JPH03110363A - Sensing device for lack-of-refrigerant-state in cooling device - Google Patents

Sensing device for lack-of-refrigerant-state in cooling device

Info

Publication number
JPH03110363A
JPH03110363A JP24466589A JP24466589A JPH03110363A JP H03110363 A JPH03110363 A JP H03110363A JP 24466589 A JP24466589 A JP 24466589A JP 24466589 A JP24466589 A JP 24466589A JP H03110363 A JPH03110363 A JP H03110363A
Authority
JP
Japan
Prior art keywords
temperature difference
temperature
refrigerant
compressor
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24466589A
Other languages
Japanese (ja)
Other versions
JP2785381B2 (en
Inventor
Yoshihiko Sano
佐野 善彦
Hisataka Okado
久高 岡戸
Kimiaki Yamaguchi
山口 公昭
Hiroshi Inazu
稲津 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP24466589A priority Critical patent/JP2785381B2/en
Publication of JPH03110363A publication Critical patent/JPH03110363A/en
Application granted granted Critical
Publication of JP2785381B2 publication Critical patent/JP2785381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PURPOSE:To effect a positive sensing of a lack of refrigerant in a cooling device by a method wherein peak values of temperature difference signals within a specified time between an inlet side temperature and an outlet side temperature of an evaporator are made into a mean value, and when this mean value exceeds a predetermined value, a signal of a lack-of- refrigerant is generated. CONSTITUTION:A cooling device is provided with a refrigerant circulating passage circulating through a compressor 51, an evaporation valve 52 and an evaporator 53. An inlet pipe P1 and an outlet pipe P2 of the evaporator 53 are provided with thermistors 1A, 1B and 1C, respectively. Output voltages of the thermistors 1A to 1C are inputted to operation amplifiers 2A and 2B. A temperature difference signal corresponding to a temperature difference between the inlet pipe P1 and the outlet pipe P2 is outputted from the operation amplifier 2A, and a temperature difference signal corresponding to a temperature difference between the inlet pipe P3 and the inlet pipe P1 is outputted from the operation amplifier 2B. Peak mean valve outputting circuits 3A and 3B may input the aforesaid temperature difference signal, calculat a mean value of peak values of the temperature difference signals appearing within a specified time and input them into comparators 4A and 4B, resulting in that each of them is compared with reference voltages Va and Vb, respectively. As the peak mean value exceeds the reference voltage Va, an alarm lamp 81 is lit and an operation of the compressor 51 is stopped.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は冷房装置の冷媒不足を検知する冷媒不足検出装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigerant shortage detection device for detecting refrigerant shortage in a cooling device.

[従来の技術] 冷媒が不足した状態で冷房装置を運転すると、冷房の利
きが悪くなることはもちろん、コンプレッサが過熱して
故障する等の問題を生じる。
[Prior Art] If a cooling device is operated in a state where there is a shortage of refrigerant, not only will the efficiency of cooling become poor, but also problems such as overheating of the compressor and breakdown will occur.

そこで、従来は、冷媒循環路中に圧力スイッチを設けて
、一定圧以下でコンプレッサを停止するようにしている
が、この方法では、外気温による圧力変動を考慮する必
要があるため、実際には冷媒が殆ど無くなった場合にし
か検出できない。
Conventionally, a pressure switch is installed in the refrigerant circulation path to stop the compressor below a certain pressure, but this method requires consideration of pressure fluctuations due to outside temperature, so it is difficult to It can only be detected when the refrigerant is almost completely exhausted.

これを解決するために、例えば日本電装公開技報50−
020 (1986年11月15日)、特開昭61−1
97969号公報、実開昭62−43268号公報には
、冷媒循環路中に一対のサーミスタを設けて、これらサ
ーミスタの温度信号の差信号より冷媒の不足を検出する
ものが開示されている。
In order to solve this problem, for example, Nippondenso Publication Technical Report 50-
020 (November 15, 1986), JP-A-61-1
97969 and Japanese Utility Model Application Publication No. 62-43268 disclose a system in which a pair of thermistors is provided in a refrigerant circulation path, and a shortage of refrigerant is detected from a difference signal between temperature signals of these thermistors.

[発明が解決しようとする課題] 上記サーミスタを使用した冷媒不足検出は、冷媒の不足
量を定量的に検出できる点で優れているが、フロスト防
止装置の作動時には、−時的に上記温度差信号が変動す
るため、冷媒不足を誤検知するという問題があった。
[Problems to be Solved by the Invention] The refrigerant shortage detection using the thermistor is excellent in that it can quantitatively detect the amount of refrigerant shortage, but when the frost prevention device is activated, the temperature difference Because the signal fluctuated, there was a problem in that a refrigerant shortage could be falsely detected.

発明者等はかかる課題を解決するために先に平均化手段
を設けた冷媒不足検出装置を提案した(特願昭63−3
15381号〉。この装置は上記課題に対してその解決
をなしたものであるが、冷房負荷が比較的小さい場合に
はフロスト防止のためにコンプレッサが頻繁に停止し、
コンプレッサの運転が短時間であるため、十分に冷媒不
足を検知できない場合があった。
In order to solve this problem, the inventors first proposed a refrigerant shortage detection device equipped with an averaging means (Japanese Patent Application No. 63-3).
No. 15381>. This device is a solution to the above problem, but when the cooling load is relatively small, the compressor frequently stops to prevent frosting.
Because the compressor operates for a short time, there were cases where refrigerant shortage could not be adequately detected.

そこで、本発明は、コンプレッサが比較的長い停止間隔
で繰返し短時間運転される冷房装置において、冷媒不足
を確実に検出できる冷媒不足検出装置を提供することを
目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a refrigerant shortage detection device that can reliably detect refrigerant shortage in a cooling system in which a compressor is repeatedly operated for a short time with relatively long stop intervals.

[課題を解決するための手段] 本発明の詳細な説明すると、コンプレッサ51膨張弁5
2、およびエバポレータ53を結ぶ冷媒循環路を有する
冷房装置は、上記エバポレータ53の入口側温度を検出
する第1の温度検出手段IAと、上記エバポレータ53
の出口側温度を検出する第2の温度検出手段IBと、上
記第1の温度検出手段IAと第2の温度検出手段IBよ
りそれぞれ得られる温度信号の差を算出して温度差信号
を発する温度差算出手段2Aと、一定時間毎に得られる
温度差信号のピーク値を入力してその平均値を算出し、
ピーク平均値を出力する手段3Aとピーク平均値が所定
値を越えて変化した時に冷媒不足信号を発する手段4A
とを具備している。
[Means for Solving the Problems] To explain the present invention in detail, the compressor 51 expansion valve 5
2 and the evaporator 53, the air conditioner has a first temperature detection means IA that detects the temperature on the inlet side of the evaporator 53, and the evaporator 53.
A second temperature detection means IB detects the temperature on the outlet side of the temperature detection means IB, and a temperature difference signal is generated by calculating the difference between the temperature signals obtained from the first temperature detection means IA and the second temperature detection means IB. The difference calculation means 2A inputs the peak values of the temperature difference signals obtained at regular time intervals and calculates the average value thereof.
Means 3A for outputting the peak average value and means 4A for issuing a refrigerant shortage signal when the peak average value changes beyond a predetermined value.
It is equipped with.

[作用] 上記構成の装置において、冷媒が十分ある場合には、コ
ンプレッサ運転時の上記温度差信号は小さく、また、コ
ンプレッサ停止時にも温度差信号は小さいから、温度差
信号のピーク平均値が所定値を越えることはない。
[Function] In the device configured as described above, when there is sufficient refrigerant, the temperature difference signal is small when the compressor is operating, and the temperature difference signal is also small when the compressor is stopped. The value will not be exceeded.

冷媒が不足し始めると、コンプレッサ運転時の上記温度
差信号は急激に大きくなり、一方、コンプレッサ停止時
には小さくなる。しかして、コンプレッサの間欠的な運
転毎に上記温度差信号は大きなピーク値を示し、これら
ピーク値を平均したピーク平均値が所定値を越えて変化
し、冷媒不足信号が発せられる。
When the refrigerant starts to run out, the temperature difference signal increases rapidly when the compressor is in operation, and decreases when the compressor is stopped. Therefore, the temperature difference signal exhibits a large peak value every time the compressor is operated intermittently, and the peak average value obtained by averaging these peak values changes beyond a predetermined value, and a refrigerant shortage signal is issued.

上記ピーク平均値は、比較的長くかつ頻繁なコンプレッ
サ停止の影響を受けることがないから、確実な冷媒不足
検出が可能である。
Since the peak average value is not affected by relatively long and frequent compressor stoppages, reliable refrigerant shortage detection is possible.

[実施例] 図は本発明の一実施例を示し、冷房装置はコンプレッサ
51、コンデンサ54、レシーバ55、膨張弁52、お
よびエバポレータ53を循環する冷媒循環路を有してい
る。そして、エバポレータ53の入口配管P1、その出
口配管P2、膨張弁52の入口配管P3にそれぞれサー
ミスタIA、IB、ICが設けである。各サーミスタI
A〜ICは、それぞれ抵抗61.62.63を直列に介
して電源に接続されている。
[Embodiment] The figure shows an embodiment of the present invention, and the cooling device has a refrigerant circulation path that circulates through a compressor 51, a condenser 54, a receiver 55, an expansion valve 52, and an evaporator 53. Thermistors IA, IB, and IC are provided in the inlet pipe P1 of the evaporator 53, the outlet pipe P2 thereof, and the inlet pipe P3 of the expansion valve 52, respectively. Each thermistor I
A to IC are connected to a power supply through resistors 61, 62, and 63 in series, respectively.

各サーミスタIA〜ICの出力電圧はそれぞれ差動増幅
回路を構成するオペアンプ2A、2Bに入力せしめてあ
り、上記各出力電圧は測定温度が高くなるにしたがって
大きくなる。しかして、上記オペアンプ2Aからは入口
配管P1と出口配管P2の温度差に応じた温度差信号が
出力される。
The output voltages of the thermistors IA to IC are respectively input to operational amplifiers 2A and 2B constituting a differential amplifier circuit, and each of the output voltages increases as the measured temperature increases. Thus, the operational amplifier 2A outputs a temperature difference signal corresponding to the temperature difference between the inlet pipe P1 and the outlet pipe P2.

また、オペアンプ2Bからは入口配管P3と入口配管P
1の温度差に応じた温度差信号が出力される。
Also, from the operational amplifier 2B, the inlet pipe P3 and the inlet pipe P
A temperature difference signal corresponding to a temperature difference of 1 is output.

上記各オペアンプ2A、2Bの後段にはピーク平均値出
力回路3A、3Bが設けである。これら回路3A、3B
は、上記温度差信号を入力し、−定時間(例えば−分間
)に現れる温度差信号のピーク値を記憶するとともに、
記憶したピーク値の平均値を算出してピーク平均値とし
て出力する。
A peak average value output circuit 3A, 3B is provided after each of the operational amplifiers 2A, 2B. These circuits 3A, 3B
inputs the above temperature difference signal, stores the peak value of the temperature difference signal that appears in a certain period of time (for example, - minutes), and
The average value of the stored peak values is calculated and output as the peak average value.

上記ピーク平均値はそれぞれコンパレータ4A、4Bに
入力し、それぞれ参照電圧Va、vbと比較される。上
記入口配管P1と出口配管P2の温度差は、冷媒量の減
少につれて大きくなり、冷媒量が正常時の20〜30%
程度に減少した時に最大となる。そこで、上記参照電圧
Vaは冷媒量が50%以下となった時に温度差信号がこ
れを越えるような値に設定される。また、入口配管P3
と入口配管P1の温度差は、冷媒量が20%程度以下と
なった時に急激に小さくなる。そこで、上記参照電圧v
bは冷媒量が上記割合い以下となっな時に温度差信号が
これを上回るような値に設定される。
The peak average values are input to comparators 4A and 4B, respectively, and compared with reference voltages Va and vb, respectively. The temperature difference between the inlet pipe P1 and the outlet pipe P2 increases as the amount of refrigerant decreases, and is 20 to 30% of the normal amount of refrigerant.
It reaches its maximum when it decreases to a certain extent. Therefore, the reference voltage Va is set to a value such that the temperature difference signal exceeds this when the amount of refrigerant becomes 50% or less. In addition, inlet pipe P3
The temperature difference between the inlet pipe P1 and the inlet pipe P1 decreases rapidly when the amount of refrigerant decreases to about 20% or less. Therefore, the reference voltage v
b is set to a value such that the temperature difference signal exceeds this when the amount of refrigerant is below the above ratio.

上記各参照電圧Va、Vbは外気雰囲気中に設置した感
温抵抗31.32により発生せしめられる。感温抵抗3
1.32は温度上昇に伴い抵抗が増加する正特性のもの
である。これにより、外気温が上昇した場合には、これ
に伴って上記参照電圧Va、vbがそれぞれ上昇して、
冷媒不足信号の誤発信が防止される。
The reference voltages Va and Vb are generated by temperature-sensitive resistors 31 and 32 placed in the outside atmosphere. Temperature sensitive resistance 3
1.32 has a positive characteristic in which the resistance increases as the temperature rises. As a result, when the outside temperature rises, the reference voltages Va and vb each rise accordingly.
Erroneous transmission of a refrigerant shortage signal is prevented.

上記コンパレータ4Aの出力はフリップフロップ71の
セット端子に入力し、該フリップフロップ71のセット
出力はNANDゲート72に入力している。このNAN
Dゲート72にはタイマ73の出力も入力しており、上
記タイマ73は、リセットスイッチ74あるいは電源投
入により作動せしめられて一定時間「L」レベルとなる
出力を発する。
The output of the comparator 4A is input to a set terminal of a flip-flop 71, and the set output of the flip-flop 71 is input to a NAND gate 72. This NAN
The output of a timer 73 is also input to the D gate 72, and the timer 73 is activated by the reset switch 74 or when the power is turned on, and produces an output that remains at the "L" level for a certain period of time.

上記NANDゲート72の出力は次段のNANDゲート
75に入力するとともに、セット優先フリップフロップ
76のリセット端子に入力している。このフリップフロ
ップ76のセット端子には上記コンパレータ4Bの出力
が入力している。フリップフロップ76の出力は次段の
フリップフロップ77のリセット端子に入力し、該フリ
ップフロップ77の出力は上記NANDゲート75に入
力している。
The output of the NAND gate 72 is input to the next stage NAND gate 75 and also to the reset terminal of the set priority flip-flop 76. The output of the comparator 4B is input to the set terminal of this flip-flop 76. The output of the flip-flop 76 is input to the reset terminal of the next-stage flip-flop 77, and the output of the flip-flop 77 is input to the NAND gate 75.

NANDゲート75はトランジスタ78のベスに接続さ
れ、このトランジスタ78には警報ランプ81とリレー
コイル82が接続されてそれぞれ点灯ないし励磁せしめ
られる。そして、上記リレーコイル82により作動せし
められる常閉接点82aが上記コンプレッサ51の電磁
クラッチ511への給電線中に介設しである。
The NAND gate 75 is connected to the base of a transistor 78, and an alarm lamp 81 and a relay coil 82 are connected to the transistor 78 and are turned on or energized, respectively. A normally closed contact 82a operated by the relay coil 82 is interposed in the power supply line to the electromagnetic clutch 511 of the compressor 51.

上記構成の冷媒不足検出装置の作動を以下に説明する。The operation of the refrigerant shortage detection device having the above configuration will be explained below.

冷房負荷が小さく、コンプレッサ51が短時間(例えば
3秒〜7秒)運転後、フロスト防止のために比較的長く
停止するサイクルを繰返す場合、冷媒量が十分あると、
コンプレッサ51の運転停止を問わずオペアンプ2Aよ
り出力される温度差信号の電圧は低く、したがってピー
ク平均値出力回路3Aの出力電圧は低い。しかして、コ
ンパレータ4Aの出力およびフリップフロップ71の出
力は「L」レベル、NANDゲート72の出力はr)(
Jレベルである。
When the cooling load is small and the compressor 51 operates for a short time (for example, 3 to 7 seconds) and then stops for a relatively long time to prevent frosting, if there is a sufficient amount of refrigerant,
Regardless of whether the compressor 51 is stopped or not, the voltage of the temperature difference signal output from the operational amplifier 2A is low, and therefore the output voltage of the peak average value output circuit 3A is low. Therefore, the output of the comparator 4A and the output of the flip-flop 71 are "L" level, and the output of the NAND gate 72 is r)(
It is J level.

この時、オペアンプ2Bより出力される温度差信号の電
圧は、コンプレッサ51の運転時には充分低いが、停止
時には高くなって周期的なピーク値を有する。しかして
、このピーク値のみを平均したピーク平均値出力回路3
Bの出力電圧はコンプレッサ51の間欠停止の影響を受
けることなく十分低く、コンパレータ4Bの出力は「H
」レベル、フリップフロップ77の出力は「H」レベル
となる。したがって、NANDゲート75の出力は「L
」レベルとなり、トランジスタ78は非導通であって警
報ランプ81は消灯し、リレーコイル82は非励磁状態
である。この結果、電磁クラッチ511は励磁され、コ
ンプレッサ51が運転される。
At this time, the voltage of the temperature difference signal output from the operational amplifier 2B is sufficiently low when the compressor 51 is in operation, but becomes high and has periodic peak values when the compressor 51 is stopped. Therefore, the peak average value output circuit 3 averages only this peak value.
The output voltage of B is sufficiently low without being affected by the intermittent stoppage of the compressor 51, and the output of comparator 4B is “H”.
” level, and the output of the flip-flop 77 becomes “H” level. Therefore, the output of the NAND gate 75 is “L”
'' level, the transistor 78 is non-conductive, the alarm lamp 81 is turned off, and the relay coil 82 is in a de-energized state. As a result, the electromagnetic clutch 511 is excited and the compressor 51 is operated.

ここで、冷媒量が50%を下回ると、コンプレッサ運転
時にサーミスタIA、IBで検出される温度差は大きく
なる。この結果、オペアンプ2Aより出力される温度差
信号電圧は高くなり、ピーク平均値出力回路3Aに入力
する上記温度差信号電圧はコンプレッサ運転毎に上昇し
てピーク値を示す。上記一定時間内に得られるこれらピ
ーク値は記憶され、記憶されたピーク値の平均が算出さ
れてピーク平均値として出力される。このピーク平均値
は、コンプレッサ運転時のみの温度差の平均を示してい
るから冷媒量低下の良き指標となる。
Here, if the amount of refrigerant is less than 50%, the temperature difference detected by thermistors IA and IB during compressor operation becomes large. As a result, the temperature difference signal voltage output from the operational amplifier 2A becomes high, and the temperature difference signal voltage inputted to the peak average value output circuit 3A rises every time the compressor is operated to show a peak value. These peak values obtained within the certain period of time are stored, and the average of the stored peak values is calculated and output as the peak average value. Since this peak average value indicates the average temperature difference only during compressor operation, it is a good indicator of a decrease in the amount of refrigerant.

しかして、上記ピーク平均値が参照電圧Vaを越えると
、コンパレータ4AからrH,レベルの冷媒不足信号が
出力され、フリップフロップ71の出力がr)(Jレベ
ルとなる。上記タイマ出力はr)(Jレベルとなってい
るから、NANDゲート72.75の出力はそれぞれ「
L」レベル、r)(Jレベルとなる。かくして、トラン
ジスタ78が導通し、警報ランプ81が点灯するととも
に、電磁クラッチ511への通電が停止してコンプレッ
サ51の運転が止まる。
When the peak average value exceeds the reference voltage Va, the comparator 4A outputs a refrigerant shortage signal of level rH, and the output of the flip-flop 71 becomes r)(J level. The timer output is r)( Since it is at the J level, the outputs of the NAND gates 72 and 75 are respectively "
L level, r) (J level. Thus, the transistor 78 becomes conductive, the alarm lamp 81 lights up, and the electromagnetic clutch 511 is de-energized and the operation of the compressor 51 is stopped.

この状態で、猛暑等により冷房装置の運転がどうしても
必要な場合には、リセットスイッチ74を操作すると、
タイマ73が起動し、該タイマ73より一定時間「L」
レベルの出力が発せられて、NANDゲート72.75
の出力がそれぞれr)(Jレベル、「L」レベルとなり
、コンプレッサ51が強制的に運転される。
In this state, if it is absolutely necessary to operate the air conditioner due to extreme heat, etc., operating the reset switch 74 will cause
The timer 73 starts, and the timer 73 outputs “L” for a certain period of time.
The level output is issued and the NAND gate 72.75
The outputs of are respectively at r) (J level and "L" level, and the compressor 51 is forced to operate.

なお、上記タイマ73は電源投入時にも起動せしめられ
、コンプレッサ運転開始時の不安定な状態で、冷媒低減
が誤検出されてコンプレッサ51が停止するのを防止す
る。
The timer 73 is also activated when the power is turned on to prevent the compressor 51 from being stopped due to erroneous detection of refrigerant reduction in an unstable state when the compressor starts operating.

冷媒の漏れが激しく、急激にその量が減少する場合には
、上記サーミスタIA、IBの温度差の増大は短時間現
れるだけであり、コンパレータ4A系では検出できない
おそれがある。そこで、かかる場合、冷媒量が約20%
以下になると、コンプレッサ51停止時にはもちろん、
起動時にもサーミスタIA、IC間の温度差が小さくな
る。しかして、コンプレッサ51起動毎に大きなピーク
値を示していたオペアンプ2Bの温度差信号は、そのピ
ーク値が大きくなり、ピーク平均値出力回路3Bの出力
電圧が参照電圧vbを上回る。これにより、コンパレー
タ4Bから「L」レベルの冷媒不足信号が出力され、フ
リップフロップ76がセットされるとともにフリップフ
ロップ77はリセットされる。しかして、NANDゲー
ト75の出力はrH,レベルとなり、警報ランプ81が
点灯するとともに、コンプレッサ51の運転が停止する
If the refrigerant leaks heavily and its amount decreases rapidly, the increase in the temperature difference between the thermistors IA and IB will only appear for a short time and may not be detected by the comparator 4A system. Therefore, in such cases, the amount of refrigerant is approximately 20%
Of course, when the compressor 51 stops,
Even at startup, the temperature difference between the thermistor IA and the IC becomes smaller. As a result, the temperature difference signal of the operational amplifier 2B, which had been showing a large peak value each time the compressor 51 is started, has a larger peak value, and the output voltage of the peak average value output circuit 3B exceeds the reference voltage vb. As a result, a refrigerant shortage signal of "L" level is output from the comparator 4B, and the flip-flop 76 is set and the flip-flop 77 is reset. As a result, the output of the NAND gate 75 becomes rH, the alarm lamp 81 lights up, and the operation of the compressor 51 is stopped.

この場合は、リセットスイッチ74によるコンプレッサ
51の短時間運転は、故障する可能性が大きいため、不
可能としである。
In this case, short-term operation of the compressor 51 using the reset switch 74 is not possible because there is a high possibility of failure.

なお、上記実施例において、サーミスタIAの設置位置
をエバポレータ53の入口フィンとし、サーミスタ1B
の設置位置を、上記入口フィンよりも出口側に近い中間
フィンとしても良く、特に中間フィンの温度は、冷媒量
がある値より低下すると急俊に上昇するとともに、その
設置位置が出口側に近い程、冷媒量の少しの減少で温度
上昇を生じる。したがって、サーミスタIBの中間フィ
ンへの取付位置を調整することにより、S/N比良好に
冷媒量の減少レベルを知ることができる。
In the above embodiment, the thermistor IA is installed at the inlet fin of the evaporator 53, and the thermistor 1B is installed at the inlet fin of the evaporator 53.
The installation position of the intermediate fin may be closer to the outlet side than the inlet fin. In particular, the temperature of the intermediate fin rises rapidly when the amount of refrigerant drops below a certain value, and the installation position is closer to the outlet side. As the temperature increases, even a slight decrease in the amount of refrigerant causes a rise in temperature. Therefore, by adjusting the attachment position of the thermistor IB to the intermediate fin, it is possible to know the level of decrease in the amount of refrigerant with a good S/N ratio.

また、上記サーミスタICを、エバポレータ53への吸
入空気路中に設置しても同様の効果が得られる。
Furthermore, the same effect can be obtained by installing the thermistor IC in the intake air path to the evaporator 53.

上記実施例において、エンジン回転数やエバポレータ吸
入空気温度を検出する回路を設け、エンジン高回転時や
上記吸入空気温度が極端に高い場合には、ピーク平均値
出力回路の作動を一時停止するようになせば、かかる場
合の誤検出を回避することができる。
In the above embodiment, a circuit is provided to detect the engine speed and the evaporator intake air temperature, and when the engine speed is high or the intake air temperature is extremely high, the operation of the peak average value output circuit is temporarily stopped. If this is done, erroneous detection in such cases can be avoided.

[発明の効果] 以上の如く、本発明の冷媒不足検出装置によれば、コン
プレッサが比較的長い停止間隔で短時間運転されるよう
な場合にも、誤検出を生じることなく、確実に冷媒不足
を検出することができる。
[Effects of the Invention] As described above, the refrigerant shortage detection device of the present invention reliably detects refrigerant shortage without causing false detection even when the compressor is operated for a short time with relatively long stop intervals. can be detected.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す装置の全体回路図である。 IA、IB、IC・・・サーミスタ 2A、2B・・・オペアンプ(温度差算出手段)3A、
3B・・・ピーク平均値出力回路(ピーク平均値出力手
段) 4A、4B・・・コンパレータ(冷媒不足信号発信手段
) 51・・・コンプレッサ 52・・・膨張弁 53・・・エバポレータ 81・・・警報ランプ 82・・・リレーコイル
The figure is an overall circuit diagram of an apparatus showing an embodiment of the present invention. IA, IB, IC...Thermistor 2A, 2B... Operational amplifier (temperature difference calculation means) 3A,
3B... Peak average value output circuit (peak average value output means) 4A, 4B... Comparator (refrigerant shortage signal transmission means) 51... Compressor 52... Expansion valve 53... Evaporator 81... Alarm lamp 82...Relay coil

Claims (1)

【特許請求の範囲】[Claims] コンプレッサ、膨張弁、およびエバポレータを結ぶ冷媒
循環路を有する冷房装置において、上記エバポレータの
入口側温度を検出する第1の温度検出手段と、上記エバ
ポレータの出口側温度を検出する第2の温度検出手段と
、上記第1の温度検出手段と第2の温度検出手段よりそ
れぞれ得られる温度信号の差を算出して温度差信号を発
する温度差算出手段と、一定時間毎に得られる温度差信
号のピーク値を入力してその平均値を算出し、ピーク平
均値を出力する手段と、ピーク平均値が所定値を越えて
変化した時に冷媒不足信号を発する手段とを具備する冷
房装置の冷媒不足検出装置。
In a cooling device having a refrigerant circulation path connecting a compressor, an expansion valve, and an evaporator, a first temperature detection means detects the temperature on the inlet side of the evaporator, and a second temperature detection means detects the temperature on the outlet side of the evaporator. and a temperature difference calculating means for calculating the difference between the temperature signals obtained from the first temperature detecting means and the second temperature detecting means to generate a temperature difference signal, and a peak of the temperature difference signal obtained at regular time intervals. A refrigerant shortage detection device for an air conditioner, comprising means for inputting values, calculating the average value, and outputting a peak average value, and means for issuing a refrigerant shortage signal when the peak average value changes beyond a predetermined value. .
JP24466589A 1989-09-20 1989-09-20 Insufficient refrigerant detector for cooling equipment Expired - Fee Related JP2785381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24466589A JP2785381B2 (en) 1989-09-20 1989-09-20 Insufficient refrigerant detector for cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24466589A JP2785381B2 (en) 1989-09-20 1989-09-20 Insufficient refrigerant detector for cooling equipment

Publications (2)

Publication Number Publication Date
JPH03110363A true JPH03110363A (en) 1991-05-10
JP2785381B2 JP2785381B2 (en) 1998-08-13

Family

ID=17122132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24466589A Expired - Fee Related JP2785381B2 (en) 1989-09-20 1989-09-20 Insufficient refrigerant detector for cooling equipment

Country Status (1)

Country Link
JP (1) JP2785381B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315784B1 (en) * 1999-09-03 2001-12-12 구자홍 Control unit with delay compensation for air conditioner and the same method
JP2009162400A (en) * 2007-12-28 2009-07-23 Daikin Ind Ltd Refrigerating device for container
CN108397876A (en) * 2018-02-27 2018-08-14 珠海格力电器股份有限公司 The detection method and device of air conditioner coolant state
CN109899929A (en) * 2019-03-19 2019-06-18 海信(广东)空调有限公司 Air conditioner and its control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315784B1 (en) * 1999-09-03 2001-12-12 구자홍 Control unit with delay compensation for air conditioner and the same method
JP2009162400A (en) * 2007-12-28 2009-07-23 Daikin Ind Ltd Refrigerating device for container
JP4548481B2 (en) * 2007-12-28 2010-09-22 ダイキン工業株式会社 Container refrigeration equipment
CN108397876A (en) * 2018-02-27 2018-08-14 珠海格力电器股份有限公司 The detection method and device of air conditioner coolant state
CN109899929A (en) * 2019-03-19 2019-06-18 海信(广东)空调有限公司 Air conditioner and its control method

Also Published As

Publication number Publication date
JP2785381B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
US4262736A (en) Apparatus for heat pump malfunction detection
US5201862A (en) Low refrigerant charge protection method
CN107436016B (en) Air conditioner, method and system for detecting leakage of refrigerant in air conditioner and storage medium
KR950023929A (en) How the heat pump system works and how to deal with detector errors
US11014431B2 (en) Electrified vehicle thermal management system
CN105241018A (en) Heat exchange fault detection method and device for dehumidification device
US4790144A (en) Defrosting control apparatus for a temperature control system
US5323620A (en) Air conditioners
CN112393377A (en) Fault judgment method and air conditioner
CN114183883A (en) Detection method of four-way valve and air conditioner
CN105571071A (en) Air conditioner and control method and device of air conditioner
JPH03110363A (en) Sensing device for lack-of-refrigerant-state in cooling device
JPH0455671A (en) Refrigerating cycle device
JPH06137725A (en) Refrigerant leakage detection method for refrigeration device
JP2890970B2 (en) Air conditioner abnormality detection device
CN111023404A (en) Pipeline temperature sensor failure detection method, readable storage medium and air conditioner
JP2500517B2 (en) Refrigeration system operation controller
JPH01107070A (en) Method of detecting shortage of refrigerant for air conditioner
CN110617604A (en) Control method, device and equipment for preventing cold air of air conditioner, air conditioner and storage medium
JPH0399931A (en) Refrigerant deficiency detecting device for cooling device
JPH09159293A (en) Compressor protection controller for air conditioner
CN115523609A (en) Method and device for detecting refrigerant abnormity, air conditioner and storage medium
JPH07234044A (en) Controlling device for protecting compressor of air conditioner
JPH0350471A (en) Insufficient refrigerant detector device for cooling apparatus
JPH0560444A (en) Controller for refrigerator and safe protector of refrigerating cycle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees