JPH03112180A - Metal steam laser device - Google Patents

Metal steam laser device

Info

Publication number
JPH03112180A
JPH03112180A JP24934989A JP24934989A JPH03112180A JP H03112180 A JPH03112180 A JP H03112180A JP 24934989 A JP24934989 A JP 24934989A JP 24934989 A JP24934989 A JP 24934989A JP H03112180 A JPH03112180 A JP H03112180A
Authority
JP
Japan
Prior art keywords
core tube
laser
furnace core
light
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24934989A
Other languages
Japanese (ja)
Inventor
Koji Mizuguchi
水口 宏司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24934989A priority Critical patent/JPH03112180A/en
Publication of JPH03112180A publication Critical patent/JPH03112180A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To retain temperature distribution at a laser oscillation part within a reactor core tube, to increase output, and to reduce thermal loss for improving oscillation efficiency by using a specified optic filter at a brewster window. CONSTITUTION:An optic filter 30 which reflects infrared rays 25 and transmits a laser light 26 is used for a brewster window 27. With this configuration, a ZnSb film 33 at both surfaces of a crystal glass 32 which becomes a substrate of the center part of the optic filter 30 is applied and the outer surface is coated with an SiO2 film 34 where this multiple-layer film is a dielectric, has a mirror effect for light, and can reflect light of a specific wavelength. Also, since a metal steam laser is a laser within a visible range, the filter 30 transmits the laser light 26 within the visible range and suppresses heat radiation from the window 27 by reflecting the infrared rays 25 and returning it into the furnace core tube, thus maintaining the temperature distribution within the reactor core tube to be uniform. Therefore, thermal loss can be reduced and efficiency can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は特にブルースタ窓を改良して炉芯管の熱損失の
低減をはかった金属蒸気レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention particularly relates to a metal vapor laser device in which the Brewster window is improved to reduce heat loss in the furnace core tube.

(従来の技術) 近年、レーザ装置は素材の切削加工、光通信。(Conventional technology) In recent years, laser equipment has been used for cutting materials and optical communications.

医療技術、原子力産業上の利用分野で使用されている。Used in medical technology and nuclear industrial applications.

以下、金属蒸気レーザ装置として、銅蒸気レーザ装置を
例に取上げて説明する。
Hereinafter, a copper vapor laser device will be explained as an example of a metal vapor laser device.

このレーザ装置は炉芯管内に収納された金属銅を放電で
エネルギを与えて高温に加熱し銅蒸気を発生させ、かつ
同時にこの蒸気を放電で励起してレーザ媒質を形成させ
、銅固有の波長を有するレーザ光を発振させるものであ
る。
This laser device uses electric discharge to energize metal copper housed in a furnace core tube, heats it to a high temperature, and generates copper vapor. At the same time, this vapor is excited by electric discharge to form a laser medium. This device oscillates a laser beam having the following characteristics.

第5図は従来の銅蒸気レーザ装置の構成を示す断面図、
第6図は第5図の要部拡大図、第7図は第6図のA−A
切断線断面図である。すなわち、第5図に示すように発
振管本体1にはその中央部軸線に沿ってそれを構成する
炉芯管2が設けられている。この炉芯管2の両端には陽
電極3および陰電極4が電極支持フランジ5,6に支持
されて互いに対向配置され、炉芯管2の内部を放電空間
7とするパルス放電が行われる。炉芯管2の底部には銅
蒸気を発生させるための銅片8が収納されている。
FIG. 5 is a cross-sectional view showing the configuration of a conventional copper vapor laser device;
Figure 6 is an enlarged view of the main part of Figure 5, Figure 7 is A-A of Figure 6.
It is a sectional view taken along a cutting line. That is, as shown in FIG. 5, the oscillation tube body 1 is provided with a furnace core tube 2 constituting it along the central axis thereof. At both ends of the furnace core tube 2, a positive electrode 3 and a negative electrode 4 are supported by electrode support flanges 5 and 6 and are disposed facing each other, and a pulse discharge is performed using the inside of the furnace core tube 2 as a discharge space 7. A copper piece 8 for generating copper vapor is housed at the bottom of the furnace core tube 2.

炉芯2の外周にはアルミナファイバ等の材料からなる放
電熱保持用断熱層9が形成され、その断熱層9を所定位
置に固定支持するために、断熱層9の外周には石英等か
らなる保護管10が設けられている。保護管10とその
外周に配置された真空容器11とにより真空断熱室12
および炉芯管2内の放電空間7は排気装置13に接続さ
れている。
A discharge heat retaining heat insulating layer 9 made of a material such as alumina fiber is formed on the outer periphery of the furnace core 2, and in order to fix and support the heat insulating layer 9 in a predetermined position, the outer periphery of the heat insulating layer 9 is made of quartz or the like. A protection tube 10 is provided. A vacuum insulation chamber 12 is formed by the protection tube 10 and the vacuum container 11 arranged around its outer periphery.
The discharge space 7 within the furnace core tube 2 is connected to an exhaust device 13.

陽電極3と陰電極4とを絶縁し、良好な放電を得るため
に外部真空容器11と電極支持フランジ6との間に、セ
ラミックスまたはガラス等の絶縁材からなるブレーク管
14が介装されている。なお、各電極支持フランジ5,
6の軸方向外端側にはブルーメタ窓19,20が設けで
ある。
A break tube 14 made of an insulating material such as ceramics or glass is interposed between the external vacuum vessel 11 and the electrode support flange 6 in order to insulate the positive electrode 3 and the negative electrode 4 and obtain a good discharge. There is. In addition, each electrode support flange 5,
Blue metal windows 19 and 20 are provided on the outer end side in the axial direction of 6.

レーザ光の発振過程を説明すると、まず排気装置13で
真空断熱室12および放電空間7内を排気する。続いて
、バッファガス供給源15から放電空間7内にNe等の
バッファガスを導入し、炉芯管2の内部を一定圧力に保
持する。この状態で高電圧電源16.パルス回路17.
パルスドライブ電源18を励起すると、陽電極3および
陰電極4の間に高圧のパルス電圧が印加され、放電空間
7において放電プラズマが生成される。この放電プラズ
マ中の自由電子に浮遊状態の銅蒸気が衝突し、それが励
起される。励起された銅蒸気が低エネルギ準位に遷移す
る際に所定波長のレーザ光が発生する。放電空間内で発
生したレーザ光はブルーメタ窓19,20を透過してレ
ーザ光発振器21を構成する出力ミラー22と全反射ミ
ラー23との間で反射を繰り返す間にその光強度が増大
し、最終的には出力ミラー22と全反射ミラー23との
間で反射を繰返す間にその光強度が増大し、最終的には
出力ミラー22をレーザ光が透過して来る。
To explain the laser beam oscillation process, first, the vacuum insulation chamber 12 and the discharge space 7 are evacuated by the exhaust device 13. Subsequently, a buffer gas such as Ne is introduced into the discharge space 7 from the buffer gas supply source 15 to maintain the inside of the furnace core tube 2 at a constant pressure. In this state, high voltage power supply 16. Pulse circuit 17.
When the pulse drive power supply 18 is excited, a high pulse voltage is applied between the positive electrode 3 and the negative electrode 4, and discharge plasma is generated in the discharge space 7. Floating copper vapor collides with the free electrons in this discharge plasma, and they are excited. Laser light of a predetermined wavelength is generated when the excited copper vapor transitions to a lower energy level. The laser light generated in the discharge space passes through the blue meta windows 19 and 20, and as it is repeatedly reflected between the output mirror 22 and the total reflection mirror 23 that constitute the laser light oscillator 21, its light intensity increases, and the final Specifically, the light intensity increases while the laser beam is repeatedly reflected between the output mirror 22 and the total reflection mirror 23, and finally the laser beam passes through the output mirror 22.

(発明が解決しようとする課題) 従来の金属蒸気レーザ装置において、例えば銅蒸気を発
生・保持させるためには炉芯管2の温度を摂氏1300
度〜1400度に保持する必要がある。そして最大のレ
ーザ出力を得るためには最適な銅の蒸気量(蒸発量)が
必要となる。この時の温度条件は1500度前後と言わ
れている。炉芯管2の内部が前記温度で一様であればレ
ーザの発振部である炉芯管2の内部全体が最適の銅蒸気
条件になるレーザ出力が最大となる。
(Problem to be Solved by the Invention) In a conventional metal vapor laser device, for example, in order to generate and retain copper vapor, the temperature of the furnace core tube 2 must be set to 1300 degrees Celsius.
It is necessary to maintain the temperature between 1400 degrees and 1400 degrees. In order to obtain the maximum laser output, an optimum amount of copper vapor (evaporation amount) is required. The temperature conditions at this time are said to be around 1500 degrees. If the temperature inside the furnace core tube 2 is uniform, the entire interior of the furnace core tube 2, which is the oscillation part of the laser, will be under optimal copper vapor conditions, and the laser output will be maximized.

しかしながら、実際には銅が溶けているような高温にな
っているので、熱は種々な方向へ逃げてしまう。第8図
は熱の流れを示す図である。ここで、放電24で発生し
た熱は断熱層9.真空層12を伝わるものと、輻射とし
て赤外線25の形で空間を伝播する。第9図は炉芯管2
の両端外側に設けられたレーザ光導出用ブルーメタ窓の
拡大断面図である。ここでブルーメタ窓19.20は、
レーザ光26炉芯管2から外部へ導出させるためにガラ
ス媒質からなっている。そのため、ブルーメタ窓19.
20は赤外線25を透過させることになるので、赤外線
25として熱が外部へ逃げることになる。
However, since the temperature is actually so high that the copper is melting, the heat escapes in various directions. FIG. 8 is a diagram showing the flow of heat. Here, the heat generated by the discharge 24 is transferred to the heat insulating layer 9. It propagates in the vacuum layer 12 and in the form of infrared rays 25 as radiation. Figure 9 shows the furnace core tube 2.
FIG. 2 is an enlarged cross-sectional view of a blue metal window for laser light extraction provided on the outside of both ends of the laser beam. Here, Blue Meta Window 19.20 is
The laser beam 26 is made of a glass medium in order to be led out from the furnace core tube 2. Therefore, Blue Meta Window 19.
20 allows infrared rays 25 to pass through, so that heat escapes to the outside as infrared rays 25.

以上のことからブルーメタ窓19.20からの熱放出に
よって、温度分布が特に端部において歪まされるので一
様分布でなくなって出力の低下を招く。この時の温度分
布を第3図破線aに示す。
From the above, the heat released from the blue metal windows 19 and 20 distorts the temperature distribution, especially at the ends, so that the distribution is no longer uniform, leading to a decrease in output. The temperature distribution at this time is shown by the broken line a in FIG.

ここで温度分布は破線aで示したように全体に凸形とな
り、−様な温度分布の範囲が十分に取れなくなる課題が
ある。
Here, the temperature distribution has an overall convex shape as shown by the broken line a, and there is a problem that a sufficient range of --like temperature distribution cannot be obtained.

本発明はこのような課題を解決するためになされたもの
で、炉芯管内レーザ発振部の温度分布を一様に保持して
出力の増加を招き、かつ熱損失を低減してレーザの発振
効率の向上を計ることができる金属蒸気レーザ装置を提
供することにある。
The present invention was made to solve these problems, and it maintains a uniform temperature distribution in the laser oscillation part in the furnace core tube, leading to an increase in output, and reducing heat loss to improve laser oscillation efficiency. The object of the present invention is to provide a metal vapor laser device that can improve the performance.

[発明の構成] (課題を解決するための手段) 本発明は金属蒸気源を収納する炉芯管と、この炉芯管の
両端部に対向して設けられ該炉芯管内にパルス放電を行
なうことによって前記蒸気源に励起用放電エネルギを付
与するとともにレーザ媒質となるプラズマを発生させる
一対の放電電極と、前記炉芯管の外周に形成された断熱
層と、前記炉芯管両端外側に設けられたレーザ光導出用
ブルーメタ窓とを備えた金属蒸気レーザ装置において、
前記ブルーメタ窓は赤外線を反射しかつレーザ光を透過
する光学フィルタからなることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes a furnace core tube that houses a metal vapor source, and a furnace core tube that is provided oppositely to both ends of the furnace core tube and generates a pulse discharge in the furnace core tube. a pair of discharge electrodes that apply discharge energy for excitation to the steam source and generate plasma to serve as a laser medium; a heat insulating layer formed on the outer periphery of the furnace core tube; and a heat insulating layer provided on the outside of both ends of the furnace core tube. In a metal vapor laser device equipped with a blue metal window for guiding laser light,
The blue meta window is characterized in that it consists of an optical filter that reflects infrared rays and transmits laser light.

(作 用) 赤外線を反射し、レーザ光を透過する光学フィルタをブ
ルーメタ窓に使用することによって炉芯管内の温度分布
を一様に保持することができる。
(Function) By using an optical filter that reflects infrared rays and transmits laser light in the blue meta window, it is possible to maintain a uniform temperature distribution within the furnace core tube.

すなわち、金属蒸気レーザは一般的に可視域のレーザで
あり、赤外線とは波長がずれており、このために可視域
のレーザ光を透過し、赤外線を反射させて炉芯管内に戻
すことによってブルーメタ窓からの熱放出を押え、炉芯
管内の温度分布を一様に保持できる。これとともに熱損
失が低減し、効率が向上する。
In other words, metal vapor lasers are generally lasers in the visible range, and the wavelength of the infrared rays is different. Therefore, by transmitting the laser light in the visible range and reflecting the infrared rays back into the furnace core tube, it is possible to generate blue metal. It suppresses heat release from the window and maintains a uniform temperature distribution within the furnace core tube. This also reduces heat loss and improves efficiency.

(実施例) 第1図から第4図を参照しながら本発明に係る金属蒸気
レーザ装置の一実施例を説明する。
(Example) An example of a metal vapor laser device according to the present invention will be described with reference to FIGS. 1 to 4.

なお、本発明は従来例の金属蒸気レーザ装置におけるブ
ルーメタ窓19,20を改良したことにより、その他の
部分は第5図に示した装置と同様なので、重複する部分
の説明は省略する。
The present invention improves the blue metal windows 19 and 20 in the conventional metal vapor laser device, and other parts are the same as the device shown in FIG. 5, so a description of the overlapping parts will be omitted.

第1図は本発明で使用されるブルーメタ窓27を示す断
面図で、第2図はブルーメタ窓27に組込まれる光学フ
ィルタ30を示す縦断面図である。
FIG. 1 is a sectional view showing a blue meta window 27 used in the present invention, and FIG. 2 is a longitudinal sectional view showing an optical filter 30 incorporated into the blue meta window 27.

すなわち、第1図に示したブルーメタ窓27は筒状取付
体28の台座29に光学フィルタ30が押え板31で固
定されたものからなっている。光学フィルタ30は第2
図に示したように中央部の基体となる石英ガラス32の
両面にZn5b膜33がコーティングされており、この
Zn5b膜33の外面に5f02膜34がコーティング
されたものからなっている。
That is, the blue metal window 27 shown in FIG. 1 consists of an optical filter 30 fixed to a pedestal 29 of a cylindrical mounting body 28 with a holding plate 31. The optical filter 30 is the second
As shown in the figure, a Zn5b film 33 is coated on both sides of a quartz glass 32 serving as a base at the center, and a 5f02 film 34 is coated on the outer surface of this Zn5b film 33.

ここてZn5b膜33および5in2膜34の複層膜は
誘電体であって、光に対してはミラーの効果を有してい
る。特に光の波長と膜の光学的屈折率、光の入射角など
の組合せによって特定の波長の光を反射できる。これに
よって第1図に示したようにレーザ光26は透過できる
が、赤外線は反射されることになる。
The multilayer film of the Zn5b film 33 and the 5in2 film 34 is a dielectric material and has a mirror effect with respect to light. In particular, light of a specific wavelength can be reflected by a combination of the wavelength of the light, the optical refractive index of the film, the incident angle of the light, etc. This allows the laser beam 26 to pass through as shown in FIG. 1, but infrared rays are reflected.

すなわち、赤外線の波長は1μm(1000nm)オー
ダーであるが、金属蒸気レーザの波長は可視光(銅蒸気
では緑色と黄色、全蒸気では赤色等)であることが多い
。可視光の波長は400〜700nmの範囲にある。
That is, the wavelength of infrared rays is on the order of 1 μm (1000 nm), but the wavelength of metal vapor lasers is often visible light (green and yellow for copper vapor, red for all vapor, etc.). The wavelength of visible light is in the range of 400 to 700 nm.

ここで、ブルーメタ窓27は前述したように光学フィル
タ30が組込まれたものからなっているので、この光学
フィルタ30は基本的には透過材[石英、BK−7(商
品名)等のガラスが主体]と反射材となる高誘電体膜(
ZnSb、5in2゜TiO2MgOなど)からなって
いる。反射材はガラス材などの透過材の表面にコーティ
ングされ、このコーチインの厚さで反射される波長が決
まる。
Here, since the blue meta window 27 is made up of a built-in optical filter 30 as described above, this optical filter 30 is basically made of a transparent material [quartz, glass such as BK-7 (trade name)]. main body] and a high dielectric film that serves as a reflective material (
ZnSb, 5in2°TiO2MgO, etc.). The reflective material is coated on the surface of a transparent material such as glass, and the thickness of this coat-in determines the wavelength that is reflected.

光学原理上、対象とする波長の1/4波長にコーティン
グの厚さが規定される。実際には一層の膜で100%反
射できないので、透過したものは再び1/4波長の膜厚
で反射する。このために第2図に示したように多層化す
ることで反射能力を向上させることができる。ここで、
多層の各膜は光学系としては誘電率の異なるもので交互
に構成される。そして、本実施例による炉芯管2内の温
度分布は第3図実線すに示したように軸方向長さに沿っ
て平坦化され、炉芯管の発振部を幅広くとれるようにな
る。
Based on optical principles, the thickness of the coating is defined as 1/4 wavelength of the wavelength of interest. In reality, a single layer of film cannot reflect 100% of the light, so what passes through is reflected again with a film thickness of 1/4 wavelength. For this reason, the reflective ability can be improved by multilayering as shown in FIG. here,
As an optical system, each of the multilayer films is alternately composed of materials having different dielectric constants. According to this embodiment, the temperature distribution within the furnace core tube 2 is flattened along the axial length as shown by the solid line in FIG. 3, and the oscillation portion of the furnace core tube can be made wide.

第4図は代表的な波長に対する透過率の測定例を示して
いる。このデータは光が面に垂直に入射している場合で
あるが、実際には、赤外線はレーザ光となっていないの
で種々な方向の成分を含んでいる。反射率は入射角にも
依存するので、全体の反射率は各成分の合成されたもの
となり、見かけ上小さくなる。
FIG. 4 shows an example of transmittance measurement for typical wavelengths. This data is for the case where the light is incident perpendicularly to the surface, but in reality, infrared rays are not laser light and therefore include components in various directions. Since the reflectance also depends on the angle of incidence, the overall reflectance is a combination of each component and is apparently small.

[発明の効果] 本発明によればブルーメタ窓からの熱損失がなくなりレ
ーザ装置全体の効率が向上するとともに温度分布が一様
に近づ(。これにより約1500度という最適な温度の
領域が広く取れて、炉芯管の発振部を有効に利用できる
ことにより出力増加を得ることができる。
[Effects of the Invention] According to the present invention, there is no heat loss from the Blue Meta window, the efficiency of the entire laser device is improved, and the temperature distribution approaches uniformity. The output can be increased by effectively utilizing the oscillating part of the furnace core tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る金属蒸気レーザ装置の一実施例の
ブルースタ窓部を示す縦断面図、第2図は第1図におけ
る光学フィルタを示す縦断面図、第3図は本発明例と従
来例とをレーザ管軸方向長例を示す曲線図、第5図は従
来の金属蒸気レーザ装置を一部ブロックで示す縦断面図
、第6図は第5図における炉芯管を部分的に拡大して示
す縦断面図、第7図は第6図のA−A矢視方向切断断面
図、第8図は第5図におけるレーザ装置内の熱の流れを
示す模式図、第9図は第5図におけるブルースタ窓部を
拡大して示す縦断面図である。 ■・・・発振管本体 2・・・炉芯管 3・・・陽電極 4・・・陰電極 5・6・・・電極支持フランジ 7・・・放電空間 8・・・銅片 9・・・断熱層 10・・・保護管 」1・・・真空容器 12・・・真空断熱室 13・・・排気装置 14・・・ブレーク管 15・・・バッファガス供給源 16・・・高電圧電源 17・・・パルス回路 18・・・パルスドライブ電源 19.20・・・ブルースタ窓 21・・・レーザ光発振器 22・・・出力ミラー 23・・・全反射ミラー 24・・・放電 25・・・赤外線 26・・・レーザ光 27・・・本発明のブルースタ窓 28・・・筒状取付体 9・・・台座 0・・・光学フィルタ ト・・押え板 2・・・石英ガラス 3・・・Zn5b膜 4・・・5in2膜 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 第 図 第 図 第 図 900 1000 1100   1200 ミ皮長nm 300 第 図 第 図 第 図 第 図
FIG. 1 is a vertical sectional view showing a Brewster window of an embodiment of a metal vapor laser device according to the present invention, FIG. 2 is a vertical sectional view showing an optical filter in FIG. 1, and FIG. 3 is an example of the present invention. and a conventional example are curve diagrams showing examples of laser tube axial lengths, FIG. 5 is a vertical cross-sectional view showing a conventional metal vapor laser device as a partial block, and FIG. 6 is a partial diagram showing the furnace core tube in FIG. 5. 7 is a cross-sectional view taken in the direction of arrow A-A in FIG. 6, FIG. 8 is a schematic diagram showing the flow of heat inside the laser device in FIG. 5, and FIG. 5 is an enlarged longitudinal sectional view of the Brewster window in FIG. 5. FIG. ■... Oscillator tube body 2... Furnace core tube 3... Positive electrode 4... Cathode electrodes 5, 6... Electrode support flange 7... Discharge space 8... Copper piece 9...・Insulating layer 10...Protection tube'' 1...Vacuum container 12...Vacuum insulation chamber 13...Exhaust device 14...Break tube 15...Buffer gas supply source 16...High voltage power supply 17...Pulse circuit 18...Pulse drive power supply 19.20...Brewster window 21...Laser beam oscillator 22...Output mirror 23...Total reflection mirror 24...Discharge 25... - Infrared rays 26... Laser light 27... Brewster window of the present invention 28... Cylindrical mounting body 9... Pedestal 0... Optical filter... Holding plate 2... Quartz glass 3. ...Zn5b film 4...5in2 film (8733) Agent: Patent attorney Yoshiaki Inomata (and others)
1 person) Figure Figure Figure Figure 900 1000 1100 1200 Skin length nm 300 Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 金属蒸気源を収納する炉芯管と、この炉芯管の両端部に
対向して設けられ該炉芯管内にパルス放電を行うことに
よって前記金属蒸気源に励起用放電エネルギを付与する
とともにレーザ媒質となるプラズマを発生させる一対の
放電電極と、前記炉芯管の外周に形成された断熱層と、
前記炉芯管両端の外側に設けられたレーザ光導出用ブル
ースタ窓とを備えた金属蒸気レーザ装置において、前記
ブルースタ窓は赤外線を反射しかつレーザ光を透過する
光学フィルタからなることを特徴とする金属蒸気レーザ
装置。
A furnace core tube that houses a metal vapor source, and a furnace core tube that is provided opposite to each other at both ends of the furnace core tube and that applies discharge energy for excitation to the metal vapor source by performing a pulse discharge in the furnace core tube, and also provides a laser medium. a pair of discharge electrodes that generate plasma, and a heat insulating layer formed on the outer periphery of the furnace core tube;
A metal vapor laser device comprising Brewster windows for guiding laser light provided on the outside of both ends of the furnace core tube, wherein the Brewster windows are comprised of an optical filter that reflects infrared rays and transmits laser light. metal vapor laser equipment.
JP24934989A 1989-09-27 1989-09-27 Metal steam laser device Pending JPH03112180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24934989A JPH03112180A (en) 1989-09-27 1989-09-27 Metal steam laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24934989A JPH03112180A (en) 1989-09-27 1989-09-27 Metal steam laser device

Publications (1)

Publication Number Publication Date
JPH03112180A true JPH03112180A (en) 1991-05-13

Family

ID=17191705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24934989A Pending JPH03112180A (en) 1989-09-27 1989-09-27 Metal steam laser device

Country Status (1)

Country Link
JP (1) JPH03112180A (en)

Similar Documents

Publication Publication Date Title
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
US4615034A (en) Ultra-narrow bandwidth optical thin film interference coatings for single wavelength lasers
US4856019A (en) Reflector for excimer laser and excimer laser apparatus using the reflector
US4797896A (en) Solid state optical ring resonator and laser using same
JPS63192285A (en) Slab gas laser
JPH06104515A (en) Solid state laser
JP2001251002A (en) Laser device
US4685110A (en) Optical component of a laser
JPS6363005A (en) Infrared fiber
US5608577A (en) Optical mirror and optical device using the same
JPH03112180A (en) Metal steam laser device
JPH06350171A (en) Solid-state laser device and integral sphere
CA1281402C (en) Continuous wave, frequency-doubled solid state laser systems with stabilized output
JP3060493B2 (en) Solid state laser oscillator
US9337610B2 (en) Laser damage resistant optical components for alkali vapor laser cells
JPS6249683A (en) Gas laser device
KR100360474B1 (en) Second harmonic generator
Rainer et al. Review of UV laser damage measurements at Lawrence Livermore National Laboratory
RU2177665C2 (en) Internally radiation-frequency doubling solid-state laser
JPH0246786A (en) Solid-state laser oscillating device
JPS58160901A (en) Optical fiber for infrared ray
JPS63239886A (en) Metal vapor laser
JPH03178175A (en) Laser equipment
JPH0260178A (en) Solid-state laser oscillation device
Florea et al. Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses