JPH03112900A - Production of ceramic form and raw material form for production thereof - Google Patents
Production of ceramic form and raw material form for production thereofInfo
- Publication number
- JPH03112900A JPH03112900A JP1248055A JP24805589A JPH03112900A JP H03112900 A JPH03112900 A JP H03112900A JP 1248055 A JP1248055 A JP 1248055A JP 24805589 A JP24805589 A JP 24805589A JP H03112900 A JPH03112900 A JP H03112900A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- raw material
- joint
- molded body
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 65
- 239000002994 raw material Substances 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims description 63
- 238000005524 ceramic coating Methods 0.000 claims description 37
- 229910052582 BN Inorganic materials 0.000 claims description 28
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 28
- 239000012495 reaction gas Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000012808 vapor phase Substances 0.000 claims description 2
- 230000002265 prevention Effects 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 14
- 238000005520 cutting process Methods 0.000 description 10
- 238000000151 deposition Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 239000007770 graphite material Substances 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 3
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- -1 boron halide Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、素材体上にセラミックス被膜を堆積すること
からなるセラミックス成形体の製造に関し、具体的には
、5iiN4.BNなどのセラミックス成形体を化学気
相反応法(以下、CVD法という)により製造する工程
おいて、素材体上に堆積せしめたセラミックス成形体と
素材体との熱膨張係数の相異に起因するセラミックス成
形体のm傷を防止でき、かつ、セラミックス成形体と素
材体との剥離性に優れた素材体を使用するセラミックス
成形体の製造に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the production of a ceramic molded body by depositing a ceramic coating on a raw material body, and specifically relates to the production of a ceramic molded body formed by depositing a ceramic coating on a raw material body, and specifically relates to the production of a ceramic molded body formed by depositing a ceramic film on a raw material body. In the process of manufacturing ceramic molded bodies such as BN by chemical vapor phase reaction method (hereinafter referred to as CVD method), this is caused by the difference in coefficient of thermal expansion between the ceramic molded body deposited on the raw material body and the raw material body. The present invention relates to the production of a ceramic molded body using a raw material that can prevent scratches on the ceramic molded body and has excellent peelability between the ceramic molded body and the raw material.
[従来の技術]
Sf、Si3N4 、BN等のようなセラミックス成形
体は、高融点、不活性、熱的高安定度、高熱伝導度等に
優れた工業材料であって、各種の分野で幅広く用いられ
ている。このようなセラミックス成形体はガスを原料と
して、CVD法により製造できることが広く知られてい
る0例えば、BNはハロゲン化ホウ素ガス及びアンモニ
アガスを原料して、反応温度1450℃〜2300℃、
圧力1〜50 Torrの条件で反応させることにより
製造できる。[Prior Art] Ceramic molded bodies such as Sf, Si3N4, BN, etc. are industrial materials with excellent properties such as high melting point, inertness, high thermal stability, and high thermal conductivity, and are widely used in various fields. It is being It is widely known that such ceramic molded bodies can be manufactured by the CVD method using gas as a raw material.For example, BN is manufactured using boron halide gas and ammonia gas as raw materials, at a reaction temperature of 1450°C to 2300°C,
It can be produced by reacting at a pressure of 1 to 50 Torr.
通常、このようなセラミックス成形体をCVD法によっ
て製造する場合、ヒーター等によって加熱される真空反
応室を真空チャンバー内に設置した装置を使用し、該反
応室内に所定形状の素材体を支持体によって支持固定し
、該素材体を所定の温度に加熱した状態で、反応室内に
ノズル等により、原料ガスを導入し、特定の圧力下で素
材体上にセラミックス層(被膜)を析出(堆積)させた
後、素材体を支持体より取り外した後、素材体と素材体
上に堆積されたセラミックス被膜を分離して、セラミッ
クス成形体を得ることができる。Normally, when producing such a ceramic molded body by the CVD method, a device is used in which a vacuum reaction chamber heated by a heater or the like is installed in the vacuum chamber, and a material of a predetermined shape is placed inside the reaction chamber using a support. With the material supported and fixed and heated to a predetermined temperature, raw material gas is introduced into the reaction chamber through a nozzle, etc., and a ceramic layer (coating) is precipitated (deposited) on the material under a specific pressure. After that, the raw material is removed from the support, and the raw material and the ceramic coating deposited on the raw material are separated to obtain a ceramic molded body.
[本発明が解決しようとする課題]
この際、素材体とセラミックス成形体の分離を容易にす
るなめに、析出させるセラミックスと熱膨張係数の異な
る材料が素材体として用いられているが、前記方法によ
りセラミックスを析出させた場合、素材体及び支持体の
全面にわたりセラミックス被膜の形で堆積し、セラミッ
クス被膜が素材棒全体を覆ってしまう、このため、析出
後、素材体と素材体表層上に析出(堆積)させたセラミ
ックス被膜との熱膨張係数の相異に起因するセラミック
ス被膜中の応力が緩和されに<<、セラミックス被膜中
に残留応力が存在する。この残留応力のため、析出後の
冷却過程でセラミックス*Sにクラックが入ったり、あ
るいは、分離時の切削工程において、セラミックス被膜
が破損したりすることがあり、製造上の問題となってい
た。特に、素材体と支持体との接合部は析出面の変化が
急であるから、接合部上のセラミックス被膜には、歪み
エネルギー等により応力が集中する為、クラックが入り
やすく、この接合部よりセラミックス被膜中に入ったク
ラックは素材体上のセラミックス被膜へ広範囲にわたり
伝播するため、結果として。[Problems to be Solved by the Present Invention] At this time, in order to facilitate separation of the raw material and the ceramic molded body, a material having a coefficient of thermal expansion different from that of the ceramic to be precipitated is used as the raw material. When ceramics are precipitated by this method, they are deposited in the form of a ceramic film over the entire surface of the material and support, and the ceramic film covers the entire material rod.For this reason, after the deposition, the ceramic film is deposited on the material and the surface layer of the material. Residual stress exists in the ceramic coating because the stress in the ceramic coating due to the difference in thermal expansion coefficient with the (deposited) ceramic coating is relaxed. Due to this residual stress, cracks may appear in the ceramic *S during the cooling process after precipitation, or the ceramic film may be damaged during the cutting process during separation, which has been a manufacturing problem. In particular, since the deposition surface changes rapidly at the joint between the material and the support, the ceramic coating on the joint is prone to cracking due to concentration of stress due to strain energy, etc. As a result, cracks that enter the ceramic coating propagate over a wide area to the ceramic coating on the material.
セラミックス被膜の大きな損傷を招き、大きな問題とな
っていた。This caused major damage to the ceramic coating, creating a major problem.
本発明の目的は、素材体と析出させたセラミックス被膜
との熱膨張係数の相異に起因するセラミックス被膜中の
応力を緩和し、かつ、素材体と支持体の接合部に派生す
るクラックの伝播を防止することで、前記問題点を解消
できるセラミックス成形体の製造方法及び製造用用素材
体を提供することである。The purpose of the present invention is to alleviate the stress in the ceramic coating caused by the difference in thermal expansion coefficient between the material and the precipitated ceramic coating, and to prevent the propagation of cracks derived from the joint between the material and the support. It is an object of the present invention to provide a method for manufacturing a ceramic molded body and a material for manufacturing which can solve the above-mentioned problems by preventing.
[課題を解決するための手段]
本発明者は、前記問題点を解消し、前記目的を達成する
ために、CVD法によりセラミックス成形体を製造する
工程において使用する素材体について鋭意研究を行った
結果、素材体と支持体との接合部を取り囲む講を素材体
に設けることで、素材体に堆積せしめたセラミックス被
膜中の残留応力を緩和でき、かつ、素材体と支持体の接
合部に派生したクラックがセラミックス被膜上を広範囲
にわたり伝播するのを防止できることを見いだし、本発
明にいたった。[Means for Solving the Problems] In order to solve the above-mentioned problems and achieve the above-mentioned objectives, the present inventor conducted intensive research on the material used in the process of manufacturing ceramic molded bodies by the CVD method. As a result, by providing a groove in the material that surrounds the joint between the material and the support, it is possible to alleviate the residual stress in the ceramic coating deposited on the material, and to reduce the residual stress that is generated at the joint between the material and the support. The inventors have discovered that it is possible to prevent cracks from propagating over a wide range of ceramic coatings, leading to the present invention.
本発明の第1の実#i態様によるセラミックス成形体の
製造方法では、素材体が支持体により設置されている反
応系に、ノズル等を用いて原料ガスを導入し、CVD法
により素材体上にセラミックス被膜を堆積せしめ、その
後、素材体とセラミックス被膜を分離することによりセ
ラミックス成形体を製造する工程において、素材体と支
持体との接合部を取り囲むように特定の幅及び特定の深
さの講を素材体に設置する。In the method for manufacturing a ceramic molded body according to the first embodiment #i of the present invention, a raw material gas is introduced into a reaction system in which a raw material is placed on a support using a nozzle, and then the raw material gas is deposited on the raw material by a CVD method. In the process of manufacturing a ceramic molded body by depositing a ceramic film on the material and then separating the material and the ceramic film, a ceramic film of a specific width and a specific depth is formed so as to surround the joint between the material and the support. Place the lecture on the material body.
また、本発明の第2の実施態様による窒化ホウ素成形体
の製造方法では、第1の実施態様において素材体上に堆
積せしめるセラミックス被膜を窒化ホウ素で形成する。Furthermore, in the method for manufacturing a boron nitride molded body according to the second embodiment of the present invention, the ceramic coating deposited on the material body in the first embodiment is formed of boron nitride.
また、本発明の第3の実施態様によるセラミックス成形
体製造用素材体では、素材体と支持体の間の接合部を取
り囲む清が、@2.5mm以上3゜5mm以下、深さ1
5mm以上25mm以下の寸法を有する。Further, in the raw material for producing a ceramic molded body according to the third embodiment of the present invention, the gap surrounding the joint between the raw material and the support is at least 2.5 mm and no more than 3°5 mm, and has a depth of 1 mm.
It has a dimension of 5 mm or more and 25 mm or less.
[作用コ
本発明に係るセラミックス成形体製造用素材体は、その
上に形成されるセラミ・yクス成形体の形に合わせた形
状になっている。したがって、製造すべき成形体の形に
あわせてこの素材体を形成すれば、セラミックスを堆積
して形成したセラミックス被膜を分離することにより、
所望のセラミックス成形体が得られる。[Function] The raw material for producing a ceramic molded body according to the present invention has a shape that matches the shape of the ceramic/yx molded body to be formed thereon. Therefore, if this material body is formed according to the shape of the molded body to be manufactured, by separating the ceramic coating formed by depositing ceramics,
A desired ceramic molded body is obtained.
セラミックス被膜と素材体の分離は、接合部から離れた
素材体側の切断線に沿って旋盤で切り込むことにより行
われる。The ceramic coating and the raw material are separated by cutting with a lathe along the cutting line on the side of the raw material away from the joint.
この切断線と接合部との距離が、接合部で発生したクラ
ックの伝播距離より短いことが多く、このために分離さ
れるセラミックス成形体にクララし
りが入っていることが多いのである。鵠かし、本発明で
は、切断線と接合部との間に清を設けであるので、クラ
ックの伝播がこの清で止まり、分離されるセラミックス
成形体にクラックが入ることが防止されるのである。具
体的には、セラミックスの堆積時に清のためにセラミッ
クス被膜に不連続部分が生じて、ここでクラックの伝播
か止まるのである。The distance between this cutting line and the joint is often shorter than the propagation distance of a crack generated at the joint, and for this reason, the ceramic molded bodies that are separated often have cracks. However, in the present invention, since a gap is provided between the cutting line and the joint, the propagation of cracks is stopped by this gap, and cracks are prevented from entering the ceramic molded body to be separated. . Specifically, when the ceramic is deposited, a discontinuous portion is created in the ceramic film due to cleaning, and the propagation of cracks is stopped here.
このように接合部を囲むように設けられた溝でセラミッ
クス成形体へのクラックの伝播を防止するのであるが、
その効果を得るには清の幅や深さが所定範囲になければ
ならない、すなわち、CVD法で堆積されるセラミック
スに関しては、清の幅は2.5mm以上3.5mm以下
とするが、その理由は、2.5mm未満であるとセラミ
ックスの清中への堆積により、溝がふさがってセラミッ
クス被膜の不連続部分が得られないので、本発明の目的
とする効果が得られないためであり、逆に、3.5mm
を趙えると溝内にガスが回り込んでしまうため、溝内に
セラミックスが堆積してセラミックス被膜の不連続部分
が得られないので、クラックの伝藩を防止できないため
である。In this way, the grooves surrounding the joint prevent cracks from propagating to the ceramic molded body.
In order to obtain this effect, the width and depth of the gap must be within a certain range.In other words, for ceramics deposited by the CVD method, the width of the gap should be between 2.5 mm and 3.5 mm. This is because if the thickness is less than 2.5 mm, the grooves will be blocked by the ceramics deposited in the solution, and a discontinuous portion of the ceramic coating will not be obtained, so the desired effect of the present invention cannot be obtained. , 3.5mm
This is because if the grooves are bent, gas will flow into the grooves, and ceramics will accumulate in the grooves, making it impossible to obtain discontinuous portions of the ceramic coating, and thus making it impossible to prevent the propagation of cracks.
さらに、清の深さは15mm以上とするが、その理由は
、15mm未満であると、溝内にセラミックスが堆積し
てしまい、幅が小さすぎる場合と同様に、セラミックス
被膜の不連続部分が得られないためである。逆に、清の
深さを25mm以下とするのは、25mmを超えても、
その効果は変わらないにもかかわらず、素材体の製造工
程においては大きな労力を必要とするため、経済的にみ
て、不合理であるからである。Furthermore, the depth of the groove should be 15 mm or more, because if it is less than 15 mm, ceramics will accumulate in the groove, and as in the case where the width is too small, discontinuous parts of the ceramic coating will be formed. This is so that you will not be affected. On the other hand, setting the depth of the clearing to 25 mm or less means that even if it exceeds 25 mm,
This is because although the effect remains the same, the manufacturing process of the material requires a large amount of labor, which is unreasonable from an economic standpoint.
[実施例]
次に、本発明に係るセラミックス成形体製造用素材体の
実施例を図面を参照して説明する。[Example] Next, an example of the raw material for producing a ceramic molded body according to the present invention will be described with reference to the drawings.
第1図に示す実施例では、円筒形の素材体10が使用さ
れ、素材体10に支持体12が接合されている0図示の
場合、支持体12は棒状でその先端かネジ切りされてお
り、また素材体10は、支持体12の先端を受入れるネ
ジ六を有し、ネジ込みにより接合、支持されている4
図示の素材体10は円筒形であるか、素材体10は製造
すべき成形体に合わせて各種形状を取りうる。また、支
持体12及び素材体10の材質は黒鉛等、必要に応じた
材料を選択できる。In the embodiment shown in FIG. 1, a cylindrical material 10 is used, and in the case shown in FIG. Also, the material body 10 has a screw 6 that receives the tip of the support body 12, and is joined and supported by screwing. 4 The material body 10 shown is cylindrical, or the material body 10 is a mold to be manufactured. It can take various shapes to suit your body. Moreover, the materials of the support body 12 and the material body 10 can be selected from materials such as graphite according to needs.
支持体12が素材体10に入り込むところ、すなわち接
合部14では、表面が急激に変化するから、堆積された
セラミックス被膜が歪みエネルギーを受けやすく、セラ
ミックス被膜にクラックが入りやすい、このクラックが
セラミックス被膜を伝播し、セラミックス成形体として
分離する部分にまで入りこむ恐れがある。従って、本発
明の場合、素材体10には、接合部14を取り囲む講1
6が設けてあり、消16の溝幅は2.5mm以上3.5
mm以下、また、深さは15mm以上25mm以下にな
っている。At the point where the support 12 enters the material body 10, that is, at the joint 14, the surface changes rapidly, so the deposited ceramic film is susceptible to strain energy and cracks are likely to occur in the ceramic film. There is a risk that the particles may spread to the part where the ceramic molded body is separated. Therefore, in the case of the present invention, the material body 10 includes a groove 1 surrounding the joint portion 14.
6 is provided, and the groove width of eraser 16 is 2.5 mm or more and 3.5 mm.
mm or less, and the depth is 15 mm or more and 25 mm or less.
溝の位置に関しては、接合部14から溝16までの距離
および接合部14の取り囲み方は、各場合に応じて可変
にできる。但し、素材体10の外周縁部や、支持体12
を挿入するネジ穴の縁部の近くに湧があると、素材体1
0の成形時にこれらの縁部が壊れやすいことに留意すべ
きである。また、消16を素材体10の円筒側面上に配
置すると、消16が反応ガスの生成物で詰まりやすくな
るので、湧16は図示のように支持体12を挿入するネ
ジ穴のある平面部に設けるのが良い。Regarding the position of the groove, the distance from the joint 14 to the groove 16 and the manner in which the joint 14 is surrounded can be varied depending on each case. However, the outer peripheral edge of the material 10 and the support 12
If there is a spring near the edge of the screw hole to insert the material 1
It should be noted that these edges are fragile during molding. Furthermore, if the blower 16 is placed on the cylindrical side surface of the material body 10, the blower 16 will be easily clogged with the products of the reaction gas, so the spring 16 should be placed on a flat surface with a screw hole into which the support 12 is inserted, as shown in the figure. It is good to have one.
以上のような素材体10を使用して、その上にCDV法
でセラミックスを堆積させると、第3図に示すように素
材体10に全体的にセラミックス被膜18が形成される
。しかし、溝16の部分では、凹みのところだけセラミ
ックスの堆積がなく、そこでセラミックス被pA18が
不連続部分を有することになる。この為に、接合部14
で発生したクラックが溝16の部分を越えて伝播するこ
とを防止できる。When the material body 10 as described above is used and ceramics are deposited thereon by the CDV method, a ceramic coating 18 is formed over the entire material body 10 as shown in FIG. However, in the groove 16, no ceramic is deposited only in the recess, and the ceramic-covered pA 18 has a discontinuous portion there. For this purpose, the joint 14
It is possible to prevent cracks generated in the groove from propagating beyond the groove 16.
尚、第3図はセラミックス被膜18を強調するために、
セラミックス被膜18の厚さを素材体10の大きさに対
して誇張して示しである。In addition, in order to emphasize the ceramic coating 18 in FIG.
The thickness of the ceramic coating 18 is shown exaggerated with respect to the size of the material body 10.
こうして、素材体10全体に形成されたセラミックス被
膜18は所定の切断線に沿って、素材体10から切り取
られる0例えば、素材体10の円筒側面に沿って1本の
輪状切断線を入れて、該切断線上下のセラミックス被膜
18を切り離すと、被膜18は素材体10から容易に離
脱し、成形体となる0図示の場合、素材体10が円筒形
であるから、離脱したセラミックス被膜18は円筒るつ
ぼ形となる。さらに、素材体10の円筒側面に沿って2
本の輪状切断線を入れば、これらの切断線の間のセラミ
ックス被膜で管状のセラミックス成形体が得られる。In this way, the ceramic coating 18 formed on the entire material body 10 is cut out from the material body 10 along a predetermined cutting line. When the ceramic coating 18 above and below the cutting line is separated, the coating 18 easily separates from the material 10 and becomes a molded body. In the case shown in FIG. 0, since the material 10 is cylindrical, the separated ceramic coating 18 is cylindrical. It becomes a crucible shape. Further, along the cylindrical side surface of the material body 10, two
If the annular cutting lines of the book are inserted, a tubular ceramic molded body can be obtained with the ceramic coating between these cutting lines.
次に、素材体10の清の幅や深さの寸法を決定するため
の実施例について述べる。Next, an example for determining the width and depth of the material body 10 will be described.
抵抗加熱方式の反応炉に設置した黒鉛製円筒型反応室(
内径120mm、長さ200mm)の中央に、黒鉛製素
材体10(直径96mm、長さ100mm)を支持体1
2により支持し、三塩化ホウ素ガスとアンモニアガスを
黒鉛製ノズル(外径10mm、内径8mm)を用いて、
下方より導入し、反応温度1900℃、圧力2 Tor
rの条件で15時間反応させ、素材体10上に窒化ホウ
素を第3図のように堆積せしめた。この堆積により形成
された窒化ホウ素被Il!18を素材体10より分離さ
せることにより窒化ホウ素成形体を得た。このとき、第
1図に示したように支持体12と素材体lOの接合部1
4を中心に半径20 ro mの所に各種寸法(幅およ
び深さ)の湧16を設け、窒化ホウ素成形体の取り出し
後、清16で囲まれた接合部14で発生したクラックの
伝播状態を調べた。A cylindrical graphite reaction chamber installed in a resistance heating reactor (
A graphite material body 10 (diameter 96 mm, length 100 mm) is placed in the center of a support body 1 (inner diameter 120 mm, length 200 mm).
2, using a graphite nozzle (outer diameter 10 mm, inner diameter 8 mm) to inject boron trichloride gas and ammonia gas,
Introduced from below, reaction temperature 1900°C, pressure 2 Tor
The reaction was carried out under conditions of r for 15 hours, and boron nitride was deposited on the material body 10 as shown in FIG. The boron nitride coating formed by this deposition Il! A boron nitride molded body was obtained by separating 18 from the raw material 10. At this time, as shown in FIG.
A well 16 of various dimensions (width and depth) was provided at a radius of 20 rom around 4, and after the boron nitride molded body was taken out, the propagation state of the crack that occurred at the joint 14 surrounded by the clear 16 was investigated. Examined.
このとき幅および深さを変化させたときの結果を第1表
(幅Amm、深さBmm)に示す。Table 1 shows the results when the width and depth were varied (width Amm, depth Bmm).
(この頁以下余白)
第1表
第1表よりわかるように、素材体10上に接合部14を
取り囲む特定寸法の?1116を設けることにより、接
合部14で生じたクラックの伝藩を防止することができ
ることがわかる。(Margins below this page) Table 1 As can be seen from Table 1, there is a specific dimension surrounding the joint 14 on the material body 10. It can be seen that by providing 1116, propagation of cracks generated at the joint 14 can be prevented.
すなわち、漬16の幅が2.5mm未満であると窒化ホ
ウ素の堆積により、製造中に溝16がふさがって窒化ホ
ウ素被膜18の不連続部分が得られないので、本発明の
目的とする効果が得られない、逆に、3.5mmを超え
ると涌16内にガスが回り込んでしまうため、溝16内
に窒化ホウ素が堆積して窒化ホウ素被膜18の不連続部
分が得られないので、クラックの伝藩を防止できない。That is, if the width of the dip 16 is less than 2.5 mm, the groove 16 will be blocked during manufacturing due to boron nitride deposition, and discontinuous portions of the boron nitride coating 18 will not be obtained, so that the desired effect of the present invention will not be achieved. On the other hand, if it exceeds 3.5 mm, gas will flow into the groove 16 and boron nitride will accumulate in the groove 16, making it impossible to obtain a discontinuous part of the boron nitride coating 18, resulting in cracks. It is not possible to prevent the transmission of feudal domains.
従って、溝16の幅は2.5mm以上3.5mm以下と
するのが好ましい。Therefore, the width of the groove 16 is preferably 2.5 mm or more and 3.5 mm or less.
さらに、清16の深さが15mm未満であると、消16
内に窒化ホウ素が堆積してしまい、幅が小さすぎる場合
と同様に、窒化ホウ素被膜18の不連続部分が得られな
い、逆に、消16の深さが25mmを超えても、その効
果は変わらないにもかかわらず、素材体10の製造工程
においては大きな労力を必要とするため、経済的にみて
、不合理である。従って、溝16の深さは15mm以上
25mm以下とするのが好ましい。Furthermore, if the depth of the clearing 16 is less than 15 mm, the clearing 16
If the width of the boron nitride coating 18 is too small, discontinuous portions of the boron nitride coating 18 will not be obtained.Conversely, even if the depth of the coating 16 exceeds 25 mm, the effect will not be obtained. Although there is no change, the manufacturing process of the material body 10 requires a large amount of labor, which is unreasonable from an economic point of view. Therefore, the depth of the groove 16 is preferably 15 mm or more and 25 mm or less.
なお、消16の特定寸法は窒化ホウ素以外のセラミック
スでも適用できることが分かった。It has been found that the specific dimensions of Eraser 16 can be applied to ceramics other than boron nitride.
次に、本発明を一層明確に理解できるように、比較例と
共に実施例1および実施例2を示す。Next, Examples 1 and 2 are shown together with comparative examples so that the present invention can be understood more clearly.
(実施例1)
第1図に示すような直径96mm、長さ100mmの黒
鉛製円筒形素材体lOに幅3.Om、m、深さ20mm
の涌16を設け、直径20mmの黒鉛製棒状支持体12
により前記黒鉛製素材体10を支持した。そして、抵抗
加熱式加熱炉内に設置された黒鉛製円筒型反応室(内径
120mm、長さ200mm)の中央に前記黒鉛製素材
体10を黒鉛製支持体12により固定した。この反応室
内に黒鉛製ノズルを用いて、三塩化ホウ素ガス及びアン
モニアガスを導入し、反応温度1900℃、圧力2 T
Orrの条件で、15時間反応させ、素材体10上に窒
化ホウ素を堆積せしめて9化ホウ素被[18を形成し、
該窒化ホウ素被膜18を取り出したところ、接合部14
で発生したクラックの伝播は7f416の部分において
防止されていた。かくして、堆積した窒化ホウ素被膜1
8を素材体10から分離することにより、内径96mm
、長さ95mm、厚さ1mmの高品質のルツボ状窒化ホ
ウ素成形体を得な。(Example 1) As shown in FIG. 1, a graphite cylindrical material lO with a diameter of 96 mm and a length of 100 mm has a width of 3 mm. Om, m, depth 20mm
A graphite rod-shaped support 12 with a diameter of 20 mm is provided.
The graphite material body 10 was supported by. Then, the graphite material 10 was fixed with a graphite support 12 in the center of a graphite cylindrical reaction chamber (inner diameter 120 mm, length 200 mm) installed in a resistance heating furnace. Boron trichloride gas and ammonia gas were introduced into this reaction chamber using a graphite nozzle, and the reaction temperature was 1900°C and the pressure was 2 T.
The reaction was carried out for 15 hours under the conditions of Orr to deposit boron nitride on the material body 10 to form a boron 9ide coating [18,
When the boron nitride coating 18 was taken out, the joint portion 14
The propagation of the crack that occurred at 7f416 was prevented. Thus, the deposited boron nitride film 1
8 from the material body 10, the inner diameter is 96 mm.
, obtain a high quality crucible-shaped boron nitride molded body with a length of 95 mm and a thickness of 1 mm.
(実施例2)
(実施例1)と同様な反応系において、第1図と同様な
、幅3.5mm、深さ20mmの消16を有する直径3
0mm、長さ155mmのホウ化チタン製素材体10を
支持体12により、反応室内に支持し、反応室内に三塩
化ホウ素ガスとアンモニアカスを導入し、反応温度19
50℃、圧力Horrの条件で6時間反応させ、素材体
10上に窒化ホウ素を堆積せしめて窒化ホウ素被膜18
を形成した。該窒化ホウ素被膜18を取り出したところ
、接合部14で発生したクラックの伝播は湧16の部分
において防止されていた。こうして、堆積した窒化ホウ
素被JIi18を素材体10から分離することにより、
内径30mm、長さ150mm、厚さ0.5mmの高品
質の管状窒化ホウ素成形体を得た。(Example 2) In a reaction system similar to (Example 1), a diameter 3.
A titanium boride material 10 with a diameter of 0 mm and a length of 155 mm is supported in a reaction chamber by a support 12, boron trichloride gas and ammonia scum are introduced into the reaction chamber, and the reaction temperature is 19.
Boron nitride is deposited on the material body 10 by reacting for 6 hours at 50° C. and a pressure of Horr to form a boron nitride coating 18.
was formed. When the boron nitride coating 18 was taken out, it was found that the propagation of the cracks that had occurred at the joint 14 had been prevented at the bulges 16. By separating the deposited boron nitride JIi 18 from the material body 10 in this way,
A high quality tubular boron nitride molded body having an inner diameter of 30 mm, a length of 150 mm, and a thickness of 0.5 mm was obtained.
(比較例)
講16が設置されていない他は実施例1と同じ型の黒鉛
製素材体10を用いて、同様な条件で窒化ホウ素被膜を
堆積させて窒化ホウ素被膜を形成し、該窒化ホウ素被膜
を取り出したところ、接合部14からクラックが発生し
ており、接合部14より半径40mmにわたってクラッ
クが伝播しているのが認められた。この窒化ホウ素被膜
を切断し、素材体10より分離しようとしたところ、切
断時に窒化ホウ素被膜が破裂した。(Comparative example) A boron nitride film was formed by depositing a boron nitride film under the same conditions using a graphite material body 10 of the same type as in Example 1 except that the tube 16 was not installed. When the film was taken out, it was found that a crack had occurred at the joint 14 and that the crack had propagated from the joint 14 over a radius of 40 mm. When this boron nitride coating was cut and an attempt was made to separate it from the material body 10, the boron nitride coating burst during cutting.
[発明の効果]
本発明によれば、CVD法により、セラミックス成形体
を製造する際に、素材体と支持体との接合部を取り囲む
特定の溝を素材体上に設けることにより、堆積されたセ
ラミックス被膜内の残留応力を緩和でき、かつ、接合部
の応力集中に起因するクラックの広範囲にわたる伝播を
防止できる。[Effects of the Invention] According to the present invention, when manufacturing a ceramic molded body by the CVD method, by providing a specific groove on the raw material body surrounding the joint between the raw material body and the support body, the deposited Residual stress within the ceramic coating can be alleviated, and cracks caused by stress concentration at the joint can be prevented from propagating over a wide range.
従って、窒化ホウ素をはじめとするセラミックス成形体
の製造工程において、従来、rWi題となっていた、接
合部に発生したクラックの伝播によるセラミックス被膜
の破損や、素材体との分離工程においてセラミックス被
膜内の残留応力により生じるセラミックス被膜の破損等
を回避することができる。このため、セラミックス成形
体の製造効率の向上、製造コストの低下など、極めて優
れた効果が認められる。Therefore, in the manufacturing process of ceramic molded bodies such as boron nitride, damage to the ceramic coating due to the propagation of cracks generated at the joint, which has traditionally been a problem, and damage to the ceramic coating during the separation process from the raw material, Damage to the ceramic coating caused by residual stress can be avoided. Therefore, extremely excellent effects such as improved manufacturing efficiency and reduced manufacturing cost of ceramic molded bodies are recognized.
第1図は、本願発明の実施態様にががるセラミックス成
形体製造用素材体及び支持体の概略断面図である。
第2図は、第1図の素材体及び支持体の平面図である。
第3図は、第1図の素材体及び支持体にセラミックス被
膜を形成した後の概略断面図である。
0
2
4
6
8
素材体、
支持体、
接合部、
清、
セラミックス被膜、FIG. 1 is a schematic sectional view of a raw material for producing a ceramic molded body and a support according to an embodiment of the present invention. FIG. 2 is a plan view of the material body and support body of FIG. 1. FIG. 3 is a schematic cross-sectional view after a ceramic coating is formed on the material body and support body shown in FIG. 1. 0 2 4 6 8 Material, support, joint, clear, ceramic coating,
Claims (3)
熱し、反応ガスを反応炉内に導入し、化学気相反応法に
より素材体上にセラミックスを堆積せしめてセラミック
ス被膜を形成した後、素材体とセラミックス被膜とを分
離させ、セラミックス被膜からなるセラミックス成形体
を製造する工程において、支持体と素材体との接合部を
取り囲むように素材体に溝を設けたことを特徴とするセ
ラミックス成形体の製造方法。(1) The material supported by the support was heated in a reactor, a reaction gas was introduced into the reactor, and ceramics were deposited on the material using a chemical vapor phase reaction method to form a ceramic coating. After that, in the step of separating the raw material and the ceramic coating to produce a ceramic molded body made of the ceramic coating, a groove is provided in the raw material so as to surround the joint between the support and the raw material. A method for manufacturing a ceramic molded body.
1記載のセラミックス成形体の製造方法。(2) The method for manufacturing a ceramic molded body according to claim 1, wherein the ceramic coating is formed of boron nitride.
であて、前記接合部を取り囲む溝が、幅2.5mm以上
3.5mm以下、深さ15mm以上25mm以下の寸法
を有することを特徴とする素材体。(3) A material used in the manufacturing method according to claim 1, characterized in that the groove surrounding the joint has a width of 2.5 mm or more and 3.5 mm or less, and a depth of 15 mm or more and 25 mm or less. material body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1248055A JPH03112900A (en) | 1989-09-26 | 1989-09-26 | Production of ceramic form and raw material form for production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1248055A JPH03112900A (en) | 1989-09-26 | 1989-09-26 | Production of ceramic form and raw material form for production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03112900A true JPH03112900A (en) | 1991-05-14 |
Family
ID=17172532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1248055A Pending JPH03112900A (en) | 1989-09-26 | 1989-09-26 | Production of ceramic form and raw material form for production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03112900A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006264729A (en) * | 2005-03-24 | 2006-10-05 | Metro Japan Co Ltd | Spacer for use in container for highly viscous liquid |
-
1989
- 1989-09-26 JP JP1248055A patent/JPH03112900A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006264729A (en) * | 2005-03-24 | 2006-10-05 | Metro Japan Co Ltd | Spacer for use in container for highly viscous liquid |
JP4676795B2 (en) * | 2005-03-24 | 2011-04-27 | メトロ・ジャパン株式会社 | High viscosity liquid container spacer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4990374A (en) | Selective area chemical vapor deposition | |
CA2120092C (en) | Triangular deposition chamber for a vapor deposition system | |
US4356152A (en) | Silicon melting crucible | |
JPH11504613A (en) | Single crucible | |
CA2023278C (en) | Method to prevent backside growth on substrates in a vapor deposition system | |
EP0922014A1 (en) | Unibody crucible and effusion source employing such a crucible | |
US6464912B1 (en) | Method for producing near-net shape free standing articles by chemical vapor deposition | |
EP1193324B1 (en) | A method of producing high aspect ratio domes by vapor deposition | |
JPH03112900A (en) | Production of ceramic form and raw material form for production thereof | |
US3961003A (en) | Method and apparatus for making elongated Si and SiC structures | |
KR102419522B1 (en) | Manufacturing method for synthetic quartz glass with improved yield and pore control | |
KR910000303A (en) | Tools for large or amorphous diamond abrasive layers | |
JPS6236089A (en) | Manufacture of ceramic product | |
JPH1059794A (en) | Pyrolyzed boron nitride container and its production | |
JPS62200722A (en) | Member for semiconductor diffusion furnace | |
SU1105253A1 (en) | Method of peeling polymeric coating from metal articles | |
JP2000273632A (en) | Production of flat ceramic bulk material free from warpage by chemical vapor deposition method | |
JPS6119117A (en) | Continuous cvd coating treatment method for silicon wafer | |
JPH03285070A (en) | Production of polycrystalline body and substrate for depositing polycrystalline body | |
SU512998A1 (en) | Apparatus for producing products from pyrolytic carbon | |
JPS61272382A (en) | Production of silicon nitride material by chemical vapor depositing method | |
JPH03131507A (en) | Formed body of pyrolytic boron nitride and production thereof | |
JPH0355421B2 (en) | ||
JPS61242945A (en) | Manufacture of high purity ceramic product | |
JPH04350491A (en) | Crucible with thermal impact resistant property |