression die described in claim 1, a cemented carbide with a smaller amount of bonded metal is used as the material of the processing part, and the material of the support part is A joining die for hot compression processing, characterized in that the material used is a superhard alloy having a bonding metal content equal to or greater than that of the processing part material.
(4)特許請求の範囲第1項に記載された接合型熱間圧
縮加工用ダイにおいて、上記の加工部の材料としては、
用途に応じた適当なWC粒度をもつ超硬質合金が用いら
れ、上記の支持部の材料としては、加工部材料と同等か
、もしくはより大きいWC粒度をもつ超硬質合金が用い
られることを特徴とする接合型熱間圧縮加工用ダイ。
(4) In the joining type hot compression processing die described in claim 1, the material of the processing portion is as follows:
A superhard alloy having a WC grain size suitable for the purpose is used, and the supporting part is made of a superhard alloy having a WC grain size that is equal to or larger than the material of the processed part. A die for joining type hot compression processing.
(5)被加工素材の熱間圧縮加工を行なう加工部と、こ
の加工部の外側でこの加工部をリング構造をなして支持
する高靭性の材料からなり、上記の加工部と支持部の各
層は相互に固相拡散接合により接合され、上記の加工部
と上記の支持部とは同種の材料でそれぞれ形成され、上
記の同種の材料が周期律のIVa族、Va族、VIa族元素
の炭化物、窒化物、炭窒化物の1種以上と、結合金属、
主としてコバルト、ニッケルの1種以上とからなる超硬
質合金であり、加工部は同種の材料のうちより高耐摩耗
性の材料からなり、且つ支持部はより高靭性の材料から
なり、上記の加工部の表面が遷移金属の各種炭化物、窒
化物、炭窒化物、硼化物もしくは硅化物、および/ある
いは、アルミニウム、イットリウム、亜鉛等の酸化物の
単層、複層または複々層である硬化層で被覆されている
ことを特徴とする接合型熱間圧縮加工用ダイ。
(5) Consists of a processing section that performs hot compression processing of the workpiece material, and a high-toughness material that supports this processing section in a ring structure on the outside of this processing section, and each layer of the processing section and support section described above. are joined to each other by solid-phase diffusion bonding, the processed part and the support part are each made of the same kind of material, and the said same kind of material is a carbide of an element of group IVa, group Va, or group VIa of the periodic table. , one or more of nitrides and carbonitrides, and a bonding metal,
It is a super-hard alloy mainly composed of one or more of cobalt and nickel, and the processed part is made of a material with higher wear resistance than other materials of the same type, and the support part is made of a material with higher toughness. A hardened layer whose surface is a single layer, multiple layers, or multiple layers of various carbides, nitrides, carbonitrides, borides, or silicides of transition metals, and/or oxides of aluminum, yttrium, zinc, etc. A die for joining type hot compression processing characterized by being coated with.
JP7710786A 1986-04-02 1986-04-02 Cemented type hot-press working die Pending JPS62234634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7710786A JPS62234634A (en) 1986-04-02 1986-04-02 Cemented type hot-press working die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7710786A JPS62234634A (en) 1986-04-02 1986-04-02 Cemented type hot-press working die

Publications (1)

Publication Number Publication Date
JPS62234634A true JPS62234634A (en) 1987-10-14

Family

ID=13624556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7710786A Pending JPS62234634A (en) 1986-04-02 1986-04-02 Cemented type hot-press working die

Country Status (1)

Country Link
JP (1) JPS62234634A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498340U (en) * 1991-01-29 1992-08-25
KR100977828B1 (en) * 2006-12-15 2010-08-24 한국생산기술연구원 Gradient functional extrusion and drawing dies and manufacturing method thereof
WO2017204286A1 (en) * 2016-05-26 2017-11-30 日立金属株式会社 HOT DIE Ni-BASED ALLOY, HOT FORGING DIE USING SAME, AND FORGED PRODUCT MANUFACTURING METHOD

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498340U (en) * 1991-01-29 1992-08-25
KR100977828B1 (en) * 2006-12-15 2010-08-24 한국생산기술연구원 Gradient functional extrusion and drawing dies and manufacturing method thereof
WO2017204286A1 (en) * 2016-05-26 2017-11-30 日立金属株式会社 HOT DIE Ni-BASED ALLOY, HOT FORGING DIE USING SAME, AND FORGED PRODUCT MANUFACTURING METHOD

Similar Documents

Publication Publication Date Title
JP2015078435A (en) Super hard alloy-metal alloy composite body
US7226671B2 (en) Use of powder metal sintering/diffusion bonding to enable applying silicon carbide or rhenium alloys to face seal rotors
CA2777361C (en) Thread rolling die
EP0773202B1 (en) Composite material and method of manufacturing the same
Johnson et al. Design guidelines for processing bi-material components via powder-injection molding
JPS62234634A (en) Cemented type hot-press working die
JP2630834B2 (en) Bimetallic cylinder for plastic molding machine
EP1393840B1 (en) Method of producing wear resistant parts
JPS61206540A (en) Joining type tool
JPS62234633A (en) Ceramics cemented type die
CN213739692U (en) Diamond-like carbon composite coating of powder metallurgy die
JPS61218869A (en) Construction and manufacture for cylinder with high resistance to abrasion and erosion
JPH06238725A (en) Composite hollow member having optimized material at each position and manufacture of the same
JP2883055B2 (en) Insertion bonding method between hard alloy and cast iron material and heat treatment method thereof
JPH03240940A (en) Screw for plastic molding machine and its manufacture
JP2001279365A (en) Constitutional member of die for die casting machine and its production method
JPS61219405A (en) Composite ring roll
CN114922900A (en) High-temperature wear-resistant bearing and preparation method thereof
JP2002069562A (en) Ni BASED CERMET AND PARTS FOR PLASTIC MOLDING MACHINE AND FOR DIE CASTING MACHINE USING THE SAME
JPH0712566B2 (en) Method for manufacturing high hardness material joining type tool
JP2001047111A (en) Composite roll made of sintered hard alloy
JPH05202402A (en) High strength and corrosion and wear resistant member and production tereof
JP2019055429A (en) Compound roll
JPH07316839A (en) Cubic boron nitride polycrystalline combined member suppressed in sticking of resin
JPH0365321A (en) Corrosion-resistant or wear-resistant screw head