JPH03112890A - Method for vapor epitaxial growth - Google Patents

Method for vapor epitaxial growth

Info

Publication number
JPH03112890A
JPH03112890A JP24969189A JP24969189A JPH03112890A JP H03112890 A JPH03112890 A JP H03112890A JP 24969189 A JP24969189 A JP 24969189A JP 24969189 A JP24969189 A JP 24969189A JP H03112890 A JPH03112890 A JP H03112890A
Authority
JP
Japan
Prior art keywords
single crystal
disilane
raw material
linear velocity
crystal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24969189A
Other languages
Japanese (ja)
Other versions
JPH0641399B2 (en
Inventor
Yoshikazu Toshida
利田 義和
Masayoshi Harada
勝可 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP24969189A priority Critical patent/JPH0641399B2/en
Priority to US07/588,220 priority patent/US5221412A/en
Publication of JPH03112890A publication Critical patent/JPH03112890A/en
Publication of JPH0641399B2 publication Critical patent/JPH0641399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To deposit an Si single crystal film without any defects at a high deposition rate and a low temperature by specifying the linear velocity of diluted disilane in growing the Si single crystal film on an Si single crystal substrate using the disilane as a raw material. CONSTITUTION:Diluted disilane is used to epitaxially grow an Si single crystal film on an Si single crystal substrate. In the process, the linear velocity of the diluted disilane is kept at 5-100cm/min. The concentration of the disilane in a raw material gas is preferably 0.001-1vol.%. more preferably 0.002-0.5vol.%. An inert gas, such as H2, He or Ar, can be used as the diluting gas in the raw material gas; however, the inexpensive H2 is preferred. If the linear velocity of the raw material gas is lower than 5cm/min, the amount sufficient for crystal growth cannot be fed. If the linear velocity exceeds 100cm/min, deposition defects are caused in the resultant crystal film.

Description

【発明の詳細な説明】 イ)発明の目的 〔産業上の利用分野〕 本発明は、Si単結晶基板上に、Sil結晶膜を成長す
る気相エピタキシャル成長法に関する。
DETAILED DESCRIPTION OF THE INVENTION A) Object of the Invention [Field of Industrial Application] The present invention relates to a vapor phase epitaxial growth method for growing a Sil crystal film on a Si single crystal substrate.

〔従来の技術〕[Conventional technology]

半導体集積回路(IC)の製造において、Si気相エピ
タキシャル成長法は重要なプロセスの1つである。この
方法は、通常1000°C以上の高温で行われるため、
Si単結晶基板中の不純物(ドーパント)が、オートド
ーピング、固相拡散により、エピタキシャル成長した単
結晶膜中に入り込む等の問題点があった。この問題を解
決するために、種々の低温化方法が開発されている。
In the manufacture of semiconductor integrated circuits (ICs), Si vapor phase epitaxial growth is one of the important processes. This method is usually carried out at a high temperature of 1000°C or higher, so
There have been problems such as impurities (dopants) in the Si single crystal substrate entering the epitaxially grown single crystal film due to autodoping and solid phase diffusion. In order to solve this problem, various low temperature methods have been developed.

代表的なものの1つが、分解し易いガスを原料として、
用いるというもので、ジシラン(Sizllb)を原料
とした場合、常圧では700°Cまでエピタキシャル成
長することが明らかになっている。
One of the representative methods is to use gas that is easily decomposed as a raw material.
It has been revealed that when disilane (Sizllb) is used as a raw material, epitaxial growth can occur up to 700°C at normal pressure.

〔発明が解決しようとする問題〕[Problem that the invention seeks to solve]

従来の方法では、低温下例えば700°Cで得られた膜
は、単結晶ではあっても、欠陥が10’ケ/ cd以上
あり、工業的に使用できる膜ではなかった。又、膜の堆
積速度(成長速度)も0.O1μm/ Ili n と
遅かった。
In the conventional method, a film obtained at a low temperature, for example, 700°C, has defects of 10'/cd or more even if it is a single crystal, and is not a film that can be used industrially. Also, the deposition rate (growth rate) of the film is 0. It was slow at O1μm/Ilin.

一方、エピタキシャル成長温度を高くすれば、欠陥が減
少することが判っているが、900°C以上では低温化
の効果が薄くなり、900℃における堆積速度は0.8
μm / 1111 n位であり、十分とは言えない。
On the other hand, it is known that increasing the epitaxial growth temperature reduces defects, but the effect of lowering the temperature becomes weaker at temperatures above 900°C, and the deposition rate at 900°C is 0.8°C.
It is on the order of μm/1111 n, which cannot be said to be sufficient.

口)発明の構成 〔問題点を解決する手段〕 本発明は、希釈したジシラン(以下、原料ガスとも言う
)を用いてSi単結晶基板上に、Si単結晶膜をエピタ
キシャル成長させる際に、希釈したジシランの線速か5
〜100 cm/winであることを特徴とする気相エ
ピタキシャル成長方法である。
(1) Structure of the invention [Means for solving the problems] The present invention provides a method for epitaxially growing a Si single-crystal film on a Si single-crystal substrate using diluted disilane (hereinafter also referred to as source gas). Linear speed of disilane 5
This is a vapor phase epitaxial growth method characterized by a growth rate of ~100 cm/win.

本発明においてジシランは高純度のものが好ましい。原
料ガスにおけるジシランの濃度は、好ましくはO,0O
IVo1%からl Vo1%まで、必要とする堆積速度
に応じて変えることが出来るが、0゜002νo1%か
らQ、5Vo1%が更に好ましい。
In the present invention, disilane with high purity is preferred. The concentration of disilane in the raw material gas is preferably O, 0O
It can be varied from IVo1% to lVo1% depending on the required deposition rate, but it is more preferably from 0°002νo1% to Q,5Vo1%.

原料ガスにおける希釈ガスとしては、H2およびH,、
A、等の不活性ガスを用いることが出来るが、安価なH
zが好ましい。
As the diluent gas in the raw material gas, H2 and H,
Although inert gases such as A, etc. can be used, inexpensive H
z is preferred.

原料ガスの線速は、5〜100 cm/win 、好ま
しくは10〜50 cm/ll1nである。5cm/l
ll1n未満では結晶成長に充分な量を供給する事が出
来ず、100 cm / akinを超えると得られる
結晶膜に堆積欠陥が生じる。
The linear velocity of the raw material gas is 5 to 100 cm/win, preferably 10 to 50 cm/ll1n. 5cm/l
If it is less than ll1n, a sufficient amount cannot be supplied for crystal growth, and if it exceeds 100 cm/akin, deposition defects will occur in the resulting crystal film.

エピタキシャル成長温度は、500°Cから1200°
C1好ましくは600°Cから1000″Cである。
Epitaxial growth temperature is 500°C to 1200°
C1 is preferably 600°C to 1000″C.

反応器の形状は、本発明の線速を実現できるものであれ
ばよいが、通常、横型、縦型、バレル型、パンケーキ型
(竪型)を用いることが出来る。
The shape of the reactor may be any shape as long as it can achieve the linear velocity of the present invention, and generally horizontal, vertical, barrel, and pancake (vertical) shapes can be used.

好ましくは、パンケーキ型である。Preferably, it is a pancake type.

Si単結晶基板は、ガス流に対して、平行、垂直あるい
はその中間(傾斜)等、種々の置き方、並べ方をとるこ
とが可能である。平行以外の置き方が好ましい。
The Si single crystal substrates can be placed and arranged in various ways, such as parallel to, perpendicular to, or somewhere in between (tilted) with respect to the gas flow. A placement other than parallel is preferred.

〔実施例〕〔Example〕

実施例1゜ 2″面方位(100)、N型(sbドープ)のSi単結
晶基板を、SiCコートしたカーボン製サセプター(支
持台)上に載せ、竪型円筒状石英製反応管中に設置した
。常圧下で、H2を150Qcc/ninで流し、高周
波加熱によりSi基板を1050°Cまで昇温し、この
状態で10分間加熱を続けた。
Example 1 An N-type (sb-doped) Si single crystal substrate with a 2″ plane orientation (100) was placed on a SiC-coated carbon susceptor (supporting stand) and placed in a vertical cylindrical quartz reaction tube. Under normal pressure, H2 was flowed at 150 Qcc/nin, the temperature of the Si substrate was raised to 1050°C by high frequency heating, and heating was continued in this state for 10 minutes.

この後、基板温度を700 ’Cまで下げた後、Ht 
1.500 cc/1IIinとジシラン2cc/wi
nの原料ガスを60分間流した。この時の原料ガスの線
速は30cm/n+inであった。
After this, after lowering the substrate temperature to 700'C, Ht
1.500 cc/1IIin and disilane 2cc/wi
n raw material gas was flowed for 60 minutes. The linear velocity of the raw material gas at this time was 30 cm/n+in.

得られた膜は、完全な鏡面であり、反射電子線回折の結
果、菊池線が見られ、完全な単結晶であることが判った
。S eccoエッチしたところ、積層欠陥等の欠陥は
見られなかった。堆積速度は0.04μm / 111
 nと十分大きな値であった。なお、この膜の光学顕微
鏡写真及び2反射電子回折は第1図及び第2図の通りで
あった。
The obtained film had a perfect mirror surface, and as a result of reflection electron beam diffraction, Kikuchi lines were observed, indicating that it was a perfect single crystal. When Secco etching was performed, no defects such as stacking faults were observed. Deposition rate is 0.04μm/111
n, which was a sufficiently large value. The optical micrograph and two-reflection electron diffraction of this film were as shown in FIGS. 1 and 2.

実施例2゜ エピタキシャル成長温度を900°C、ジシランの流量
を6cc/n+in  (原料ガス線速30cm/5i
n)とした以外は、実施例1と同様の実験を行った。
Example 2 Epitaxial growth temperature was 900°C, disilane flow rate was 6cc/n+in (raw material gas linear velocity 30cm/5i
An experiment similar to that in Example 1 was conducted except that n).

得られた膜は、欠陥のない完全な単結晶であった。堆積
速度は、1.3μm/minと非常に大きな値となった
The obtained film was a perfect single crystal without any defects. The deposition rate was a very high value of 1.3 μm/min.

ハ)発明の効果 本発明は、希釈したジシランの線速を5〜10Qcm/
sinとする事により、欠陥のない完全性の高いSi単
結晶膜をSi単結晶基板上に低温下かつ大きな堆積速度
で堆積させることが出来、工業的に非常に有用なエピタ
キシャル成長方法である。
C) Effects of the invention The present invention improves the linear velocity of diluted disilane from 5 to 10 Qcm/
By using sin, it is possible to deposit a defect-free and highly perfect Si single crystal film on a Si single crystal substrate at a low temperature and at a high deposition rate, making it an industrially very useful epitaxial growth method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られたSi単結晶膜の光学顕微鏡
写真であり、第2図は同結晶膜の反射電子線回折である
FIG. 1 is an optical micrograph of the Si single crystal film obtained in Example 1, and FIG. 2 is a backscattered electron beam diffraction of the same crystal film.

Claims (1)

【特許請求の範囲】[Claims] 1.希釈したジシランを用いてSi単結晶基板上に、S
i単結晶膜をエピタキシャル成長させる際に、希釈した
ジシランの線速が5〜100cm/minであることを
特徴とする気相エピタキシャル成長方法。
1. S is deposited on a Si single crystal substrate using diluted disilane.
i. A vapor phase epitaxial growth method characterized in that the linear velocity of diluted disilane is 5 to 100 cm/min when epitaxially growing a single crystal film.
JP24969189A 1989-09-26 1989-09-26 Vapor phase epitaxial growth method Expired - Fee Related JPH0641399B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24969189A JPH0641399B2 (en) 1989-09-26 1989-09-26 Vapor phase epitaxial growth method
US07/588,220 US5221412A (en) 1989-09-26 1990-09-26 Vapor-phase epitaxial growth process by a hydrogen pretreatment step followed by decomposition of disilane to form monocrystalline Si film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24969189A JPH0641399B2 (en) 1989-09-26 1989-09-26 Vapor phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPH03112890A true JPH03112890A (en) 1991-05-14
JPH0641399B2 JPH0641399B2 (en) 1994-06-01

Family

ID=17196770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24969189A Expired - Fee Related JPH0641399B2 (en) 1989-09-26 1989-09-26 Vapor phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPH0641399B2 (en)

Also Published As

Publication number Publication date
JPH0641399B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
US5471946A (en) Method for producing a wafer with a monocrystalline silicon carbide layer
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
JP4603386B2 (en) Method for producing silicon carbide single crystal
JPH02211620A (en) Method of growing single crystal thin film of compound semiconductor
JP4733882B2 (en) Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal
JP2003517726A (en) Fabrication method of relaxed silicon germanium layer
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2005239496A (en) Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal, and method for producing the same
JPS63224225A (en) Substrate of thin film single crystal diamond
US5221412A (en) Vapor-phase epitaxial growth process by a hydrogen pretreatment step followed by decomposition of disilane to form monocrystalline Si film
JPH033233A (en) Growth method for compound semiconductor single crystal thin film
JPH03112890A (en) Method for vapor epitaxial growth
JPS6120514B2 (en)
JPS6226569B2 (en)
Koukitu et al. Hydride vapor phase epitaxy of GaN
JP2002293694A (en) Silicon carbide single crystal ingot and method of manufacturing for the same
JPH0529234A (en) Epitaxial crowing method
JPS6115150B2 (en)
JP2012009581A (en) Method of manufacturing silicon epitaxial wafer
JPH03110831A (en) Manufacture of substrate having silicon single crystal film
JPS61232298A (en) Production of silicon single crystal
JPH01144620A (en) Semiconductor growth device
Mao et al. Origin analysis and the elimination of the columnar crystal defects in the 3C-SiC/Si (1 0 0) heteroepitaxial layers by the modified two-step carbonization process
KR101699794B1 (en) A Method of Manufacturing No Bending GaN Wafer, and A Wafer therefore

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees