JPH03112808A - Hydrothermal synthesis of lamellar silicate - Google Patents

Hydrothermal synthesis of lamellar silicate

Info

Publication number
JPH03112808A
JPH03112808A JP25106289A JP25106289A JPH03112808A JP H03112808 A JPH03112808 A JP H03112808A JP 25106289 A JP25106289 A JP 25106289A JP 25106289 A JP25106289 A JP 25106289A JP H03112808 A JPH03112808 A JP H03112808A
Authority
JP
Japan
Prior art keywords
silica
source
mol
alkali metal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25106289A
Other languages
Japanese (ja)
Other versions
JPH0669888B2 (en
Inventor
Katsunori Kosuge
勝典 小菅
Gun Tsunashima
綱島 群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1251062A priority Critical patent/JPH0669888B2/en
Publication of JPH03112808A publication Critical patent/JPH03112808A/en
Publication of JPH0669888B2 publication Critical patent/JPH0669888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To obtain a lamellar silicate useful as a carrier for catalyst, filler, adsorbent, etc., by reacting a liquid mixture containing a silica source, alkali metal source, water and alcohol under a hydrothermal condition. CONSTITUTION:A liquid mixture comprising a silica source (e.g. amorphous silica) having <=100 meshes particle size, 0.1-0.3mol based on 1 mol SiO2 of an alkali metal source (e.g. NaOH), 10-30mol water and 0.2-3.0mol based on 1mol SiO2 of 2-6C aliphatic alcohol (e.g. n-butanol) and optionally 0.04-0.8mol based on 1mol SiO2 of an auxiliary component (e.g. sodium aluminate) under a hydrothermal condition 1-20atm. at >=150 deg.C, the reaction product is separated from mother liquid by a conventional procedure, washed with 10<-3>-10<-4>mol/l alkali solution, then with water and dried.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1層状ケイ酸塩の水熱合成法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for the hydrothermal synthesis of monolayer silicates.

〔従来の技術〕[Conventional technology]

層状ケイ酸塩はその特殊構造に基づいた機能性材料への
応用が期待されている物質の1つである。
Layered silicate is one of the substances that is expected to be applied to functional materials based on its special structure.

このものは、触媒、充填剤、あるいは吸着剤等の種々の
用途開発がなされている。更に、インターカレーション
による眉間修飾では新規な触媒や多孔材料を始めとした
複合材料開発へ発展している分野である。
This material has been developed for various uses such as catalysts, fillers, and adsorbents. Furthermore, the field of glabellar modification by intercalation is progressing to the development of composite materials including new catalysts and porous materials.

現在、その対象となる層状ケイ酸塩には天然のスメクタ
イト系粘土鉱物や溶融法で合成されたフッ素マイカ等が
ある。しかし、これからの層状ケイ酸塩を活用した機能
性材料の開発にはより精製された原料を出発原料とした
、より効率的な合成プロセスが求められている。
Currently, the target layered silicates include natural smectite clay minerals and fluorine mica synthesized by a melting method. However, the development of functional materials using layered silicates in the future requires a more efficient synthesis process that uses more refined raw materials as starting materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者らは、湿式法により生成したアモルファスシリ
カとアルコール溶液との反応に注目し、鋭意研究を重ね
た結果、これを出発原料とすることで層状ポリケイ酸塩
マガディアイトの合成が可能であることを見い出した。
The present inventors focused on the reaction between amorphous silica produced by a wet method and an alcohol solution, and as a result of extensive research, it was possible to synthesize layered polysilicate magadiite by using this as a starting material. I discovered that.

従来、マガディアイトの合成は100〜150℃、数週
間−数ケ月間、あるいは含アルカリ炭酸塩添加により1
75℃で十数時間を要することが分かっているが、低温
では非晶質物置の残存や高温では他相の共存があり、単
一相として得られないことに問題があった。
Traditionally, magadiite was synthesized at 100 to 150°C for several weeks to several months, or by adding an alkali carbonate.
It is known that it takes more than ten hours at 75°C, but there is a problem that amorphous particles remain at low temperatures and other phases coexist at high temperatures, making it impossible to obtain a single phase.

本発明は上記の知見に基づいてなされたもので、その目
的は層状ケイ酸塩の新たな水熱合成法を提供するにある
The present invention was made based on the above findings, and its purpose is to provide a new method for hydrothermal synthesis of layered silicates.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明によれば、シリカ源、アルカリ金属源
、水及びアルコールからなり、SiO□1モル当り、ア
ルカリ金属0.1〜0.3モル及び水10〜30モルを
含有する液状混合物を150℃以上の水熱条件下で反応
させることを特徴とする層状ケイ酸塩の水熱合成法が提
供される。
That is, according to the present invention, a liquid mixture consisting of a silica source, an alkali metal source, water, and an alcohol and containing 0.1 to 0.3 mol of alkali metal and 10 to 30 mol of water per 1 mol of SiO A method for hydrothermally synthesizing layered silicates is provided, which is characterized in that the reaction is carried out under hydrothermal conditions at a temperature of 0.degree. C. or higher.

本発明で用いるシリカ源としては、アモルフスシリカの
使用が好適である。一般には、湿式法で合成されたシリ
カであればよく、特にその履歴は限定されない0例えば
、珪酸ソーダやアルコキシドを原料として得られるシリ
カや、ケイ酸塩鉱石を鉱酸処理して得られるアモルファ
スシリカを用いることができる。また、珪酸ソーダ自体
をシリカ源とすることもできる。シリカ源として固体状
のものを用いる場合、その粒度は特に制約されないが、
大きすぎると完全に溶解反応させるのに長時間を要する
ので好ましくなく、一般には、100メツシユより小さ
な粉末で用いるのが好ましい。
As the silica source used in the present invention, amorphous silica is preferably used. In general, silica synthesized by a wet method is sufficient, and its history is not particularly limited. For example, silica obtained from sodium silicate or alkoxide as a raw material, and amorphous silica obtained by treating silicate ore with mineral acid. can be used. Moreover, sodium silicate itself can also be used as a silica source. When using a solid silica source, the particle size is not particularly limited, but
If it is too large, it will take a long time for complete dissolution reaction, which is undesirable, and it is generally preferable to use a powder smaller than 100 mesh.

アルカリ金属源としては、水酸化ナトリウムや水酸化カ
リウムの使用が好ましい。また、珪酸ソーダをシリカ源
とアルカリ金属源の両方に用いることができる。
As the alkali metal source, it is preferable to use sodium hydroxide or potassium hydroxide. Also, sodium silicate can be used as both the silica source and the alkali metal source.

アルコールとしては、−殻内には、炭素数2〜6の脂肪
族アルコールが使用され、好ましくは炭素数3〜5の直
鎖アルコールカ5使用される。アルカリ度が大きくなる
と、より炭素数の多いアルコールの使用が好ましい。例
えば、シリカに対するアルカリ金属のモル比が約0.2
の場合には、n−ブタノールの使用が好ましく、一方、
そのモル比が約0.25の場合には、■−ペンタノール
の使用が好ましい。
As the alcohol, an aliphatic alcohol having 2 to 6 carbon atoms is used in the shell, preferably a straight chain alcohol having 3 to 5 carbon atoms. As the alkalinity increases, it is preferable to use alcohols with higher carbon numbers. For example, the molar ratio of alkali metal to silica is about 0.2
The use of n-butanol is preferred in the case of
The use of ■-pentanol is preferred when its molar ratio is about 0.25.

原料混合物中の成分割合は、シリカ1モルに対し、アル
カリ金属0.1〜0.3モル、水10〜30モルの割合
である。またアルコールの使用量は、シリカ1モルに対
し、0.2〜3.0モル、好ましくは1.0〜2.0モ
ルの割合である。
The component proportions in the raw material mixture are 0.1 to 0.3 moles of alkali metal and 10 to 30 moles of water per 1 mole of silica. The amount of alcohol used is 0.2 to 3.0 mol, preferably 1.0 to 2.0 mol, per 1 mol of silica.

また、原料混合物には、補助成分として、必要に応じ、
アルミン酸ナトリウムや硫酸アルミニウム、アルミナ等
のアルミナ源や、水酸化マグネシウムや、マグネシア等
のマグネシア源を適量(例えば、シリカ1モルに対して
0.04〜0.8モル)添加することもできる。
In addition, the raw material mixture may contain, as an auxiliary ingredient,
An appropriate amount (for example, 0.04 to 0.8 mol per 1 mol of silica) of an alumina source such as sodium aluminate, aluminum sulfate, or alumina, or a magnesia source such as magnesium hydroxide or magnesia may be added.

反応温度は低温では反応時間がかかり、高温では他物質
の晶出を抑制する必要が出てくる場合もあり、150℃
以上の温度、特に170℃程度が好ましい。撹拌は系全
体の均一性を保持できれば良い。
The reaction temperature is 150°C, as it takes a long time to react at low temperatures, and it may be necessary to suppress the crystallization of other substances at high temperatures.
The temperature above, particularly about 170°C, is preferable. Stirring may be performed as long as it maintains uniformity of the entire system.

反応圧力は、全圧で、1〜20気圧、好ましくは7〜9
気圧である。
The reaction pressure is 1 to 20 atmospheres, preferably 7 to 9 atmospheres in terms of total pressure.
It is atmospheric pressure.

上記の条件によって合成された固体物質は、常法によっ
て母液と分離し、次いで1.0−3〜10−4mol/
1程度のアルカリ溶液(母液と同種類のアルカリ金属溶
液)で洗浄するか又は水洗後、乾燥し回収する。
The solid substance synthesized under the above conditions is separated from the mother liquor by a conventional method, and then 1.0-3 to 10-4 mol/
After washing with an alkaline solution (alkali metal solution of the same type as the mother liquor) or with water, dry and collect.

〔作用〕[Effect]

本発明の合成方法においては、アルカリ溶液に溶解した
シリカ分のアルコール添加に基づく溶解度減少による晶
析効果とシリカ多面体の立体配位規制効果により層状の
シリカ四面体を形成し、これをアルカリ金属が結合する
ことによって、結晶性層状ケイ酸塩が生成するものと考
えられる。
In the synthesis method of the present invention, a layered silica tetrahedron is formed due to the crystallization effect due to the solubility reduction due to the addition of alcohol to the silica dissolved in an alkaline solution and the steric coordination effect of the silica polyhedron, and this is formed by the alkali metal. It is thought that a crystalline layered silicate is produced by the combination.

層状構造を有するケイ酸塩骨格を形成させるためには、
炭素数4のアルキル基を持つn−ブタノールが最も有効
であり、これはn−ブチルアミンでも同様な効果が確認
されることから、直鎖C4Hs基による立体配位規制が
層状構造の形成に大きく寄与するものと思われる。しか
し、アルカリ度が高い程、シリカ分の溶解度が増すため
1層状構造を破壊することなく晶析効果を大きくするた
めにはよりアルキル鎖の炭素数の多いアルコールの使用
が有効となる。
In order to form a silicate skeleton with a layered structure,
n-Butanol, which has an alkyl group with 4 carbon atoms, is the most effective, and a similar effect was confirmed with n-butylamine, indicating that steric coordination regulation by linear C4Hs groups greatly contributes to the formation of layered structures. It seems that it will. However, as the alkalinity increases, the solubility of the silica increases, so in order to increase the crystallization effect without destroying the one-layer structure, it is effective to use an alcohol with a larger number of carbon atoms in the alkyl chain.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

実施例1 蛇紋岩の硫酸溶解で生成したSiO2分99.7%以上
(ただし、含まれる水分を除いて換算したもので、以後
も化学分析値はこれを基準とする)で粒度100〜20
0メツシユのアモルファスシリカ25gを0.5規定水
酸化ナトリウム溶液150ccと市販特級ブタノール溶
液50ccの混合溶液に添加し、170℃のオートクレ
ーブ中で24時間反応させた。
Example 1 SiO2 produced by dissolving serpentinite in sulfuric acid has a particle size of 100 to 20% with a content of 99.7% or more (however, this is calculated excluding the water contained, and chemical analysis values will be based on this from now on)
25 g of amorphous silica of 0 mesh was added to a mixed solution of 150 cc of 0.5N sodium hydroxide solution and 50 cc of commercially available special grade butanol solution, and reacted in an autoclave at 170° C. for 24 hours.

処理終了後、濾過して液相を分離し、10−’n+ol
/1の水酸化ナトリウム溶液で洗浄した。回収固体を4
0℃で乾燥後、X線回折法で測定したところマガディア
イトのみの生成が認められた。なお、水洗によってもX
線回折パターンに変化は認められず、これは以下の実施
例においても同様であった。
After the treatment is completed, the liquid phase is separated by filtration, and 10-'n+ol
/1 sodium hydroxide solution. The recovered solids are 4
After drying at 0°C, measurement by X-ray diffraction revealed that only magadiite was produced. In addition, washing with water may also cause
No change was observed in the line diffraction pattern, and this was the same in the following examples.

実施例2 蛇紋岩の硫酸溶解で生成したSiO2分99.7%以上
で粒度280メツシユ以下のアモルファスシリカ25&
を0.5規定水酸化ナトリウム溶液150ccと市販特
級ブタノール溶液50ccの混合液に添加し、170℃
のオートクレーブ中で12時間反応させた。
Example 2 Amorphous silica 25 &
was added to a mixture of 150 cc of 0.5N sodium hydroxide solution and 50 cc of commercially available special grade butanol solution, and heated at 170°C.
The mixture was reacted for 12 hours in an autoclave.

処理終了後、濾過して液相を分離し、10−’mol/
1の水酸化ナトリウム溶液で洗浄した。回収固体を40
℃で乾燥後、X線回折法で測定したところマガディアイ
トのみの生成が認められた。
After the treatment is completed, the liquid phase is separated by filtration, and 10-'mol/
1 with sodium hydroxide solution. 40% of recovered solids
After drying at °C, measurement by X-ray diffraction revealed that only magadiite was produced.

実施例3 蛇紋岩の硫酸溶解で生成したSin、分99.7%以上
で粒度280メツシユ以下のアモルファスシリカ25g
を0.7規定水酸化ナトリウム溶液150ccと市販特
級ペンタノール溶液50ccの混合液に添加し、170
℃のオートクレーブ中で12時間反応させた。
Example 3 25 g of amorphous silica with a particle size of 280 mesh or less and a Sin content of 99.7% or more and a particle size of 280 mesh or less produced by dissolving serpentinite in sulfuric acid
was added to a mixture of 150 cc of 0.7N sodium hydroxide solution and 50 cc of commercially available special grade pentanol solution, and 170
The reaction was carried out in an autoclave at ℃ for 12 hours.

処理終了後、濾過して液相を分離し、 10−’mol
/lの水酸化ナトリウム溶液で洗浄した。回収固体を4
0℃で乾燥後、X線回折法で測定したところマガディア
イトのみの生成が認められた。
After the treatment is completed, the liquid phase is separated by filtration, and 10-'mol
/l of sodium hydroxide solution. The recovered solids are 4
After drying at 0°C, measurement by X-ray diffraction revealed that only magadiite was produced.

実施例4 蛇紋岩の硫酸溶解で生成したSiO2分99.7%以上
で粒度280メツシユ以下のアモルファスシリカ25g
を0.35規定水酸化ナトリウム溶液150ccと市販
特級ブタノール溶液50ccの混合液に添加し、170
℃のオートクレーブ中で24時間反応させた。
Example 4 25 g of amorphous silica with a SiO2 content of 99.7% or more and a particle size of 280 mesh or less produced by dissolving serpentinite in sulfuric acid
was added to a mixture of 150 cc of 0.35N sodium hydroxide solution and 50 cc of commercially available special grade butanol solution, and 170
The reaction was carried out in an autoclave at ℃ for 24 hours.

処理終了後、濾過して液相を分離し、 10−’+wo
l/lの水酸化ナトリウム溶液で洗浄した。回収固体を
40℃で乾燥後、X線回折法で測定したところアモルフ
ァス物質の共存は認められが、マガディアイトのみの生
成が認められた。
After the treatment is completed, the liquid phase is separated by filtration, and 10-'+wo
Washed with l/l sodium hydroxide solution. After drying the recovered solid at 40° C., it was measured by X-ray diffraction, and although the coexistence of amorphous substances was observed, only magadiite was observed to be produced.

実施例5 蛇紋岩の硫酸溶解で生成したSiOよ分99.7%以上
で粒度100メツシユ以下のアモルファスシリカ25g
を0.5規定水酸化ナトリウム溶液150ccと市販特
級エタノール、あるいはプロパツールやペンタノール溶
液各々50ccの混合液に添加し、170℃のオートク
レーブ中で12〜24時間反応させた。
Example 5 25 g of amorphous silica with SiO content of 99.7% or more and particle size of 100 mesh or less produced by dissolving serpentinite in sulfuric acid
was added to a mixture of 150 cc of 0.5N sodium hydroxide solution and 50 cc each of commercially available special grade ethanol, propatool or pentanol solution, and reacted in an autoclave at 170°C for 12 to 24 hours.

処理終了後、濾過して液相を分離し、 10−4mol
/1の水酸化ナトリウム溶液で洗浄した。回収固体を4
0℃で乾燥後、X線回折法で測定したところアモルファ
ス物質の共存は認められが、マガディアイトのみの生成
が認められた。
After the treatment is completed, the liquid phase is separated by filtration, and 10-4 mol
/1 sodium hydroxide solution. The recovered solids are 4
After drying at 0° C., measurement by X-ray diffraction revealed the presence of amorphous substances, but only magadiite formation.

〔発明の効果〕〔Effect of the invention〕

マガディアイトはその特有の層状構造に基づくミクロポ
アを有することから、それ自体化学工業、窯業、医学等
多くの分野での用途が期待できる。
Since magadiite has micropores based on its unique layered structure, it can be expected to be used in many fields such as the chemical industry, ceramics, and medicine.

例えば、触媒担体、充填剤、吸着剤、脱臭剤、酵素セン
サー、微生物分離等に適用可能と考えられる。また、イ
ンターカレーション反応により、微生物層剤、薬理活性
物質、あるいは眉間におけるピラー形成によって新たな
触媒や多孔材料等を製造する際の層状化合物として有用
なものと期待できる。
For example, it may be applicable to catalyst carriers, fillers, adsorbents, deodorizers, enzyme sensors, microbial separation, etc. Furthermore, it is expected to be useful as a layered compound in the production of microbial layer agents, pharmacologically active substances, or new catalysts and porous materials by forming pillars between the eyebrows through intercalation reactions.

また、これを酸処理して得られる結晶性層状ポリケイ酸
はシリカ分のみから成り、アモルファスシリカが利用さ
れてきた用途、例えば触媒、触媒担体、充填剤、吸着剤
、脱臭剤等に対し、より高い性能を賦与できる可能性が
あり、更に前述と同様特殊構造を活用したインターカレ
ーション反応により、複合材料を始めとした種々の機能
性材料創製のための層状化合物として有用なものと期待
できる。
In addition, the crystalline layered polysilicic acid obtained by acid treatment consists of only silica, and is more suitable for applications where amorphous silica has been used, such as catalysts, catalyst supports, fillers, adsorbents, and deodorizers. It has the potential to impart high performance, and is also expected to be useful as a layered compound for creating various functional materials including composite materials, due to the intercalation reaction that utilizes the special structure as described above.

Claims (3)

【特許請求の範囲】[Claims] (1)シリカ源、アルカリ金属源、水及びアルコールか
らなり、SiO_21モル当り、アルカリ金属0.1〜
0.3モル及び水10〜30モルを含有する液状混合物
を150℃以上の水熱条件下で反応させることを特徴と
する層状ケイ酸塩の水熱合成法。
(1) Consisting of a silica source, an alkali metal source, water and alcohol, with 0.1 to 0.1 alkali metal per mole of SiO_2
A method for hydrothermal synthesis of a layered silicate, which comprises reacting a liquid mixture containing 0.3 mol and 10 to 30 mol of water under hydrothermal conditions at 150°C or higher.
(2)該シリカ源としてアモルファスシリカを用いる請
求項1の方法。
(2) The method of claim 1, wherein amorphous silica is used as the silica source.
(3)該液状混合物がアルミナ源又はマグネシア源を含
有する請求項1又は2の方法。
(3) The method according to claim 1 or 2, wherein the liquid mixture contains an alumina source or a magnesia source.
JP1251062A 1989-09-27 1989-09-27 Hydrothermal Synthesis of Layered Silicate Expired - Lifetime JPH0669888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1251062A JPH0669888B2 (en) 1989-09-27 1989-09-27 Hydrothermal Synthesis of Layered Silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1251062A JPH0669888B2 (en) 1989-09-27 1989-09-27 Hydrothermal Synthesis of Layered Silicate

Publications (2)

Publication Number Publication Date
JPH03112808A true JPH03112808A (en) 1991-05-14
JPH0669888B2 JPH0669888B2 (en) 1994-09-07

Family

ID=17217061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1251062A Expired - Lifetime JPH0669888B2 (en) 1989-09-27 1989-09-27 Hydrothermal Synthesis of Layered Silicate

Country Status (1)

Country Link
JP (1) JPH0669888B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605044A1 (en) * 1992-12-29 1994-07-06 PELT &amp; HOOYKAAS B.V. Process for the synthesis of a layered, clay-like material as well as its use
EP0634489A1 (en) * 1993-06-18 1995-01-18 Ngk Insulators, Ltd. Inorganic carrier for a biocatalyst
JP2005145800A (en) * 2003-11-19 2005-06-09 National Institute Of Advanced Industrial & Technology Method of manufacturing layered silicate compound
CN108867028A (en) * 2018-07-18 2018-11-23 吉林大学 A kind of preparation method of flexibility silicate nano tunica fibrosa

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605044A1 (en) * 1992-12-29 1994-07-06 PELT &amp; HOOYKAAS B.V. Process for the synthesis of a layered, clay-like material as well as its use
EP0634489A1 (en) * 1993-06-18 1995-01-18 Ngk Insulators, Ltd. Inorganic carrier for a biocatalyst
US5618736A (en) * 1993-06-18 1997-04-08 Ngk Insulators, Ltd. Method for using synthesized kaolinite as carrier for bioreactor, a composite body composed substantially of synthesized kaolinite as carrier and enzyme carried on synthesized kaolinite, and bioreactor system using such a composite body
JP2005145800A (en) * 2003-11-19 2005-06-09 National Institute Of Advanced Industrial & Technology Method of manufacturing layered silicate compound
JP4670033B2 (en) * 2003-11-19 2011-04-13 独立行政法人産業技術総合研究所 Method for producing layered silicate compound
CN108867028A (en) * 2018-07-18 2018-11-23 吉林大学 A kind of preparation method of flexibility silicate nano tunica fibrosa

Also Published As

Publication number Publication date
JPH0669888B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
Pfeiffer et al. Synthesis of lithium silicates
WO2016078035A1 (en) Active aluminosilicate material and preparation method therefor
CN101774604B (en) Method for synthesizing zeolite by acid activation of attapulgite clay
US3594121A (en) Dry gel process for preparing zeolite y
US5236681A (en) Layered silicate
JPH03112808A (en) Hydrothermal synthesis of lamellar silicate
JP3767041B2 (en) Method for synthesizing zeolite β
TW201615552A (en) Method for producing crystalline silicotitanate
JP2006335578A (en) Leaflet-like gypsum dihydrate and its manufacturing method
JPH0669889B2 (en) Hydrothermal Synthesis of Layered Silicate
JPH05507054A (en) A simple method for producing swellable layered silicates
US3401015A (en) Magnesium silicate and process for making same
JPS61256920A (en) Sectorial magnesium oxysulfate and its production
TW201615551A (en) Method for producing crystalline silicotitanate
US3523764A (en) Process for the manufacture of magnesium aluminosilicate for medical uses
JPH0130765B2 (en)
JP2704270B2 (en) Method for producing chain-structured clay
JPS6149245B2 (en)
RU2147290C1 (en) Method for production of fine single-phase hydroxyl-apatite
JP2642893B2 (en) Method for producing X-type zeolite single crystal
JPH09227116A (en) Production of layered silicic acid salt
JPS6160631A (en) Production of aluminum lactate
JPS63159338A (en) Production of magnesium acetate
JP3292865B2 (en) Synthesis of spherical aluminosilicate from highly concentrated solution
JP3276405B2 (en) Method for producing borate of guanidine compound

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term