JPS6149245B2 - - Google Patents

Info

Publication number
JPS6149245B2
JPS6149245B2 JP7908079A JP7908079A JPS6149245B2 JP S6149245 B2 JPS6149245 B2 JP S6149245B2 JP 7908079 A JP7908079 A JP 7908079A JP 7908079 A JP7908079 A JP 7908079A JP S6149245 B2 JPS6149245 B2 JP S6149245B2
Authority
JP
Japan
Prior art keywords
calcium silicate
gypsum
silicate
reaction
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7908079A
Other languages
Japanese (ja)
Other versions
JPS565317A (en
Inventor
Yoshio Murakami
Yoshiaki Watanabe
Teruo Oikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP7908079A priority Critical patent/JPS565317A/en
Publication of JPS565317A publication Critical patent/JPS565317A/en
Publication of JPS6149245B2 publication Critical patent/JPS6149245B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は石膏と珪酸アルカリから嵩比容積の大
きい且つ吸油量の大きな珪酸カルシウム又は珪酸
カルシウム−石膏複合体を製造する方法に関す
る。 珪酸カルシウムは種々の製造方法が公知で、ま
た種々の結晶構造物が知られている。しかし石膏
をカルシウム原料とした珪酸カルシウムの製造方
法はほとんど知られていない。 本発明者等は珪酸アルカリと石膏とを水性媒体
中で混合し次いで水熱反応を行うことにより結晶
構造がジヤイロライト型を有し、無定形2酸化珪
素が該結晶中にとりこまれた嵩比容積及び吸油量
が大きい珪酸カルシウムを得ることを見出し既に
提案した。また該珪酸カルシウムは電子顕微鏡写
真(5000〜10000倍)をとることにより対称的に
なつた2辺を有する薄片の集合体で構成されてい
て、バラの花の花弁に類似する薄片の集合体とな
つていることが判る。該薄片の大きさは原料の種
類、原料比、製造条件等によつて異なり一概に限
定出来ないが一般には長手方向の平均直径が0.1
〜30U、厚みが0.005〜0.1U程度の円状、橢円状
等をしたものが多い。 また前記反応で得られた珪酸カルシウムは前記
した如くジヤイロライト型の珪酸カルシウム結晶
構造中に無定形2酸化珪素がとりこまれ、該2酸
化珪素の粒界或いは結合形態は電子顕微鏡で30万
倍程度の写真をとつても判別することが出来な
い。上記理由により前記珪酸カルシウムは一般式
2CaO・3SiO2・nSiO2・mH2O(但しn、mは正
の数でnは一般に0.1〜10である)で表示される
ものと考えられる。本発明に於いては上記性状を
有する珪酸カルシウムを単に花弁状珪酸カルシウ
ムと略記することがある。該花弁状珪酸カルシウ
ムは石膏と珪酸アルカリを原料とするとき該原料
配合比によつて即ち石膏の配合比が大きくなると
例えば一般的には石膏/珪酸アルカリのモル比が
1.1越えると、前記一般式で示される花弁状珪酸
カルシウム中に石膏がとりこまれた組成のものと
なる。該石膏も前記2酸化珪素と同様に電子顕微
鏡写真で粒界或いは結合形態が判別出来ない。従
つて上記石膏がとりこまれた珪酸カルシウムは前
記一般式に準じて示せば、2CaO・3SiO2
nSiO2・mH2O・lCaSO4(但しn、m、lは正の
数でnは0.1〜10、lは0.01〜0.9)で表示される
ものである。以下本発明に於いては上記珪酸カル
シウムを花弁珪酸カルシウム石膏複合体と略記す
ることがある。 本発明者等は石膏と珪酸アルカリとから花弁状
珪酸カルシウム或いは花弁状珪酸カルシウム石膏
複合体の製造に関する研究を更に続けて来たが得
られる目的物の嵩比容積は、石膏と珪酸アルカリ
を混合した際に副生する硫酸アルカリ及び未反応
石膏が存在した状態で水熱処理した場合には、悪
影響をうけることを見出し本発明を完成するに至
つた。 本発明は水性媒体中で石膏と珪酸アルカリとを
混合反応する反応工程、該反応工程で得られる固
形物を洗浄する洗浄工程、該洗浄工程で得られる
固形物をスラリー溶液とするスラリー化工程、該
スラリー化工程で得られるスラリー溶液を水熱反
応する水熱処理工程及び該水熱処理工程で得られ
る珪酸カルシウム又は珪酸カルシウム−石膏複合
体を分離する分離工程よりなる珪酸カルシウム又
は珪酸カルシウム−石膏複合体の製造方法であ
る。 本発明を以下詳細に説明するが説明の簡略化の
ため以下添付図面に準じて説明する。添付図面第
1図は本発明を実施する代表的な各工程の組合せ
を示すフローシートである。 本発明の原料は石膏と珪酸アルカリ例えば珪酸
ナトリウム、珪酸カリウム等であるが水性媒体が
存在する反応工程4にそれぞれ原料を供給パイプ
1,2から必要量供給する。また該石膏及び珪酸
アルカリはそれぞれ予め水性媒体中に溶解、懸濁
させて反応工程4に供給することも出来るし、直
接反応工程4に水性媒体中に溶解又は懸濁させた
原料を供給パイプ3から連続的に又間歇的に供給
しながら反応することも出来る。一般には前者即
ち石膏及び珪酸アルカリを予め水性媒体中に溶解
又は懸濁して用いるのが好適である。前記した如
く反応工程4に於ける原料組成比即ち石膏/珪酸
アルカリのモル比によつて得られる珪酸カルシウ
ムの組成が異なる。例えば石膏/珪酸アルカリの
モル比が一般に1.1以下の場合は花弁状珪酸カル
シウムが、該モル比が1.1を越えた場合は花弁状
珪酸カルシウム石膏複合体が得られる。また該モ
ル比が小さすぎると目的物の収率が低下し、製造
コストが上昇するばかりでなく目的とする花弁状
珪酸カルシウムの生成が困難になる場合もあるの
で好ましくない。また該モル比が大きすぎると後
述する未反応の石膏を洗浄除去するために長時間
を要するので工業的に有利とは言えない。従つて
一般には石膏/珪酸アルカリのモル比は0.8〜1.8
程度の範囲から選ぶはが最も好適である。 本発明で用いる石膏は特に限定的でなく天然石
膏、合成石膏が使用出来、就中排煙脱硫で副生す
る石膏をそのまま使用出来る利点もある。また該
石膏は可溶性であれば半水石膏2水石膏等の如何
にかゝわらず用いうる。 該可溶性と言う意味は反応工程で溶解すればよ
く、原料の調整に於いては懸濁した状態であつて
もよい。一般には石膏を予め水性媒体中に溶解又
は懸濁させた状態で10(重量)%以下で用いるの
が最も好適である。また経済性を考慮すれば一般
には1〜10(重量)%の濃度に調整するのがよ
い。更にまた反応工程に於ける該石膏の濃度は一
般に0.5〜5(重量)%になるようにするのが最
も好適である。 本発明で用いる珪酸アルカリは前記した如く珪
酸ナトリウム、珪酸カリウム等が一般に好適に使
用される。また珪酸アルカリは通常1号〜4号の
規格で区別され市販されているので本発明にあつ
てはこれらの市販製品をそのまゝ使用するとよ
い。勿論SiO2/R2O(但しRはアルカリ)のモル
比が大きいもの例えば4〜6.5であつても可溶性
であれば特に制限されずに用いうる。 本発明の反応工程は連続式又はパツチ式のいず
れの方式を採用してもよい。連続式の場合は水姓
媒体中に前記原料を連続的又は間歇的に供給すれ
ばよいがバツチ式で実施する場合は石膏を含む水
性媒体中に珪酸アルカリを添加するのが好まし
い。また該反応工程に於いては撹拌下に反応する
のが一般に好適である。本発明に於ける該反応工
程に於ける反応条件は特に限定的ではなく一般に
は常圧下室温で十分である。石膏の水に対する溶
解度は10〜70℃の温度範囲で最も大きいのでこの
間で反応を実施するのが最も好適である。また反
応時間は反応温度、撹拌形式等により異なり一概
に限定出来ないが一般には30〜2時間の範囲が最
も広く利用される。該反応時間は実験室的に簡単
に決定出来るので予め諸条件に応じて決定すれば
よい。また反応工程に於ける水比は該反応工程で
得られる反応物に対して10〜100の範囲から選ん
で実施すればよい。 前記反応工程で得られる固形物は珪酸カルシウ
ムが生成しているが未反応の原料及び副生した硫
酸アルカリが混入されている。該未反応原料中の
石膏と、副生した硫酸アルカリは前記した如く後
述する水熱反応に於ける珪酸カルシウムの嵩比容
積の性状に大きな影響を与える。従つて本発明に
於いては反応工程4で得られる反応系から未反応
の石膏と副生した硫酸アルカリを分離する必要が
ある。そのために反応工程4で得られる固形物を
洗浄する洗浄工程5が必要である。該洗浄手段は
特に限定されず公知の方法を採用すればよい。例
えば反応工程4で得られる反応系に水を供給して
洗浄する方法、或いは該反応系から固形物を濾別
分離し、該分離された固形物を洗浄する方法等が
採用される。一般には反応系から固形物を濾別分
離し水で洗浄するのが最も好適である。該洗浄の
度合いは反応工程に於ける原料比によつても異な
り一概に限定出来ない。一般には諸条件に応じて
予め洗浄回数、洗浄水の量等を決定して実施すれ
ばよい。また洗浄水温度は特に限定されないが未
反応石膏の分離に際しては、一般に石膏の溶解度
の最も大きな10〜70℃が好適である。 前記洗浄工程で得られる固形物は次いでスラリ
ー化工程7で水性媒体を供給パイプ8から供給し
てスラリー溶液とする。該スラリー溶液の濃度は
特に限定的ではなく適宜採用すればよいが一般に
は水比が10〜100倍好ましくは30〜80倍の範囲か
ら選ばよい。該スラリー溶液は後述する如く水熱
反応に供されるので温度が高い程省エネルギー上
好ましい。従つて第1図に示す如く水熱処理工程
で得られる珪酸カルシウム又は珪酸カルシウム−
石膏複合体を分離した高温水の1部又は全部を循
環使用するのが最も好ましい。 前記スラリー化工程7で得られるスラリー溶液
は水熱処理工程9に於いて水熱処理に供される。
該水熱処理の目的は前記反応工程4で得られる珪
酸カルシウム又は珪酸カルシウム−石膏複合体を
生長させるものである。該水熱処理によつて上記
珪酸カルシウム又は珪酸カルシウム−石膏複合体
は前記花弁状の形状に生長する。該水熱処理は一
般に150〜250℃の温度下に実施すればよい。一般
にはオートクレーブ中で上記水熱処理されるのが
好ましい。また水熱処理時間は特に限定されず前
記花弁状に十分生長する時間であればよい。該水
熱処理時間は予め諸条件に応じて決定すればよい
が、一般には3〜24時間の範囲が最も好適であ
る。 前記水熱処理工程9で得られる珪酸カルシウム
又は珪酸カルシウム−石膏複合体は花弁状の薄片
が生長した集合体となつている。該珪酸カルシウ
ム又は珪酸カルシウム−石膏複合体は分離工程1
0で分離する。分離された珪酸カルシウム又は珪
酸カルシウム−石膏複合体12は必要に応じて洗
浄し乾燥することによつて製品となる。また前記
珪酸カルシウム又は珪酸カルシウム−石膏複合体
を分離した溶液は一般に高温の水性媒体であるの
で循環パイプ11を経由しスラリー化工程7の水
性媒体と使用するとよい。該分離工程に於ける珪
酸カルシウム又は珪酸カルシウム−石膏複合体の
分離は特に限定されず公知の分離手段が採用出来
る。例えば耐熱性濾布による濾別、遠心分離機を
使用する分離等を用いればよい。以上の説明から
明らかな如く本発明は工業的に簡単な手段ですぐ
れた花弁状珪酸カルシウム或いは花弁状珪酸カル
シウム石膏複合体を得ることが出来る製造方法で
ある。 本発明を更に具体的に説明するため以下実施例
を挙げて説明するが本発明はこれらの実施例に限
定されるものではない。尚、以下の実施例及び比
較例に於ける種々の測定値は次ぎのようにして求
めたものである。 (イ) 嵩比容積 珪酸カルシウムを乳鉢で200メツシユ篩80%
通過粒まで粉砕した。この粉砕した珪酸カルシ
ウムを用いてJISK6220の6、8項の嵩比重測
定方法によつて測定した。 (ロ) 吸油量 珪酸カルシウムを乳鉢で200メツシユ篩80%
通過粒度まで粉砕した。この粉砕した珪酸カル
シウムを用いて、JISK6220の19項の吸油量測
定法によつて測定した。 実施例 1 添付図面第1図に示したフローシートに準じて
以下の実施を行つた。即ち反応工程で880gの2
水石膏と20の水を混合反応槽に加え、よく撹拌
した。次いでこのスラリーを撹拌しながら、大気
圧下25℃で0.243モル/の珪酸ナトリウム
(SiO2/Na2Oモル比2.5)20を0.5/分の速度
で40分間かけて加えた。この場合の仕込CaSO4
Na2O・nSiO2モル比は1.05であつた。前記反応工
程で得られたスラリーを洗浄工程に於いて濾布を
しいたヌツチエに取り出し減圧(400mHg)−濾
過した後、水30を加え生成物を洗浄した。上記
洗浄工程で得られたケークはスラリー化工程即ち
撹拌槽に移送し高温水(80〜90℃)35を加え均
一に撹拌しスラリー状物とした。該スラリー化工
程で得られたスラリーをオートクレーブ(内容積
50)に移送し密閉して、200℃で5時間、水熱
処理を行なつた。反応終了後、生成物スラリーを
耐熱濾布をしいたヌツチエにとり出し減圧(400
mHg)濾過した。 上記分離工程に於ける分離後の生成物は、120
℃で16時間乾燥した。この乾燥物の収量は1084g
であつた。嵩比容積は25.7c.c./g、吸油量は6.9
c.c./gであつた。 尚、X線回折の結果、ジヤイロライト型珪酸カ
ルシウムのパターンを示した。 化学分析の結果はCaO24.9%、SiO265.8%灼熱
減量が9.3%であつた。この結果より前記操作で
得られた珪酸カルシウムは2CaO・3SiO2
1.93SiO2・2.32H2Oであることが確認された。電
子顕微鏡の10000倍の写真を第2図に示したが、
これより長手方向の平均直径が約2Uで厚みが
0.1U以下の花弁の集合体で構成されていること
が確認された。 実施例 2 1170gの排煙脱硫副生石膏(純度99.8%)と、
20の水を混合反応槽に加えよく撹拌した。 このスラリーを撹拌しながら、大気圧下25℃で
0.243モル/の珪酸ナトリウム(SiO2/Na2Oモ
ル比2.5)20を0.4/分の速度で50分間かけて
加えた。この場合の仕込CaSO4/Na2O・nSlO2
ル比は1.40であつた。 その後の操作は実施例1と同様に実施したが、
スラリー化工程における高温水には分離工程で得
られた高温溶液を使用した。その結果、得られた
乾燥物の収量は1208gであつた。該乾燥物の嵩比
容積は21.4c.c./g、また吸油量は6.3c.c./gであつ
た。またこの乾燥物のX線回折図には、型無水
石膏とジヤイロライト型珪酸カルシウムのピーク
が混在していた。該乾燥物を化学分析した結果、
2CaO・3SiO2・2.03SiO2・2.55H2O・0.11CaSO4
で示される化合物であることが確認された。また
該乾燥物の電子顕微鏡の1万倍の写真を第3図に
示すが、長手方向の直径2U厚さ0.1U以下の花弁
で構成されていることが確認された。 尚型無水石膏と思われる結晶は第3図の電子
顕微鏡写真から外見上識別出来ず、この乾燥物は
花弁状珪酸カルシウム中に石膏がとりこまれた珪
酸カルシウム−石膏複合体であることが判つた。 実施例 3 実施例1の2水石膏の量、珪酸ナトリウムの
SiO2/Na2Oモル比及び濃度、オートクレーブ処
理温度、処理時間を第1表に示す如く、変化させ
た以外は実施例1と同様に処理した。この場合の
仕込CaSO4/Na2O・nSiO2モル比はいずれも1.05
であつた。 また第1表No.1のスラリー化工程には実施例
2の分離工程で得られた高温、水を使用した。同
様にNo.2にはNo.1、No.3にはNo.2、No.4には
No.3、No.5にはNo.4のそれぞれ分離工程が得ら
れた高温水を使用した。 得られた乾燥物はいずれの場合も花弁状珪酸カ
ルシウムであることを、X線回折、電子顕微鏡の
観察、及び化学分析によつて確認した。結果は第
1表に示した通りである。
The present invention relates to a method for producing calcium silicate or a calcium silicate-gypsum composite having a large bulk specific volume and a large oil absorption amount from gypsum and an alkali silicate. Various methods of producing calcium silicate are known, and various crystal structures are known. However, little is known about the method for producing calcium silicate using gypsum as a calcium raw material. The present inventors have discovered that by mixing alkali silicate and gypsum in an aqueous medium and then performing a hydrothermal reaction, the crystal structure has a gyrolite type, and the bulk specific volume in which amorphous silicon dioxide is incorporated into the crystal. We have already discovered and proposed that calcium silicate with large oil absorption can be obtained. In addition, electron micrographs (5,000 to 10,000 times) of the calcium silicate show that it is composed of an aggregate of flakes with two symmetrical sides, and that the calcium silicate is an aggregate of flakes similar to the petals of a rose flower. I can see that I'm getting used to it. The size of the flakes varies depending on the type of raw materials, raw material ratio, manufacturing conditions, etc., and cannot be absolutely limited, but generally the average diameter in the longitudinal direction is 0.1.
~30U, with a thickness of about 0.005~0.1U, and many have a circular or oval shape. In addition, the calcium silicate obtained by the above reaction has amorphous silicon dioxide incorporated into the diairolite type calcium silicate crystal structure as described above, and the grain boundaries or bonding form of the silicon dioxide can be seen with an electron microscope of about 300,000 times magnification. I can't really tell from the photo. For the above reasons, the calcium silicate has the general formula
It is thought to be expressed as 2CaO.3SiO.sub.2.nSiO.sub.2.mH.sub.2O ( where n and m are positive numbers , and n is generally 0.1 to 10). In the present invention, calcium silicate having the above properties may be simply abbreviated as petal-like calcium silicate. When the petal-shaped calcium silicate is made from gypsum and alkali silicate, the molar ratio of gypsum/alkali silicate increases depending on the mixing ratio of the raw materials.
If it exceeds 1.1, the composition will be such that gypsum is incorporated into the petal-shaped calcium silicate shown by the above general formula. Similar to the above-mentioned silicon dioxide, grain boundaries or bonding forms of this gypsum cannot be determined in electron micrographs. Therefore, if the above-mentioned calcium silicate into which gypsum is incorporated is expressed according to the above general formula, it becomes 2CaO・3SiO 2
It is expressed as nSiO2.mH2O.lCaSO4 (where n, m, and l are positive numbers, n is 0.1 to 10 , and l is 0.01 to 0.9). Hereinafter, in the present invention, the above-mentioned calcium silicate may be abbreviated as a petal calcium silicate gypsum composite. The present inventors have continued research on the production of petal-shaped calcium silicate or petal-shaped calcium silicate plaster composites from gypsum and alkali silicate. The present inventors have discovered that if hydrothermal treatment is performed in the presence of alkali sulfate and unreacted gypsum, which are produced as by-products during hydrothermal treatment, there will be an adverse effect, leading to the completion of the present invention. The present invention comprises a reaction step of mixing and reacting gypsum and an alkali silicate in an aqueous medium, a washing step of washing the solid material obtained in the reaction step, a slurrying step of turning the solid material obtained in the washing step into a slurry solution, A calcium silicate or calcium silicate-gypsum composite comprising a hydrothermal treatment step of hydrothermally reacting the slurry solution obtained in the slurry forming step, and a separation step of separating the calcium silicate or calcium silicate-gypsum composite obtained in the hydrothermal treatment step. This is a manufacturing method. The present invention will be described in detail below, but for the sake of brevity, the description will be made with reference to the accompanying drawings. FIG. 1 of the accompanying drawings is a flow sheet showing typical combinations of steps for carrying out the present invention. The raw materials used in the present invention are gypsum and alkali silicate, such as sodium silicate and potassium silicate, and the necessary amounts of the raw materials are supplied from supply pipes 1 and 2 to the reaction step 4 in which an aqueous medium is present, respectively. Moreover, the gypsum and the alkali silicate can be dissolved or suspended in an aqueous medium in advance and supplied to the reaction step 4, or the raw materials dissolved or suspended in an aqueous medium can be directly supplied to the reaction step 4 through the supply pipe 3. The reaction can also be carried out while being continuously or intermittently supplied. Generally, it is preferable to use the former, that is, gypsum and alkali silicate, dissolved or suspended in an aqueous medium in advance. As described above, the composition of the calcium silicate obtained differs depending on the raw material composition ratio in reaction step 4, that is, the molar ratio of gypsum/alkali silicate. For example, when the molar ratio of gypsum/alkali silicate is generally 1.1 or less, a petal-like calcium silicate is obtained, and when the molar ratio exceeds 1.1, a petal-like calcium silicate gypsum composite is obtained. Further, if the molar ratio is too small, the yield of the target product decreases, not only does the manufacturing cost increase, but also it may become difficult to produce the target petal-shaped calcium silicate, which is not preferable. Moreover, if the molar ratio is too large, it will take a long time to wash and remove unreacted gypsum, which will be described later, and this cannot be said to be industrially advantageous. Therefore, the molar ratio of gypsum/alkali silicate is generally 0.8 to 1.8.
It is most preferable to choose from a range of degrees. The gypsum used in the present invention is not particularly limited, and natural gypsum and synthetic gypsum can be used, and there is an advantage that gypsum, which is a by-product of flue gas desulfurization, can be used as it is. Further, as long as the gypsum is soluble, any type of gypsum, such as hemihydrate gypsum or dihydrate gypsum, can be used. The term soluble means that it is sufficient that it is dissolved in the reaction step, and it may be in a suspended state in preparing the raw materials. Generally, it is most preferable to use gypsum in a state in which it has been dissolved or suspended in an aqueous medium in an amount of 10% (by weight) or less. In addition, considering economic efficiency, it is generally advisable to adjust the concentration to 1 to 10% (by weight). Furthermore, it is most preferred that the concentration of the gypsum in the reaction step is generally between 0.5 and 5% (by weight). As the alkali silicate used in the present invention, sodium silicate, potassium silicate, etc. are generally preferably used as described above. Furthermore, since alkali silicates are usually classified according to standards No. 1 to No. 4 and are commercially available, it is preferable to use these commercially available products as they are in the present invention. Of course, even those having a large molar ratio of SiO 2 /R 2 O (where R is alkali), for example 4 to 6.5, can be used without particular restriction as long as they are soluble. The reaction process of the present invention may be carried out either continuously or in patches. In the case of a continuous method, the raw material may be fed continuously or intermittently into the aqueous medium, but in the case of a batch method, it is preferable to add an alkali silicate to the aqueous medium containing gypsum. In addition, in the reaction step, it is generally preferable to carry out the reaction under stirring. The reaction conditions in this reaction step in the present invention are not particularly limited, and generally normal pressure and room temperature are sufficient. Since the solubility of gypsum in water is greatest in the temperature range of 10 to 70°C, it is most suitable to carry out the reaction within this temperature range. The reaction time varies depending on the reaction temperature, stirring method, etc., and cannot be absolutely limited, but generally a range of 30 to 2 hours is most widely used. Since the reaction time can be easily determined in a laboratory, it may be determined in advance according to various conditions. Further, the water ratio in the reaction step may be selected from the range of 10 to 100 to the reactant obtained in the reaction step. Although calcium silicate is produced in the solid obtained in the reaction step, unreacted raw materials and by-produced alkali sulfate are mixed therein. As described above, the gypsum in the unreacted raw material and the alkali sulfate produced as a by-product have a large influence on the properties of the bulk specific volume of calcium silicate in the hydrothermal reaction described later. Therefore, in the present invention, it is necessary to separate unreacted gypsum and by-produced alkali sulfate from the reaction system obtained in reaction step 4. For this purpose, a washing step 5 is required to wash the solid matter obtained in the reaction step 4. The cleaning means is not particularly limited, and any known method may be used. For example, a method of supplying water to the reaction system obtained in reaction step 4 to wash it, or a method of separating solid matter from the reaction system by filtration and washing the separated solid matter, etc. are employed. Generally, it is most suitable to separate the solid matter from the reaction system by filtration and wash it with water. The degree of washing varies depending on the raw material ratio in the reaction process and cannot be absolutely limited. In general, the number of times of washing, the amount of washing water, etc. may be determined in advance according to various conditions. Although the temperature of the washing water is not particularly limited, when separating unreacted gypsum, a temperature of 10 to 70°C, which generally has the highest solubility of gypsum, is suitable. The solids obtained in the washing step are then turned into a slurry solution by supplying an aqueous medium through a supply pipe 8 in a slurrying step 7. The concentration of the slurry solution is not particularly limited and may be selected as appropriate, but generally the water ratio may be selected from a range of 10 to 100 times, preferably 30 to 80 times. Since the slurry solution is subjected to a hydrothermal reaction as described below, the higher the temperature, the better in terms of energy saving. Therefore, as shown in FIG. 1, calcium silicate or calcium silicate obtained in the hydrothermal treatment step
Most preferably, part or all of the hot water from which the gypsum composite is separated is recycled. The slurry solution obtained in the slurry forming step 7 is subjected to hydrothermal treatment in a hydrothermal treatment step 9.
The purpose of the hydrothermal treatment is to grow the calcium silicate or calcium silicate-gypsum composite obtained in the reaction step 4. By the hydrothermal treatment, the calcium silicate or calcium silicate-gypsum composite grows into the petal-like shape. The hydrothermal treatment may generally be carried out at a temperature of 150 to 250°C. Generally, it is preferable to carry out the hydrothermal treatment in an autoclave. Further, the hydrothermal treatment time is not particularly limited, and may be any time that allows sufficient growth into the petal shape. The hydrothermal treatment time may be determined in advance according to various conditions, but generally a range of 3 to 24 hours is most suitable. The calcium silicate or calcium silicate-gypsum composite obtained in the hydrothermal treatment step 9 is an aggregate in which petal-shaped flakes have grown. The calcium silicate or calcium silicate-gypsum composite is separated in step 1.
Separate at 0. The separated calcium silicate or calcium silicate-gypsum composite 12 is washed and dried as necessary to become a product. Further, since the solution obtained by separating the calcium silicate or the calcium silicate-gypsum composite is generally a high-temperature aqueous medium, it is preferably used as the aqueous medium in the slurry forming step 7 via the circulation pipe 11. The separation of calcium silicate or calcium silicate-gypsum complex in the separation step is not particularly limited, and any known separation means can be employed. For example, filtration using a heat-resistant filter cloth, separation using a centrifuge, etc. may be used. As is clear from the above description, the present invention is a manufacturing method that can produce an excellent petal-shaped calcium silicate or petal-shaped calcium silicate gypsum composite by industrially simple means. EXAMPLES In order to explain the present invention more specifically, the present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. In addition, various measured values in the following Examples and Comparative Examples were obtained as follows. (b) Bulk specific volume Calcium silicate in a mortar with 200 mesh sieve 80%
It was ground to the point where it passed through the grains. The pulverized calcium silicate was used to measure bulk specific gravity according to JIS K6220 Sections 6 and 8. (B) Oil absorption amount Calcium silicate in a mortar and sieved with 200 mesh 80%
Milled to passing particle size. The pulverized calcium silicate was used to measure oil absorption according to JISK6220, item 19. Example 1 The following implementation was carried out according to the flow sheet shown in FIG. 1 of the attached drawings. That is, in the reaction process, 880g of 2
Water gypsum and 20ml of water were added to a mixing reaction tank and stirred well. Then, while stirring the slurry, 0.243 mol/sodium silicate (SiO 2 /Na 2 O molar ratio 2.5) 20 was added at a rate of 0.5/min over 40 minutes at 25° C. under atmospheric pressure. In this case, the preparation CaSO 4 /
The Na 2 O.nSiO 2 molar ratio was 1.05. In the washing step, the slurry obtained in the reaction step was taken out into a nuttie fitted with a filter cloth and filtered under reduced pressure (400 mHg), and then 30 g of water was added to wash the product. The cake obtained in the above washing step was transferred to a slurrying step, that is, a stirring tank, and high temperature water (80 to 90° C.) was added thereto and stirred uniformly to form a slurry. The slurry obtained in the slurry process is autoclaved (inner volume
50), sealed, and hydrothermally treated at 200°C for 5 hours. After the reaction was completed, the product slurry was taken out into a filter fitted with a heat-resistant filter cloth and vacuumed (400
mHg) filtered. The product after separation in the above separation process is 120
Dry at ℃ for 16 hours. The yield of this dry matter is 1084g
It was hot. Bulk specific volume is 25.7cc/g, oil absorption is 6.9
It was cc/g. In addition, the result of X-ray diffraction showed a pattern of diailolite type calcium silicate. The results of chemical analysis showed that CaO2 was 4.9%, SiO2 was 65.8%, and the loss on ignition was 9.3%. From this result, the calcium silicate obtained in the above procedure is 2CaO・3SiO 2
It was confirmed that it was 1.93SiO 2 .2.32H 2 O. Figure 2 shows a 10,000x magnification photo taken using an electron microscope.
From this, the average diameter in the longitudinal direction is approximately 2U and the thickness is
It was confirmed that the flower is composed of an aggregate of petals smaller than 0.1U. Example 2 1170g of flue gas desulfurization byproduct gypsum (purity 99.8%),
20 of water was added to the mixing reaction tank and stirred well. This slurry was heated at 25°C under atmospheric pressure while stirring.
0.243 mol/sodium silicate (SiO 2 /Na 2 O molar ratio 2.5) 20 was added at a rate of 0.4/min over 50 minutes. In this case, the charged CaSO 4 /Na 2 O·nSlO 2 molar ratio was 1.40. The subsequent operations were performed in the same manner as in Example 1, but
The high temperature solution obtained in the separation process was used as the high temperature water in the slurry process. As a result, the yield of the dried product was 1208 g. The bulk specific volume of the dried product was 21.4 cc/g, and the oil absorption amount was 6.3 cc/g. Moreover, the X-ray diffraction diagram of this dried product contained peaks of type anhydrite and gyrolite type calcium silicate. As a result of chemical analysis of the dried product,
2CaO・3SiO 2・2.03SiO 2・2.55H 2 O・0.11CaSO 4
It was confirmed that the compound was Fig. 3 shows an electron microscope photograph of the dried product at a magnification of 10,000 times, and it was confirmed that it was composed of petals with a longitudinal diameter of 2U and a thickness of 0.1U or less. The crystals that appeared to be Sho-type anhydrite could not be visually identified from the electron micrograph in Figure 3, and it was determined that this dried material was a calcium silicate-gypsum complex in which gypsum was incorporated into petal-shaped calcium silicate. . Example 3 The amount of dihydrate gypsum and sodium silicate in Example 1
The treatment was carried out in the same manner as in Example 1, except that the SiO 2 /Na 2 O molar ratio and concentration, autoclave treatment temperature, and treatment time were changed as shown in Table 1. In this case, the charged CaSO 4 /Na 2 O・nSiO 2 molar ratio is both 1.05.
It was hot. Further, the high temperature water obtained in the separation step of Example 2 was used in the slurry forming step in No. 1 of Table 1. Similarly, No.2 has No.1, No.3 has No.2, No.4 has No.4.
For No. 3 and No. 5, the high temperature water obtained in the separation process of No. 4 was used. It was confirmed by X-ray diffraction, electron microscopic observation, and chemical analysis that the obtained dried product was petal-shaped calcium silicate in each case. The results are shown in Table 1.

【表】 実施例 4 実施例2の排煙脱硫副生石膏の量を第2表に示
す如くに変化させ、珪酸ナトリウムに変えて珪酸
カリウムを用いた以外は実施例2と同様に実施し
た。その結果は第2表に示す通りであつた。この
場合、第2表No.1のスラリー化工程には、実施
例3(第1表No.5)の分離工程で得られた高温
溶液を使用した。同様にNo.2にはNo.1、No.3に
はNo.2、No.4にはNo.3、No.5にはNo.4のそれぞ
れ分離工程で得られた高温水を使用した。得られ
た乾燥物のX線回折、化学分析及び電子顕微鏡の
観察により、第2表No.1は花弁状珪酸カルシウ
ム、同No.2及びNo.3は花弁状珪酸カルシウム−
石膏複合体、同No.4及びNo.5は花弁状珪酸カル
シウム石膏複合体と型無水石膏の混合物である
ことが確認された。
[Table] Example 4 The same procedure as in Example 2 was carried out except that the amount of gypsum by-product of flue gas desulfurization in Example 2 was changed as shown in Table 2, and potassium silicate was used instead of sodium silicate. The results were as shown in Table 2. In this case, the high temperature solution obtained in the separation step of Example 3 (Table 1, No. 5) was used in the slurrying step of Table 2, No. 1. Similarly, the high temperature water obtained in the separation process of No.1 was used for No.2, No.2 for No.3, No.3 for No.4, and No.4 for No.5. . According to X-ray diffraction, chemical analysis, and electron microscopy observation of the dried product obtained, Table 2 No. 1 is petal-shaped calcium silicate, and Table 2 No. 2 and No. 3 are petal-shaped calcium silicate.
Gypsum composites No. 4 and No. 5 were confirmed to be a mixture of petal-shaped calcium silicate gypsum composite and molded anhydrite.

【表】 比較例 1 実施例1の洗浄工程及びスラリー化工程を除い
て、反応工程で得られたスラリーを直接オートク
レーブに移送した以外は、実施例1と同様に実施
した。この場合の乾燥物の収量は1152gであつ
た。該乾燥物の嵩比容積は18.8c.c./g及び吸油量
は5.9c.c./gとなり、実施例1と比較して、両者と
も低下した。また該乾燥物の電子顕微鏡写真によ
つてこの乾燥物の外見上の形状は実施例1とほゞ
同様の薄片の集合体であることが確認された。
[Table] Comparative Example 1 The same procedure as in Example 1 was carried out except that the washing step and slurrying step of Example 1 were carried out, and the slurry obtained in the reaction step was directly transferred to an autoclave. The yield of dry matter in this case was 1152 g. The bulk specific volume of the dried product was 18.8 cc/g and the oil absorption amount was 5.9 cc/g, both of which were lower than in Example 1. Further, an electron micrograph of the dried product confirmed that the external shape of the dried product was an aggregate of flakes almost similar to that of Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の代表的なフローシートの1
例を示す説明図である。また第2図は、実施例1
で得られた珪酸カルシウムの電子顕微鏡写真(1
万倍)を、また第3図は実施例2で得られた珪酸
カルシウム石膏複合体の電子顕微鏡写真(1万
倍)をそれぞれ示す。尚第1図に於いて各数字は
次ぎのものを示す。1,2及び3は原料又は水媒
体の供給パイプ、4は反応工程、5は洗浄工程、
6は洗浄水供給パイプ、7はスラリー化工程、8
は供給パイプ、9は水熱処理工程、10は分離工
程、11は循環パイプ及び12は第1図の工程で
得られる珪酸カルシウム又は珪酸カルシウム石膏
複合体をそれぞれ示す。
Figure 1 shows one of the typical flow sheets of the present invention.
It is an explanatory diagram showing an example. In addition, FIG. 2 shows Example 1
Electron micrograph of calcium silicate obtained in (1)
FIG. 3 shows an electron micrograph (10,000 times magnification) of the calcium silicate gypsum composite obtained in Example 2. In FIG. 1, each number indicates the following. 1, 2 and 3 are supply pipes for raw materials or aqueous medium, 4 is a reaction process, 5 is a washing process,
6 is a cleaning water supply pipe, 7 is a slurry process, 8
1 is a supply pipe, 9 is a hydrothermal treatment process, 10 is a separation process, 11 is a circulation pipe, and 12 is a calcium silicate or calcium silicate gypsum composite obtained in the process of FIG. 1, respectively.

Claims (1)

【特許請求の範囲】 1 水性媒体中で石膏と珪酸アルカリとを混合反
応する反応工程、該反応工程で得られる固形物を
洗浄する洗浄工程、該洗浄工程で得られる固形物
をスラリー溶液とするスラリー化工程、該スラリ
ー化工程で得られるスラリー溶液を水熱処理する
水熱処理工程及び該水熱処理工程で得られる珪酸
カルシウム又は珪酸カルシウム−石膏複合体を分
離する分離工程よりなることを特徴とする珪酸カ
ルシウム又は珪酸カルシウム−石膏複合体の製造
方法。 2 該珪酸カルシウム又は珪酸カルシウム−石膏
複合体を分離する分離工程で得られる高温水の1
部又は全部をスラリー化工程へ循環使用する特許
請求の範囲1記載の方法。
[Claims] 1. A reaction step of mixing and reacting gypsum and an alkali silicate in an aqueous medium, a washing step of washing the solid material obtained in the reaction step, and a slurry solution of the solid material obtained in the washing step. Silicic acid characterized by comprising a slurry forming step, a hydrothermal treatment step of hydrothermally treating the slurry solution obtained in the slurry forming step, and a separation step of separating calcium silicate or calcium silicate-gypsum composite obtained in the hydrothermal treatment step. A method for producing a calcium or calcium silicate-gypsum composite. 2 High temperature water obtained in the separation step of separating the calcium silicate or calcium silicate-gypsum composite
The method according to claim 1, wherein part or all of the method is recycled to the slurry forming step.
JP7908079A 1979-06-25 1979-06-25 Preparation of calcium silicate or complex of calcium silicate with gypsum Granted JPS565317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7908079A JPS565317A (en) 1979-06-25 1979-06-25 Preparation of calcium silicate or complex of calcium silicate with gypsum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7908079A JPS565317A (en) 1979-06-25 1979-06-25 Preparation of calcium silicate or complex of calcium silicate with gypsum

Publications (2)

Publication Number Publication Date
JPS565317A JPS565317A (en) 1981-01-20
JPS6149245B2 true JPS6149245B2 (en) 1986-10-28

Family

ID=13679910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7908079A Granted JPS565317A (en) 1979-06-25 1979-06-25 Preparation of calcium silicate or complex of calcium silicate with gypsum

Country Status (1)

Country Link
JP (1) JPS565317A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048192B2 (en) * 2005-12-30 2011-11-01 General Electric Company Method of manufacturing nanoparticles
JP4820729B2 (en) * 2006-10-05 2011-11-24 株式会社トクヤマ Method for producing calcium silicate
US8679547B2 (en) 2011-10-20 2014-03-25 Tomita Pharmaceutical Co., Ltd. Method for manufacturing calcium silicate based composition
EP3067316A4 (en) 2013-11-09 2017-04-26 Tomita Pharmaceutical Co., Ltd. Powdered gyro-light-type calcium silicate having high oil absorbency and large particle diameter, and production method therefor

Also Published As

Publication number Publication date
JPS565317A (en) 1981-01-20

Similar Documents

Publication Publication Date Title
JPS5973421A (en) Preparation of zeolite l
US4243429A (en) Process for producing tobermorite and ettringite
JP5688946B2 (en) Method for producing high purity silica
JP2012158486A (en) Method for producing high purity silica
JPS6149245B2 (en)
JP2704421B2 (en) Method for producing chain-like horizontal clay mineral
US4226636A (en) Production of calcium silicate having high specific bulk volume and calcium silicate-gypsum composite
JPH11513657A (en) Method for producing calcium borate
US4452770A (en) Phosphoanhydrite process
JPS6345115A (en) Production of calcium silicate
US3615189A (en) Process for preparing gypsum hemihydrate
JP6670534B2 (en) Phosphorus recovery material and method for producing the same
JPS62288110A (en) Production of high-purity silica from chaff
JPH0669889B2 (en) Hydrothermal Synthesis of Layered Silicate
JPH07291616A (en) Production of crystalline calcium silicate hydrate
JP3292865B2 (en) Synthesis of spherical aluminosilicate from highly concentrated solution
JPS62867B2 (en)
JPH09227116A (en) Production of layered silicic acid salt
JPH0692247B2 (en) Method for producing magnesium silicofluoride
US3523764A (en) Process for the manufacture of magnesium aluminosilicate for medical uses
JPS5817132B2 (en) Spherical settsukou and its manufacturing method
JPS5926904A (en) Preparation of powdery raw material of silicon ceramic
JP2604316B2 (en) Method for producing amorphous silica and secondary particles of amorphous silica containing calcium carbonate
RU2021974C1 (en) Method of hydrothermal preparing of potassium silicate solution
CN115368279A (en) Preparation method of granular ethanolamine sulfate crystal