JPS5926904A - Preparation of powdery raw material of silicon ceramic - Google Patents

Preparation of powdery raw material of silicon ceramic

Info

Publication number
JPS5926904A
JPS5926904A JP57136295A JP13629582A JPS5926904A JP S5926904 A JPS5926904 A JP S5926904A JP 57136295 A JP57136295 A JP 57136295A JP 13629582 A JP13629582 A JP 13629582A JP S5926904 A JPS5926904 A JP S5926904A
Authority
JP
Japan
Prior art keywords
carbon
raw material
silicon
silica
based ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57136295A
Other languages
Japanese (ja)
Inventor
Toru Kuramoto
倉本 透
Kozo Nishino
西野 弘造
Hiroshi Ono
浩 小野
Masami Nakamura
正実 中村
Hiromi Sasaki
広美 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP57136295A priority Critical patent/JPS5926904A/en
Publication of JPS5926904A publication Critical patent/JPS5926904A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To prepare fine powder of silicon ceramic raw material having high purity, easily, at a low cost, by reacting an alkali silicate with a mineral acid, mixing the obtained silica with carbon or a carbon compound, and calcining the mixture in a non-oxidative atmosphere. CONSTITUTION:An alkali silicate such as sodium silicate is mixed with a mineral acid such as sulfuric acid to obtain a mixture having an Si concentration of >=15wt%, and reacted under thorough agitation until the mixture becomes non- viscous liquid. The hydrogel thus obtained is filtered, washed with water, and dried to obtain highly pure silica. The silica is mixed with carbon such as carbon black and/or a carbon compound such as sucrose, and calcined at >=1,400 deg.C in reducing atmosphere or at <=1,600 deg.C in nitrogen gas atmosphere to obtain powdery raw material of ceramic composed of SiC or SiN. As an alternative method, the objective product can be obtained by reacting an alkali silicate with a mineral acid in the presence of a carbon source.

Description

【発明の詳細な説明】 本発明はシリコン系セラミックス原料粉末、特に炭化ケ
イ素粉末および窒化ケイ素粉末の新規な製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing silicon-based ceramic raw material powder, particularly silicon carbide powder and silicon nitride powder.

近年、省エネルギーおよび省資源(稀有金属の代替)の
観点から、高温機械材料としてのセラミックス、いわゆ
るエンジニアリングセラミックスが注目されている。中
でも、炭化ケイ素および窒化ケイ素が有望な材料の一つ
とされ、既に実用化されている例も多い。従って、この
ようなセラミックスの原料粉末の↓法も数多く研究され
、既に工業規模で生産されているものもある。
In recent years, ceramics as high-temperature mechanical materials, so-called engineering ceramics, have been attracting attention from the viewpoint of energy conservation and resource conservation (replacement of rare metals). Among them, silicon carbide and silicon nitride are considered to be one of the most promising materials, and many examples have already been put into practical use. Therefore, many methods have been researched to produce raw material powders for ceramics, and some have already been produced on an industrial scale.

シリコン系セラミックス原料粉末の主な製法としては、 (1)  金属シリコンを原料とする方法)1500℃ Si+O−−m−→   5iO 3f31 + 2N2  9トム513N4(2)気相
反応法 〜2000℃ SiH4+ OH4−−−−)   SiU + 4H
2〜1500℃ 3191014+ 4NH3*   Si3N4+12
HO1(3)熱分解法 )1300℃ 5i(OH3)4−−→SiO+ 30H4〜1500
℃ 3Si(NH)2−−−4   si、N4+2MH1
(4)  シリカ還元法 〜2000C 8iO1+ 30−一→SiO+ 200(1500℃ 5E+10.+、J+60−−−−→5ilN4+60
0などが知られている。
The main manufacturing methods for silicon-based ceramic raw material powders are: (1) Method using metallic silicon as raw material) 1500℃ Si+O--m-→ 5iO 3f31 + 2N2 9Tom 513N4 (2) Gas phase reaction method ~ 2000℃ SiH4+ OH4 -----) SiU + 4H
2~1500℃ 3191014+ 4NH3* Si3N4+12
HO1(3) Pyrolysis method) 1300℃ 5i(OH3)4--→SiO+ 30H4~1500
°C 3Si(NH)2−−−4 si, N4+2MH1
(4) Silica reduction method ~2000C 8iO1+ 30-1→SiO+ 200 (1500℃ 5E+10.+, J+60−---→5ilN4+60
0 etc. are known.

非酸化物系のシリコン系セラミックスは一般に非焼結性
であシ、従って、これらの原料粉末はできるだけ微粒化
(くIμ)して活性にする必要がある。また、これらの
セラミックス焼結体は、高温強度との関係から高純度が
要求され、望ましい純度としては99,5 ′X以上と
言われている。
Non-oxide silicon-based ceramics are generally non-sinterable, and therefore, these raw material powders must be made as fine as possible to make them active. Further, these ceramic sintered bodies are required to have high purity in relation to high-temperature strength, and a desirable purity is said to be 99.5'X or higher.

かかる観点から各製法を比較すると、金属シリコンを原
料とする製法(りは、高純ys 1が高価でしかも微粒
な製品粉末を得るのが困難である。
Comparing each manufacturing method from this point of view, the manufacturing method using metallic silicon as a raw material (high purity YS 1) is expensive and difficult to obtain fine product powder.

製法(2)では、高純度で超微粒子状の粉末が得られる
が、使用する原料ガスが高価なものとなシ、反応の収率
も低く、また、一般的に言って結晶質のものを製造する
のは容易ではない。製法(3)は、高純度品を得ること
が可能であるが、原料のケイ素化合物が、大量生産品で
はなく、高価なものとなる。製法(4)は、シリカを原
料とするもので、シリカとして湿式法ホワイトカーボン
を用いる特開昭56−75616号、フェロシリコン等
の製造時の副生物であるシリカフラワーを用いる特開昭
51−70200号、ケイ礫土を用いる特公昭48−2
2920号、シラスを用いる特開昭55.−14071
0号などが炭化ケイ素粉末の製法として知られており、
また窒化ケイ素粉末の製法としては、湿式法ホワイトカ
ーボンを特徴とする特開昭56−73604号などが知
られている。しかし、これらのシリカ原料はいずれも約
10%前後の不純物を含有しており、従って、高純度の
シリコン系セラミックス原料粉末の製造には不適当であ
る。
Production method (2) yields ultrafine powder with high purity, but the raw material gas used is expensive, the reaction yield is low, and, generally speaking, it is difficult to obtain crystalline powder. It is not easy to manufacture. Production method (3) makes it possible to obtain a highly pure product, but the raw material silicon compound is not a mass-produced product and is expensive. Manufacturing method (4) uses silica as a raw material; JP-A No. 56-75616 uses wet white carbon as the silica, and JP-A No. 51-Sho uses silica flour, which is a by-product during the production of ferrosilicon, etc. No. 70200, Special Publication Showa 48-2 using silica gravel
No. 2920, Japanese Unexamined Patent Application Publication No. 1983 using whitebait. -14071
No. 0 etc. are known as methods for producing silicon carbide powder,
Furthermore, as a method for producing silicon nitride powder, there is known a method such as JP-A-56-73604, which is characterized by wet white carbon. However, all of these silica raw materials contain about 10% impurities, and are therefore unsuitable for producing high-purity silicon-based ceramic raw material powder.

一方、高純度で微細な7リカ原料としてはSi(、t1
4の酸水素炎中での加水分解によって製造されるシリカ
(商品名アエロジル)が知られているが、原料のqio
14中にはAl0I、、 TiJ、 FeO2,などの
形態で各種合端が混入し易いため、得られるシリカの純
度に問題が残り、しかも高価なのが欠点である。
On the other hand, Si (, t1
Silica (trade name Aerosil) produced by hydrolysis in an oxyhydrogen flame is known, but the raw material qio
Since various bonding ends in the form of Al0I, TiJ, FeO2, etc. are likely to be mixed into 14, there remains a problem in the purity of the obtained silica, and the drawback is that it is expensive.

一方、特開昭57−42515号、同42516号、同
82109号、同88011号、同88012号、同8
8019号には、炭素または炭素前駆物質をケイ酸液で
処理して炭化ケイ素、窒化ケイ素を製造する方法が開示
されている。これらの方法においてはケイ酸液の調製は
アルカリケイ酸塩の酸分解もしくは陽イオン交換法によ
って行なわれており、いずれにおいてもシリカ源と炭素
源の混合は十分に行なわれ、それなりの効果は認められ
るものの純度、経済性の点で問題の多いものである。即
ち、従来から、アルカリ・ケイ酸塩の酸分解ではIqi
02 (j1度がtaX量%以下の極めて稀薄な溶液で
行なわれておシ、この場合先ずケイ酸ゾルとしてゼリー
状のものが得らnl これを数時間熟成することにより
ヒドロゲルが生成する。このヒドロゲル中には副生じた
可溶性塩類が多量に含まハるため粗粉砕して水洗し完全
に洗い流す必要がある。しかしながらかかる従来法で得
られるゲルは80%以上の極めて高い含水率を有し、こ
の水分は濾過によっては除去することは出来ないもので
ある。
On the other hand, JP-A No. 57-42515, No. 42516, No. 82109, No. 88011, No. 88012, No. 8
No. 8019 discloses a method for producing silicon carbide and silicon nitride by treating carbon or a carbon precursor with a silicic acid liquid. In these methods, the silicic acid solution is prepared by acid decomposition of alkali silicate or cation exchange method, and in either case, the silica source and carbon source are sufficiently mixed, and some effects have been recognized. There are many problems in terms of the purity and economic efficiency of the products. That is, conventionally, in the acid decomposition of alkali silicates, Iqi
02 (This is carried out using an extremely dilute solution in which the degree of 1 degree is less than the amount of ta Since the hydrogel contains a large amount of by-product soluble salts, it is necessary to roughly crush the salt and wash it with water to completely wash it away.However, the gel obtained by this conventional method has an extremely high water content of 80% or more. This water cannot be removed by filtration.

従ってアルカリ金属ケイ酸塩に由来するpe 1A/1
等の金属不純物はその殆どが含水ゲル中に包含されるこ
ととな9、かかるゲルを7リカ源としてセラミックスを
製造する場合には、金属不純物含量の高い製品しか得ら
れないものである。
Therefore, pe 1A/1 derived from alkali metal silicates
Most of these metal impurities are included in the hydrogel.9 Therefore, when producing ceramics using such gel as a calcium source, only products with a high metal impurity content can be obtained.

かかる金属不純物の存在は、粉末製造の際ウィスカー発
生の原因となったり、あるいはまた焼結の際異状粒成長
の因となり焼結体の物性面で問題がある。更に、かがる
方法による場合には前記の如くシリカゲルは80%以上
も・の多量の水分を含むものであり、この多量の水分を
除去するために極めて高いエネルギーコストとなp1出
発原料そのものは安価ではあるがプロセス全体としてみ
た場合には、極めて経済的に不利な製法である。
The presence of such metal impurities causes the generation of whiskers during powder production or abnormal grain growth during sintering, causing problems in terms of the physical properties of the sintered body. Furthermore, when using the darning method, as mentioned above, silica gel contains a large amount of water, as much as 80% or more, and the energy cost is extremely high to remove this large amount of water. Although it is inexpensive, it is an extremely economically disadvantageous manufacturing method when viewed as a whole process.

また、ケイ酸液の調製を陽イオン交換法にょシ行なう場
合においても、イオン交換時ゲル化を防止せねばならず
Sin、濃度に制約を受け、希薄溶液にて調製を行なわ
ざるを得す、焼成以前に非常に多量の水分を除去せねば
ならないものである。更に多量のアルカリの存在下での
アルカリケイ酸塩中に含まれるFe、 A1などの金属
不純物の除去は極めて困難であり高純度セラミックス原
料粉末の製法としては好ましいものではない。
In addition, even when preparing a silicic acid solution using a cation exchange method, it is necessary to prevent gelation during ion exchange, and there are constraints on the concentration of silicic acid, so it is necessary to prepare a dilute solution. A very large amount of moisture must be removed before firing. Furthermore, it is extremely difficult to remove metal impurities such as Fe and A1 contained in the alkali silicate in the presence of a large amount of alkali, and this is not preferred as a method for producing high-purity ceramic raw material powder.

本発明者らは、ノリコン系セラミックス原料粉、末の製
法について長年にわたって研究した結果、前記した諸製
法の欠点を悉く回避し得る製法を確立したものである。
As a result of many years of research into manufacturing methods for raw material powders and powders for Noricon-based ceramics, the present inventors have established a manufacturing method that avoids all of the drawbacks of the various manufacturing methods described above.

即ち、本発明の第1はs i a2m度が15重量%以
上になるようにアルカリケイ酸塩と鉱酸を配合、反応さ
せて得られるシリカを炭素及び/または炭素化合物と混
合後、非酸化性雰囲気で焼成することを特徴とするシリ
コン系セラミックス原料粉末の製造方法であシ、その第
2は炭素及び/または炭素化合物の存在下、該炭素源を
除く総蓋中のSiQ、濃度が15重量%以上になるよう
にアリカリケイ酸塩と鉱酸を配合、反応させて得られる
炭素及び/または炭素化合物とシリカの混合物を脱塩後
非酸化性雰囲気で焼成すること全特徴とするシリコン系
セラミックス原料粉末の製造方法である。
That is, the first aspect of the present invention is to mix silica obtained by blending and reacting an alkali silicate and a mineral acid so that the sia2m degree is 15% by weight or more, and then mixing it with carbon and/or a carbon compound, followed by non-oxidizing This is a method for producing a silicon-based ceramic raw material powder, which is characterized by firing in a neutral atmosphere. A silicon-based ceramic which is characterized in that a mixture of carbon and/or a carbon compound and silica obtained by blending and reacting alkali silicate and mineral acid in a proportion by weight or more is desalted and then fired in a non-oxidizing atmosphere. This is a method for producing raw material powder.

本発明の特徴は炭素及び/または炭素化合物をどの段階
で添加するかにがかわらず、シリカ原料としてS2O2
濃度がs5!f%、よシ好ましくは20重量%以上にな
るようにアルカリケイ酸塩と鉱酸を配合、反応させて得
られるシリカを使用するところにある。このSiQ2濃
度の上限は特にないが、あまりに高濃度とした場合には
簑≠≠毒襠→牽均−な攪拌が困難となるため、攪拌装置
によっても差はあるが一般的には50重量%以下が好ま
しい。この場合の調曾方法としては、種々の態様が可能
であり、鉱酸あるいはアルカリケイ酸塩のいずれも水に
て希釈調節し得るものであるが、鉱酸として濃硫酸を使
用する場合には硫酸の方を希釈する方が希釈熱を予め除
くことができるため、反応温度の調節が容易となり好ま
しい。
The feature of the present invention is that regardless of the stage in which carbon and/or carbon compounds are added, S2O2 can be used as a silica raw material.
The concentration is s5! Silica obtained by mixing and reacting an alkali silicate and a mineral acid so that the amount is f%, preferably 20% by weight or more, is used. There is no particular upper limit for this SiQ2 concentration, but if the concentration is too high, it will be difficult to mix evenly.There are differences depending on the stirring device, but generally it is 50% by weight. The following are preferred. Various methods are possible for the preparation method in this case, and either mineral acid or alkali silicate can be diluted with water, but when using concentrated sulfuric acid as the mineral acid, It is preferable to dilute sulfuric acid because the heat of dilution can be removed in advance, making it easier to adjust the reaction temperature.

本発明において用いられるアルカリケイ酸塩としてはケ
イ酸ナトリウム、ケイ酸カリクム、ケイ酸リチウム等が
挙げられるが、一般的には安価なケイ酸ナトリウムが用
いられる。また鉱酸としては硫酸、塩酸、硝酸及びリン
酸等が挙げられ、最も一般的には硫酸が用いられる。
Examples of the alkali silicate used in the present invention include sodium silicate, potassium silicate, lithium silicate, etc., but inexpensive sodium silicate is generally used. Examples of mineral acids include sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, with sulfuric acid being most commonly used.

次に本発明におけるシリカの生成反応の経過について詳
述する。
Next, the progress of the silica production reaction in the present invention will be described in detail.

アルカリ金属ケイ酸塩と鉱酸を810□濃度が15重量
%以上で酸性領域になるように原料を仕込むと全体は氷
塊状のかたまシとなる。これを攪拌するとかたまシがほ
ぐれ、ミゾレ状となって攪拌羽根に付着して餅状の・粘
着性を示すようになる。さらに攪拌を続けると水分が浸
出してきてさらさらの液状態となる。この時点で反応を
完了し挿過、水洗、乾燥を行なえばよく、かかる条件下
では反応は約1時間で完了し、−過、水洗により得られ
たヒドロゲルは含水率が60%以下と低いものが得られ
る。このように、本発明によれば、一過性、洗浄性とも
極めて良好であり、洗浄水も少量で十分である。仁の理
由については必ずしも明確ではないが、使用する原料濃
度が高いためシリカゲルの晶出時ゾルを経由しないか、
または経由しても極めて短時間で終了するためと考えら
れる。
When the raw materials are prepared such that the alkali metal silicate and mineral acid have a concentration of 15% by weight or more and are in the acidic region, the whole becomes an ice block. When the mixture is stirred, the lumps loosen and become sloppy, which adheres to the stirring blade and becomes cake-like and sticky. If the stirring is continued further, water will ooze out and the mixture will become smooth. At this point, the reaction can be completed, followed by filtration, water washing, and drying. Under these conditions, the reaction is completed in about 1 hour, and the hydrogel obtained by filtration and water washing has a low water content of 60% or less. is obtained. As described above, according to the present invention, both temporary properties and washability are extremely good, and a small amount of washing water is sufficient. The reason for this is not necessarily clear, but it may be that the concentration of the raw materials used is high and that the crystallization of silica gel does not go through the sol.
This is thought to be due to the fact that it ends in an extremely short time even if it is routed through another route.

本発明によれば、得られるシリカの含水率を低くするこ
とができるため、脱水、。乾燥すべき水分蒸発量は従来
法の1/4程度に減少させることが可能であpl プロ
セス全体として、極めて経済的である。さらに本発明に
よれば、シリコン系セラミックスに要求される純度を十
分に満足するシリカ源を提供し得るものである。すなわ
ち、本発明によれば、主にアルカリケイ酸塩に由来する
Fθ、A1等の金属不純物はほとんど生成シリカ中には
含まれず、高純度のシリコン系セラミックスの製造が可
能となる。この理由は必ずしも明確ではないが、S卸、
濃度15重量%以上での反応によシ生成するシリカゲル
は金属不純物を抱き込みにくい構造をとっているものと
推察される。また、本発明においては、生成するシリカ
ゲルは従来法で得られるシリカゲルと異なシ滓過が容易
でちゃ、洗浄性も良好なため上記金属不純物はその殆ど
を母液側に移行させることができるものである。かかる
本発明の目的に対しては、腹側に金属イオンが抽出され
易い酸性領域での反応が好ましいものである。
According to the present invention, the water content of the obtained silica can be lowered, so dehydration. The amount of water evaporated to be dried can be reduced to about 1/4 of the conventional method, making the process as a whole extremely economical. Further, according to the present invention, it is possible to provide a silica source that fully satisfies the purity required for silicon-based ceramics. That is, according to the present invention, metal impurities such as Fθ and A1 mainly derived from alkali silicate are hardly contained in the produced silica, making it possible to manufacture high-purity silicon-based ceramics. The reason for this is not necessarily clear, but S wholesale,
It is presumed that the silica gel produced by the reaction at a concentration of 15% by weight or more has a structure that makes it difficult to incorporate metal impurities. In addition, in the present invention, unlike silica gel obtained by conventional methods, the silica gel produced is easy to sieve and has good washability, so most of the metal impurities mentioned above can be transferred to the mother liquor side. be. For the purpose of the present invention, it is preferable to perform the reaction in an acidic region where metal ions are easily extracted from the ventral side.

本発明において用いらfLる炭素源としては、例、tば
カーボンブランク、石油コークス、黒鉛、活性炭などの
固体状炭素のほかに200〜1500℃の温度で且非酸
化性雰囲気において炭素状残留物となる炭素化合物をも
包含し、ショ糖、セルロース、でんぷん、デキストリン
、マルトース等の多糖類をはじめとして単糖類、少糖類
のほかにFVA、PVO等の種々の合成樹脂などが挙げ
られるが、純度及び経済性の点からカーポンプノックが
最も一般的である。またよシ高純度な原料粉末を得たい
場合には、ショ糖などが好ましいといえる。
Carbon sources used in the present invention include, for example, solid carbon such as carbon blank, petroleum coke, graphite, and activated carbon, as well as carbonaceous residues in a non-oxidizing atmosphere at a temperature of 200 to 1500°C. It also includes carbon compounds that are Car pump knock is the most common from the point of view of economic efficiency. Furthermore, when it is desired to obtain raw material powder with high purity, sucrose or the like is preferable.

本発明における炭素及び/またに炭素化合物の添加時期
は特に限定されず、中和反応以前にアルカリケイ酸塩水
溶液あるいは鉱酸に除却してもよく、また中和終了後に
添加することも可能である。更に、シリカゲルを得たの
ち、これと乾式混合してもよい。しかし、シリカとの混
合均一性を高め、良好なシリコン系セラミックス原料粉
末を得るためには液系での添加が好ましいことは勿論で
ある。
The timing of adding carbon and/or carbon compounds in the present invention is not particularly limited, and they may be removed into an aqueous alkali silicate solution or mineral acid before the neutralization reaction, or they may be added after the neutralization is completed. be. Furthermore, after obtaining the silica gel, it may be dry mixed with the obtained silica gel. However, in order to improve the uniformity of mixing with silica and obtain a good silicon-based ceramic raw material powder, it is of course preferable to add it in a liquid system.

一般にアルカリケイ酸塩水溶液の中和反応によシ得られ
るシリカゲル中には副生可溶性塩類を多量に含むためゾ
ルまたはゲルを水洗、塩析あるいは電気化学的方法で除
去する必要があり、本発明においては、濾過性が極めて
容易なため、得られたスラリーを濾過洗浄によシネ細物
であるFθ、 A1等の金属イオンはシリカまたはシリ
カ−炭素源混合物にとり込まれることなく母液側に移行
するため、高純度のシリコン系セラミックス製造用原料
が得られるものである。
Generally, silica gel obtained by neutralization reaction of an aqueous alkali silicate solution contains a large amount of by-product soluble salts, so it is necessary to remove the sol or gel by water washing, salting out, or electrochemical method. Since the filterability is extremely easy, when the obtained slurry is filtered and washed, metal ions such as Fθ and A1, which are cine particles, are transferred to the mother liquor side without being incorporated into the silica or the silica-carbon source mixture. Therefore, a raw material for producing high-purity silicon-based ceramics can be obtained.

このようにして得たシリカまたはシリカ−炭素源混合物
は脱水乾燥後、場合によっては炭素源を混合後、還元雰
囲気下または窒化性ガス雰囲気下で焼成することによっ
て、炭化ケイ素、窒化ケイ素の粉末が得られ、この粉末
はFθ、 A1等の金属不純物が極めて少ない高純度な
ものであり、壕だ1粒径も1μm以下の微粒子として得
られるものとなる。
The silica or silica-carbon source mixture obtained in this way is dehydrated and dried, and in some cases after mixing with a carbon source, it is fired in a reducing atmosphere or a nitriding gas atmosphere to form silicon carbide or silicon nitride powder. The obtained powder is of high purity with very little metal impurities such as Fθ and A1, and is obtained as fine particles with a single particle diameter of 1 μm or less.

このように、本発明によれば、高純度1つ微粒状の7リ
コン糸セラミツクス粉末を安価且つ容易に得ることがで
きるものである。
As described above, according to the present invention, high-purity single-fine 7-recon thread ceramic powder can be obtained easily and inexpensively.

以下実施例によシ本発明を更に詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

実施例1−3 SiO*#度が15〜25亀散%になるように2tのニ
ーダ−(翼は2型)に98%硫酸またはこれを予め希釈
して3002を仕込み、攪拌しつつ5号ケイ酸ナトリワ
ム(S i02 /Na2Oモル比3.1.5iot濃
度29重量%)溶液奮i oo y/分、の速さで添加
し、反応温度35℃にて反応物のpHが設定値付近にな
った時、ケイ酸す) IJウムの絵加を終了し、10分
間よく混合したのち、pHを再測定し反応物全敗り出し
遠心分離機で分離、洗浄し、 1’05℃にて乾燥ケお
こない原料シリカを得た。このものに市販のカーボンブ
ランクをa/Si原子比が所定の値となるように添加後
、テフロン製ボールミルにて一昼夜混合した。この混合
物を焼成しシリコン系セラミックス粉末を得た。
Example 1-3 98% sulfuric acid or 3002 prepared by diluting it in advance was charged into a 2-t kneader (type 2 blades) so that the SiO*# content was 15 to 25%, and No. 5 was added while stirring. A solution of sodium silicate (S i02 /Na2O molar ratio 3.1.5 iot concentration 29% by weight) was added at a rate of ioo y/min, and the pH of the reactant was brought to around the set value at a reaction temperature of 35°C. After finishing painting with IJum and mixing well for 10 minutes, the pH was measured again and all the reactants were evaporated, separated with a centrifuge, washed, and dried at 1'05℃. The raw material silica was obtained. A commercially available carbon blank was added to this material so that the a/Si atomic ratio would be a predetermined value, and then mixed overnight in a Teflon ball mill. This mixture was fired to obtain silicon-based ceramic powder.

ケイ酸ナトリウムの中和条件、生成シリカゲルの水分量
、焼成条件、生成シリコン系セラミックス粉末の物性を
以下の実施例、比較例とともに第1表に示す。なお、実
施例、比較例で用いた3号ケイ酸ナトリウム及びカーボ
ンブラックの不純物量を第2表に示す。
The neutralization conditions for sodium silicate, the water content of the produced silica gel, the firing conditions, and the physical properties of the produced silicon ceramic powder are shown in Table 1 along with the following Examples and Comparative Examples. Table 2 shows the amount of impurities in No. 3 sodium silicate and carbon black used in Examples and Comparative Examples.

実施例4 S102濃度が25重蓋%となるように予め98%硫酸
にカーボンブラック全添加する以外は実施例1〜3と同
様の操作で炭化ケイ素を得た。
Example 4 Silicon carbide was obtained in the same manner as in Examples 1 to 3, except that carbon black was completely added to 98% sulfuric acid in advance so that the S102 concentration was 25%.

実施例5 カーボンブランク添加量、焼成条件以外は実施例4と同
様にして窒化ケイ素を得た。
Example 5 Silicon nitride was obtained in the same manner as in Example 4 except for the amount of carbon blank added and the firing conditions.

比較例1〜3 原料として30′X硫酸、5号ケイ酸ナトリウムを水で
希釈してS102濃度14%に調製したものを用い、反
応時のS102濃度を5〜15化とした以外は実施例1
〜5と同様の操作によりシリコン系セラミックス粉末を
得た。
Comparative Examples 1 to 3 Examples except that 30'X sulfuric acid and No. 5 sodium silicate diluted with water to adjust the S102 concentration to 14% were used as raw materials, and the S102 concentration during the reaction was set to 5 to 15. 1
A silicon-based ceramic powder was obtained by the same operation as in Steps 5 to 5.

以上の実施例、比較例の結果を示した第1表からも明ら
かな如く、本発明によれば、生成シリカゲル中の水分量
が極めて少ないため、経済的である。更に、洗浄、挿過
性も良好で高純度且つ微粒のシリコン系セラミックス原
料粉末が容易に製造でさるものである。
As is clear from Table 1 showing the results of the above Examples and Comparative Examples, the present invention is economical because the amount of water in the produced silica gel is extremely small. Furthermore, the cleaning and insertion properties are good, and high-purity, fine-grained silicon-based ceramic raw material powder can be easily produced.

第2表 使用原料中の不純物含有量 1)原子吸光法による 2)螢光X線分析法による 特許出願人 セントラル硝子株式会社Table 2 Impurity content in raw materials used 1) By atomic absorption method 2) By fluorescence X-ray analysis method Patent applicant: Central Glass Co., Ltd.

Claims (1)

【特許請求の範囲】 (リ S10.濃度が15重量%以上になるようにアル
カリケイ酸塩と鉱酸を配合、反応させて得られるシリカ
を炭素及び/または炭素化合物と混合後、非酸化性雰囲
気で焼成することを特徴とするシリコン系セラミックス
原料粉末の製造方法。 (2)炭素及び/または炭素化合物の存在下、該炭素源
を除く総量中のS102濃度が15重量%以上になるよ
うにアルカリケイ酸塩と鉱酸を配合、反応させて得られ
る炭素及び/または炭素化合物とシリカの混合物を脱塩
後、非酸化性雰囲気で焼成することを特徴とするシリコ
ン系セラミックス原料粉末の製造方法。 (3)  シリコン系セラミックス原料粉末が炭化ケイ
素であり、不活性ガス雰囲気中1400℃以上の温度で
焼成する特許請求の範囲第1項または第2項記載のシリ
コン系セラミックス原料粉末の製造方法。 (4)シリコン系セラミックス原料粉末が窒化ケイ素で
あり、窒素ガス雰囲気中1600℃以下の温度で焼成す
る特許請求の範囲第1項または第2項記載のシリコン系
セラミックス原料粉末の製造方法。
[Scope of Claims] (S10. Silica obtained by blending and reacting alkali silicate and mineral acid so that the concentration is 15% by weight or more is mixed with carbon and/or carbon compounds, and then non-oxidizing A method for producing silicon-based ceramic raw material powder characterized by firing in an atmosphere. (2) In the presence of carbon and/or carbon compounds, the S102 concentration in the total amount excluding the carbon source is 15% by weight or more. A method for producing a silicon-based ceramic raw material powder, which comprises desalting a mixture of carbon and/or a carbon compound and silica obtained by blending and reacting an alkali silicate and a mineral acid, and then firing the mixture in a non-oxidizing atmosphere. (3) The method for producing a silicon-based ceramic raw material powder according to claim 1 or 2, wherein the silicon-based ceramic raw material powder is silicon carbide and is fired at a temperature of 1400° C. or higher in an inert gas atmosphere. (4) The method for producing silicon-based ceramic raw material powder according to claim 1 or 2, wherein the silicon-based ceramic raw material powder is silicon nitride, and the silicon-based ceramic raw material powder is fired at a temperature of 1600° C. or lower in a nitrogen gas atmosphere.
JP57136295A 1982-08-06 1982-08-06 Preparation of powdery raw material of silicon ceramic Pending JPS5926904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57136295A JPS5926904A (en) 1982-08-06 1982-08-06 Preparation of powdery raw material of silicon ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57136295A JPS5926904A (en) 1982-08-06 1982-08-06 Preparation of powdery raw material of silicon ceramic

Publications (1)

Publication Number Publication Date
JPS5926904A true JPS5926904A (en) 1984-02-13

Family

ID=15171832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57136295A Pending JPS5926904A (en) 1982-08-06 1982-08-06 Preparation of powdery raw material of silicon ceramic

Country Status (1)

Country Link
JP (1) JPS5926904A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081340A (en) * 2006-09-26 2008-04-10 Toda Kogyo Corp Method for manufacturing silicon nitride powder
JP2013095635A (en) * 2011-11-01 2013-05-20 Taiheiyo Cement Corp Method for producing high-purity silicon carbide powder
JP2014122131A (en) * 2012-12-21 2014-07-03 Taiheiyo Cement Corp Production method of high-purity silicon carbide powder
JP2014125407A (en) * 2012-12-27 2014-07-07 Taiheiyo Cement Corp Method for manufacturing high-purity silicon carbide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081340A (en) * 2006-09-26 2008-04-10 Toda Kogyo Corp Method for manufacturing silicon nitride powder
JP2013095635A (en) * 2011-11-01 2013-05-20 Taiheiyo Cement Corp Method for producing high-purity silicon carbide powder
JP2014122131A (en) * 2012-12-21 2014-07-03 Taiheiyo Cement Corp Production method of high-purity silicon carbide powder
JP2014125407A (en) * 2012-12-27 2014-07-07 Taiheiyo Cement Corp Method for manufacturing high-purity silicon carbide

Similar Documents

Publication Publication Date Title
EP0367808B1 (en) Process of preparing hydroxylapatite
JP6016625B2 (en) High purity silica sol and method for producing the same
JPH05503066A (en) Method for producing alkali metal silicate
JPH01278419A (en) Method for manufacturing zirconium oxide hydrate from crystallized particle-like zirconium oxide
JPS5926904A (en) Preparation of powdery raw material of silicon ceramic
CN101462739A (en) Method for preparing 4A zeolite molecular sieve from red desmine
JP3865604B2 (en) Method for producing aluminum metaphosphate
CN108821299B (en) Method for preparing calcium silicate by decomposing phosphate ore by using ammonium chloride
CN102112398B (en) Method for preparing cerium carbonate and method for preparing cerium oxide powder
JPH06107414A (en) Production of high purity alumina
JPH05294612A (en) Silica sol and its production
US4693878A (en) Process for the production of soluble alkali silicates
JPS62207705A (en) Crystalline aluminum phosphate and its preparation
JPH0692247B2 (en) Method for producing magnesium silicofluoride
JPS58104010A (en) Preparation of silicon carbide powder
CN110182809A (en) A kind of preparation method of the additive pyrophosphoric acid silicon of semiconductor doping phosphorous diffusion source
CN108793115B (en) Method for decomposing phosphorite by using ammonium chloride and preparing fiber cement board by using impurities
JPS6149245B2 (en)
JP3970208B2 (en) Method for synthesizing reactive oxygen species inclusion materials
JPS58208125A (en) Manufacture of pure silicon dioxide
RU2740746C1 (en) Method of cleaning fly ash graphite (versions)
CN105967156A (en) H-BN powder specially used for synthesizing c-BN, and preparation method thereof
JPS58104006A (en) Preparation of silicon nitride powder
JP4241257B2 (en) Method for producing high purity aluminum fluoride
JP2921958B2 (en) Method for producing δ-type alkali metal disilicate