JPH0399931A - Refrigerant deficiency detecting device for cooling device - Google Patents

Refrigerant deficiency detecting device for cooling device

Info

Publication number
JPH0399931A
JPH0399931A JP1237945A JP23794589A JPH0399931A JP H0399931 A JPH0399931 A JP H0399931A JP 1237945 A JP1237945 A JP 1237945A JP 23794589 A JP23794589 A JP 23794589A JP H0399931 A JPH0399931 A JP H0399931A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
signal
evaporator
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1237945A
Other languages
Japanese (ja)
Other versions
JP2841542B2 (en
Inventor
Yoshihiko Sano
佐野 善彦
Hisataka Okado
久高 岡戸
Kimiaki Yamaguchi
山口 公昭
Hiroshi Inazu
稲津 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1237945A priority Critical patent/JP2841542B2/en
Publication of JPH0399931A publication Critical patent/JPH0399931A/en
Application granted granted Critical
Publication of JP2841542B2 publication Critical patent/JP2841542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To surely detect refrigerant deficiency by detecting the inlet temperature and the outlet temperature of an evaporator respectively, averaging the difference signal between the inlet temperature multiplied by the preset number and the outlet temperature, and comparing the averaged temperature difference signal with the preset value. CONSTITUTION:In a cooling device having a refrigerant circulating path circulating a compressor 51, a condenser 54, a receiver 55, an expansion valve, and an evaporator 53, the first and second thermistors 1A and 1B detecting the inlet temperature and the outlet temperature of the evaporator 53 respectively are provided. The temperature signal obtained by the first thermistor 1A is multiplied by the preset number in an operation amplifier 5A serving as an amplifying means, then it is fed to an operation amplifier 2A serving as a temperature difference calculating means to calculate the difference with the temperature signal detected by the second thermistor 1B. The temperature difference signal is averaged by a smoothing circuit 3A serving as an averaging means, and a refrigerant deficiency signal is generated from a comparator 4A when the averaged temperature difference signal exceeds the preset value.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は冷房装置の冷媒不足を検知する冷媒不足検出装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigerant shortage detection device for detecting refrigerant shortage in a cooling device.

[従来技術] 冷媒が不足した状態で冷房装置を運転すると、冷房の利
きが悪くなることはもちろん、コンプレッサが過熱して
故障する等の問題を生じる。
[Prior Art] If a cooling device is operated in a state where there is a shortage of refrigerant, not only will the efficiency of cooling become poor, but also problems such as overheating of the compressor and breakdown will occur.

そこで、従来は、冷媒循環路中に圧力スイッチを設けて
、一定圧以下でコンプレッサを停止するようにしている
が、この方法では、外気温による圧力変動を考慮する必
要があるため、実際には冷媒が殆ど無くなった場合にし
か検出できない。
Conventionally, a pressure switch is installed in the refrigerant circulation path to stop the compressor below a certain pressure, but this method requires consideration of pressure fluctuations due to outside temperature, so it is difficult to It can only be detected when the refrigerant is almost completely exhausted.

これを解決するために、例えば日本電装公開技報50−
020 (1986年11月15日)、特開昭61−1
97969号公報、実開昭62−43268号公報には
、冷媒循環路中に一対のサーミスタを設けて、これらサ
ーミスタの温度信号の差信号より冷媒の不足を検出する
ものが開示されている。
In order to solve this problem, for example, Nippondenso Publication Technical Report 50-
020 (November 15, 1986), JP-A-61-1
97969 and Japanese Utility Model Application Publication No. 62-43268 disclose a system in which a pair of thermistors is provided in a refrigerant circulation path, and a shortage of refrigerant is detected from a difference signal between temperature signals of these thermistors.

[発明が解決しようとする課題] 上記サーミスタを使用した冷媒不足検出は、冷媒の不足
量を定1的に検出できる点で優れているが、フロスト防
止装置の作動時や、エンジン回転急減時には、−時的に
上記温度差信号が変動するため、冷媒不足を誤検知する
という問題があった。
[Problems to be Solved by the Invention] The refrigerant shortage detection using the above-mentioned thermistor is excellent in that it can constantly detect the amount of refrigerant shortage, but when the frost prevention device is activated or the engine speed suddenly decreases, - Since the temperature difference signal fluctuates over time, there is a problem of false detection of refrigerant shortage.

発明者等はかかる課題を解決するために先に平均化手段
を設けた冷媒不足検出装置を提案しな(特願昭63−3
15381号)。この装置は上記課題に対して有効にそ
の解決をなしたものであるが、エバポレータの圧力制御
(EPR)を行っている冷房装置では、冷媒不足時にも
エバポレータ入口側温度の低下が比較的小さいため、検
出を有効に行い得ない場合があった。
In order to solve this problem, the inventors proposed a refrigerant shortage detection device that first provided an averaging means (Japanese Patent Application No. 63-3).
No. 15381). This device effectively solved the above problem, but in cooling systems that perform evaporator pressure control (EPR), the drop in temperature on the evaporator inlet side is relatively small even when there is a refrigerant shortage. , there were cases where detection could not be performed effectively.

そこで、本発明は、エバポレータの圧力制御を行ってい
る冷房装置においても、冷媒不足を確実に検出できる冷
媒不足検出装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a refrigerant shortage detection device that can reliably detect refrigerant shortage even in a cooling device that controls the pressure of an evaporator.

[課題を解決するための手段] 本発明の詳細な説明すると、コンプレッサ51、膨張弁
52、およびエバポレータ53を結ぶ冷媒循環路を有す
る冷房装置において、冷媒不足検出装置は、上記エバポ
レータ53の入口側温度を検出する第1の温度検出手段
IAと、上記エバポレータ53の出口側温度を検出する
第2の温度検出手段IBと、上記第1の温度検出手段I
Aより得られる温度信号を所定倍する増幅手段5Aと、
増幅された上記温度信号と上記第2の温度検出手段IB
より得られる温度信号の差を算出して温度差信号を発す
る温度差算出手段2Aと、上記温度差信号を平均化する
手段3Aと、平均化された温度差信号が所定値を越えて
変化した時に冷媒不足信号を発する手段4Aとを具備し
ている。
[Means for Solving the Problems] To explain the present invention in detail, in a cooling device having a refrigerant circulation path connecting a compressor 51, an expansion valve 52, and an evaporator 53, a refrigerant shortage detection device is installed on the inlet side of the evaporator 53. a first temperature detection means IA for detecting temperature; a second temperature detection means IB for detecting the outlet side temperature of the evaporator 53; and a first temperature detection means I
Amplifying means 5A for multiplying the temperature signal obtained from A by a predetermined value;
The amplified temperature signal and the second temperature detection means IB
A temperature difference calculation means 2A calculates the difference between the temperature signals obtained from the above and generates a temperature difference signal, and a means 3A averages the temperature difference signal. It also includes means 4A for issuing a refrigerant shortage signal at certain times.

[作用] 上記構成の装置によれば、フロスト防止装置の作動時や
エンジン回転急減時において温度差信号が一時的に大き
く変動しても、平均化手段3Aにより平均化された信号
は上記変動の影響を受けず、したがって、冷媒不足信号
が誤発信されることはない。
[Function] According to the device configured as described above, even if the temperature difference signal temporarily fluctuates greatly when the anti-frost device is activated or the engine speed suddenly decreases, the signal averaged by the averaging means 3A will compensate for the fluctuation. is unaffected and therefore no erroneous refrigerant shortage signal is issued.

そして、上記増幅手段5Aにより、第1の温度検出手段
IAより得られるエバポレータ入口側温度を所定倍に増
幅しているから、当該温度の変化量も所定倍に増幅され
、上記温度差信号の変化にエバポレータ入口側温度の変
化を大きく反映せしめることができる。しかして、冷媒
不足時に上記入口側温度の低下が比較的少ないEPR制
御の冷房装置においても、冷媒不足を効果的に検出する
ことが可能となる。
Since the amplification means 5A amplifies the evaporator inlet side temperature obtained from the first temperature detection means IA by a predetermined time, the amount of change in temperature is also amplified by a predetermined time, and the temperature difference signal changes. Changes in the temperature on the evaporator inlet side can be largely reflected in the evaporator inlet temperature. Therefore, even in an EPR-controlled cooling device in which the inlet side temperature decreases relatively little when there is a refrigerant shortage, it is possible to effectively detect a refrigerant shortage.

[実施例] 図は本発明の一実施例を示し、冷房装置はコンプレッサ
51、コンデンサ54、レシーバ55、膨張弁52、お
よびエバポレータ53を循環する冷媒循環路を有してい
る。そして、エバポレータ53の入口配管P1、その出
口配管P2、膨張弁52の入口配管P3にそれぞれサー
ミスタIA、IB、ICが設けである。各サーミスタI
A〜ICは、それぞれ抵抗61.62.63を直列に介
して電源に接続されている。
[Embodiment] The figure shows an embodiment of the present invention, and the cooling device has a refrigerant circulation path that circulates through a compressor 51, a condenser 54, a receiver 55, an expansion valve 52, and an evaporator 53. Thermistors IA, IB, and IC are provided in the inlet pipe P1 of the evaporator 53, the outlet pipe P2 thereof, and the inlet pipe P3 of the expansion valve 52, respectively. Each thermistor I
A to IC are connected to a power supply through resistors 61, 62, and 63 in series, respectively.

サーミスタIAの出力電圧は、差動増幅回路を構成する
オペアンプ2Bに直接入力するとともに、非反転増幅回
路を構成するオペアンプ5Aに入力し、ここで所定倍に
増幅されて差動増幅回路を構成するオペアンプ2Aに入
力している。他のサーミスタIB、ICの出力は、それ
ぞれ上記オペアンプ2A、2Bに入力している。上記増
幅回路の増幅率は抵抗91.92の比によって決定され
、2倍〜3倍程度とする。
The output voltage of the thermistor IA is directly input to the operational amplifier 2B that constitutes the differential amplifier circuit, and is also input to the operational amplifier 5A that constitutes the non-inverting amplifier circuit, where it is amplified by a predetermined factor to constitute the differential amplifier circuit. It is input to operational amplifier 2A. The outputs of the other thermistors IB and IC are input to the operational amplifiers 2A and 2B, respectively. The amplification factor of the amplification circuit is determined by the ratio of resistors 91.92, and is approximately 2 to 3 times.

上記オペアンプ2Aの後段には反転回路を構成するオペ
オンプロAが接続され、その出力は次段の平均化手段と
しての平滑回路3Aへ入力している。平滑回路3Aは抵
抗31とコンデンサ32より構成されており、上記オペ
アンプ2Bの後段にも抵抗33とコンデンサ34より構
成される同一構成の平滑回路3Bが設けである。各平滑
信号はコンパレータ4A、4Bに入力し、それぞれ定電
圧Va、vbと比較される。
An operational amplifier 2A constituting an inverting circuit is connected to the rear stage of the operational amplifier 2A, and its output is input to a smoothing circuit 3A serving as averaging means at the next stage. The smoothing circuit 3A is made up of a resistor 31 and a capacitor 32, and a smoothing circuit 3B having the same structure and made up of a resistor 33 and a capacitor 34 is also provided downstream of the operational amplifier 2B. Each smoothed signal is input to comparators 4A and 4B and compared with constant voltages Va and vb, respectively.

ここで、上記入口配管P1と出口配管P2の温度差は、
冷媒量の減少につれて大きくなり、冷媒量が正常時の2
0〜30%程度に減少した時に最大となる。そこで、上
記定電圧Vaは、冷媒量が50%以下となった時に温度
差信号がこれを越えるような値に設定する。また、入口
配管P3と入目配管P1の温度差は、冷媒量が20%程
度以下となった時に急激に小さくなる。そこで、上記定
電圧vbは、冷媒量が上記割合以下となったときに温度
差信号がこれを下回るような値に設定する。
Here, the temperature difference between the inlet pipe P1 and the outlet pipe P2 is
It increases as the amount of refrigerant decreases, and when the amount of refrigerant is normal, it increases.
It reaches its maximum when it decreases to about 0 to 30%. Therefore, the constant voltage Va is set to a value such that the temperature difference signal exceeds this when the amount of refrigerant becomes 50% or less. Further, the temperature difference between the inlet pipe P3 and the inlet pipe P1 becomes suddenly smaller when the amount of refrigerant becomes about 20% or less. Therefore, the constant voltage vb is set to a value such that the temperature difference signal falls below this when the amount of refrigerant becomes equal to or less than the above ratio.

上記コンパレータ4Aの出力はフリップフロップ71の
セット端子に入力し、該フリップ70ツブ71のセット
出力はNANDゲート72に入力している。このNAN
Dゲート72にはタイマ73の出力も入力しており、上
記タイマ73は、リセットスイッチ74あるいは電源投
入により作動せしめられて一定時間「L」レベルとなる
出力を発する。
The output of the comparator 4A is input to the set terminal of the flip-flop 71, and the set output of the flip-flop 70 is input to the NAND gate 72. This NAN
The output of a timer 73 is also input to the D gate 72, and the timer 73 is activated by the reset switch 74 or when the power is turned on, and produces an output that remains at the "L" level for a certain period of time.

上記NANDゲート72の出力は次段のNANDゲート
75に入力するとともに、セット優先フリップフロップ
76のリセット端子に入力している。このフリップフロ
ップ76のセット端子には上記コンパレータ4Bの出力
が入力している。フリップフロップ76の出力は次段の
フリップフロップ77のリセット端子に入力し、該フリ
ップフロップ77の出力は上記NANDゲート75に入
力している。
The output of the NAND gate 72 is input to the next stage NAND gate 75 and also to the reset terminal of the set priority flip-flop 76. The output of the comparator 4B is input to the set terminal of this flip-flop 76. The output of the flip-flop 76 is input to the reset terminal of the next-stage flip-flop 77, and the output of the flip-flop 77 is input to the NAND gate 75.

NANDゲート75はトランジスタ78のベースに接続
され、このトランジスタ78には警報ランプ81とリレ
ーコイル82が接続されてそれぞれ点灯ないし励磁せし
められる。そして、上記リレーコイル82により作動せ
しめられる常閉接点82aが上記コンプレッサ51の電
磁クラッチ511への給電線中に介設しである。
The NAND gate 75 is connected to the base of a transistor 78, and an alarm lamp 81 and a relay coil 82 are connected to the transistor 78 and are turned on or energized, respectively. A normally closed contact 82a operated by the relay coil 82 is interposed in the power supply line to the electromagnetic clutch 511 of the compressor 51.

上記構成の冷媒不足検出装置の作動を以下に説明する。The operation of the refrigerant shortage detection device having the above configuration will be explained below.

冷媒量が十分ある場合には、オペアンプ2Aより出力さ
れる温度差信号の電圧は低く、コンパレータ4Aの出力
およびフリップフロップ71の出力は「L」レベル、N
ANDゲート72の出力はrH,レベルである。
When there is a sufficient amount of refrigerant, the voltage of the temperature difference signal output from the operational amplifier 2A is low, and the output of the comparator 4A and the output of the flip-flop 71 are at "L" level, N
The output of the AND gate 72 is rH, level.

この時、オペアンプ2Bより出力される温度差信号の電
圧は高く、コンパレータ4Bの出力は「L」レベル、フ
リップフロップ77の出力はrH,レベルである。した
がって、NANDゲート75の出力は「しjレベルとな
り、トランジスタ78は非導通であって警報ランプ81
は消灯し、リレーコイル82は非励磁状態である。した
がって、電磁クラッチ511は励磁され、コンプレッサ
51が運転される。
At this time, the voltage of the temperature difference signal output from the operational amplifier 2B is high, the output of the comparator 4B is at the "L" level, and the output of the flip-flop 77 is at the rH level. Therefore, the output of the NAND gate 75 is at the "J" level, the transistor 78 is non-conductive, and the alarm lamp 81 is turned off.
is off, and the relay coil 82 is in a non-energized state. Therefore, the electromagnetic clutch 511 is excited and the compressor 51 is operated.

この状態で、例えばフロスト防止装置が作動する等によ
り、−時的に冷媒の流通が停止して、上記オペアンプ2
Aの温度差信号の電圧が一時的に下降し、あるいは上記
オペアンプ2Bの温度差信号の電圧が一時的に下降して
も、これら電圧の変動は平滑回路3A、3Bにより吸収
され、コンパレータ4A、4Bの出力状態は変わらない
。これにより、警報が誤報知されることなく、コンプレ
ッサの運転状態は持続される。
In this state, the flow of the refrigerant is temporarily stopped due to the operation of the anti-frost device, for example, and the operational amplifier 2
Even if the voltage of the temperature difference signal of A temporarily drops, or the voltage of the temperature difference signal of the operational amplifier 2B temporarily drops, these voltage fluctuations are absorbed by the smoothing circuits 3A, 3B, and the comparators 4A, The output state of 4B remains unchanged. As a result, the operating state of the compressor can be maintained without false alarms being issued.

冷媒量が減少して50%を下回ると、エバポレータ出口
側温度が上昇してサーミスタIBの出力電圧が大きくな
り、この時、エバポレータ入口側温度はEPR制御され
ている場合にもある程度は低下してサーミスタIAの出
力電圧が小さくなる。
When the amount of refrigerant decreases to below 50%, the temperature on the evaporator outlet side rises and the output voltage of thermistor IB increases, and at this time, the temperature on the evaporator inlet side decreases to some extent even under EPR control. The output voltage of thermistor IA becomes smaller.

この出力電圧はオペアンプ5Aで増幅されており、出力
電圧の減少分は増幅倍されてオペアンプ2Aに入力する
。しかして、オペアンプ2Aで算出される温度差信号は
十分絶対値の大きい負の値となり、これを反転した信号
電圧は上記定電圧Vaを越える。
This output voltage is amplified by the operational amplifier 5A, and the decrease in the output voltage is multiplied and input to the operational amplifier 2A. Therefore, the temperature difference signal calculated by the operational amplifier 2A has a negative value with a sufficiently large absolute value, and the signal voltage obtained by inverting this value exceeds the constant voltage Va.

コンパレータ4Aがらは「H」レベルの冷媒不足信号が
出力され、フリップフロップ71の出力がrHjレベル
となる。上記タイマ出力はrH。
The comparator 4A outputs a refrigerant shortage signal of "H" level, and the output of the flip-flop 71 becomes rHj level. The above timer output is rH.

レベルとなっているから、NANDゲート72.75の
出力はそれぞれ「L」レベル、rH,レベルとなる。か
くして、トランジスタ78が導通し、警報ランプ81が
点灯するとともに、電磁クラッチ511への通電が停止
してコンプレッサ51の運転が止まる9 この状態で、猛暑等により冷房装置の運転がどうしても
必要な場合には、リセットスイッチ74を操作すると、
タイマ73が起動し、該タイマ73より一定時間「し」
レベルの出力が発せられて、NANDゲート72.75
の出力がそれぞれrH。
Therefore, the outputs of the NAND gates 72 and 75 become "L" level, rH level, and rH level, respectively. In this way, the transistor 78 becomes conductive, the alarm lamp 81 lights up, and the electromagnetic clutch 511 is de-energized and the operation of the compressor 51 is stopped. When the reset switch 74 is operated,
The timer 73 starts, and the timer 73 starts “shu” for a certain period of time.
The level output is issued and the NAND gate 72.75
The output of each is rH.

レベル、「L」レベルとなり、コンプレッサ51が強制
的に運転される。
level becomes "L" level, and the compressor 51 is forcibly operated.

なお、上記タイマ73は電源投入時にも起動せしめられ
、コンプレッサ運転開始時の不安定な状態で、冷媒低減
が誤検出されてコンプレッサ51が停止するのを防止す
る。
The timer 73 is also activated when the power is turned on to prevent the compressor 51 from being stopped due to erroneous detection of refrigerant reduction in an unstable state when the compressor starts operating.

冷媒の漏れが激しく、急激にその量が減少する場合には
、上記サーミスタIA、IBの温度差の増大は短時間現
れるだけであり、コンパレータ4A系では検出できない
おそれがある。そこで、かかる場合、冷媒量が約20%
以下になると、サーミスタIA、IC間の温度差が小さ
くなり、オペアンプ2Bの温度差信号電圧が定電圧vb
を下回る。これにより、コンパレータから「H」レベル
の冷媒不足信号が出力され、フリップフロップ76がセ
ットされるとともにフリップフロップ77はリセットさ
れる。しかして、NANDゲート75の出力はr)(J
レベルとなり、警報ランプ81が点灯するとともに、コ
ンプレッサ51の運転が停止する。
If the refrigerant leaks heavily and its amount decreases rapidly, the increase in the temperature difference between the thermistors IA and IB will only appear for a short time and may not be detected by the comparator 4A system. Therefore, in such cases, the amount of refrigerant is approximately 20%
When the temperature difference between the thermistor IA and the IC becomes smaller, the temperature difference signal voltage of the operational amplifier 2B becomes constant voltage vb.
below. As a result, a refrigerant shortage signal of "H" level is output from the comparator, and the flip-flop 76 is set and the flip-flop 77 is reset. Therefore, the output of the NAND gate 75 is r)(J
level, the alarm lamp 81 lights up, and the operation of the compressor 51 is stopped.

この場合は、リセットスイッチ74によるコンプレッサ
51の短時間運転は、故障する可能性が大きいため、不
可能としである。
In this case, short-term operation of the compressor 51 using the reset switch 74 is not possible because there is a high possibility of failure.

なお、上記実施例において、サーミスタIAの設置位置
をエバポレータ53の入口フィンとし、サーミスタIB
の設置位置を、上記入口フィンよりも出口側に近い中間
フィンとしても良く、特に中間フィンの温度は、冷媒量
がある値より低下すると急俊に上昇するとともに、その
設置位置が出口側に近い程、冷媒量の少しの減少で温度
上昇を生じる。したがって、サーミスタIBの中間フィ
ンへの取付位置を調整することにより、S/N比良好に
冷媒量の減少レベルを知ることができる。
In the above embodiment, the thermistor IA is installed at the inlet fin of the evaporator 53, and thermistor IB is installed at the inlet fin of the evaporator 53.
The installation position of the intermediate fin may be closer to the outlet side than the inlet fin. In particular, the temperature of the intermediate fin rises rapidly when the amount of refrigerant drops below a certain value, and the installation position is closer to the outlet side. As the temperature increases, even a slight decrease in the amount of refrigerant causes a rise in temperature. Therefore, by adjusting the attachment position of the thermistor IB to the intermediate fin, it is possible to know the level of decrease in the amount of refrigerant with a good S/N ratio.

また、上記サーミスタICを、エバポレータ53への吸
入空気路中に設置しても同様の効果が得られる。
Furthermore, the same effect can be obtained by installing the thermistor IC in the intake air path to the evaporator 53.

平均化手段として上記実施例では平滑回路を使用したが
、他の回路構成としても良いことはもちろんである。
Although a smoothing circuit is used as the averaging means in the above embodiment, it goes without saying that other circuit configurations may be used.

上記実施例において、エンジン回転数あるいはエバポレ
ータ吸入空気温度を検出する回路を設けて、エンジン高
回転時やエバポレータ吸入空気温度が高い場合には温度
検出を一時停止するようになせば、かかる場合の誤検出
を回避することとができる。
In the above embodiment, if a circuit is provided to detect the engine speed or the evaporator intake air temperature, and the temperature detection is temporarily stopped when the engine speed is high or the evaporator intake air temperature is high, errors in such cases can be avoided. Detection can be avoided.

[発明の効果コ 以上の如く、本発明の冷媒不足検出装置は、フロスト防
止装置の作動やエンジン回転の急減の影響を受けて誤動
作することなく、確実に冷媒量の低下を検出できるもの
であり、特に冷媒不足時の、エバポレータ入口側温度低
下が比較的少ないEPRIII #の冷房装置において
冷媒不足の検出を良好になすことができるものである。
[Effects of the Invention] As described above, the refrigerant shortage detection device of the present invention can reliably detect a decrease in the amount of refrigerant without malfunctioning due to the operation of the frost prevention device or the sudden decrease in engine rotation. In particular, refrigerant shortage can be detected satisfactorily in an EPRIII # cooling system in which the temperature drop on the evaporator inlet side is relatively small when there is refrigerant shortage.

また、検出レベルの設定も広い範囲でなすことが可能で
ある。
Furthermore, the detection level can be set within a wide range.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す装置の全体回路図である。 IA、IB、IC・・・・・・サーミスタ2A、2B・
・・・・・オペアンプ(温度差算出手段)3A、3B・
・・・・・平滑回I¥1(平均化手段)4A、4B・・
・・・・コンパレータ(冷媒不足信号発信手段) 5A・・・・・・オペアンプ(増幅手段)51・・・・
・・コンプレッサ 52・・・・・・膨張弁 53・・・・・・エバポレータ 81・・・・・・警報ランプ 82・・・・・・リレーコイル
The figure is an overall circuit diagram of an apparatus showing an embodiment of the present invention. IA, IB, IC...Thermistor 2A, 2B.
...Operational amplifier (temperature difference calculation means) 3A, 3B.
...Smoothing cycle I ¥1 (averaging means) 4A, 4B...
... Comparator (refrigerant shortage signal transmission means) 5A ... Operational amplifier (amplification means) 51 ...
... Compressor 52 ... Expansion valve 53 ... Evaporator 81 ... Alarm lamp 82 ... Relay coil

Claims (1)

【特許請求の範囲】[Claims]  コンプレッサ、膨張弁、およびエバポレータを結ぶ冷
媒循環路を有する冷房装置において、上記エバポレータ
の入口側温度を検出する第1の温度検出手段と、上記エ
バポレータの出口側温度を検出する第2の温度検出手段
と、上記第1の温度検出手段より得られる温度信号を所
定倍する増幅手段と、増幅された上記温度信号と上記第
2の温度検出手段より得られる温度信号の差を算出して
温度差信号を発する温度差算出手段と、上記温度差信号
を平均化する手段と、平均化された温度差信号が所定値
を越えて変化した時に冷媒不足信号を発する手段とを具
備する冷房装置の冷媒不足検出装置。
In a cooling device having a refrigerant circulation path connecting a compressor, an expansion valve, and an evaporator, a first temperature detection means detects the temperature on the inlet side of the evaporator, and a second temperature detection means detects the temperature on the outlet side of the evaporator. and an amplifying means for multiplying the temperature signal obtained by the first temperature detecting means by a predetermined value, and calculating a difference between the amplified temperature signal and the temperature signal obtained from the second temperature detecting means to generate a temperature difference signal. refrigerant shortage in a cooling system, comprising temperature difference calculation means for emitting a temperature difference signal, means for averaging the temperature difference signal, and means for emitting a refrigerant shortage signal when the averaged temperature difference signal changes beyond a predetermined value. Detection device.
JP1237945A 1989-09-13 1989-09-13 Insufficient refrigerant detector for cooling equipment Expired - Lifetime JP2841542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1237945A JP2841542B2 (en) 1989-09-13 1989-09-13 Insufficient refrigerant detector for cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237945A JP2841542B2 (en) 1989-09-13 1989-09-13 Insufficient refrigerant detector for cooling equipment

Publications (2)

Publication Number Publication Date
JPH0399931A true JPH0399931A (en) 1991-04-25
JP2841542B2 JP2841542B2 (en) 1998-12-24

Family

ID=17022790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237945A Expired - Lifetime JP2841542B2 (en) 1989-09-13 1989-09-13 Insufficient refrigerant detector for cooling equipment

Country Status (1)

Country Link
JP (1) JP2841542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08268050A (en) * 1995-03-31 1996-10-15 Nissan Motor Co Ltd Heat pump type heating and cooling equipment for vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158274A (en) * 1980-04-25 1980-12-09 Kubota Ltd Manufacture of enameled bathtub
JPS57184738A (en) * 1981-04-10 1982-11-13 Ferodo Ltd Friction lining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158274A (en) * 1980-04-25 1980-12-09 Kubota Ltd Manufacture of enameled bathtub
JPS57184738A (en) * 1981-04-10 1982-11-13 Ferodo Ltd Friction lining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08268050A (en) * 1995-03-31 1996-10-15 Nissan Motor Co Ltd Heat pump type heating and cooling equipment for vehicle

Also Published As

Publication number Publication date
JP2841542B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
KR950023929A (en) How the heat pump system works and how to deal with detector errors
CN111452587A (en) Thermal management system for electric vehicle
US11639803B2 (en) System and method for identifying causes of HVAC system faults
US11719452B2 (en) System and method for distinguishing HVAC system faults
US11788753B2 (en) HVAC system fault prognostics and diagnostics
CN112393377A (en) Fault judgment method and air conditioner
US20030097849A1 (en) Control unit for clutchless, variable displacement compressor
JPH0455671A (en) Refrigerating cycle device
JP2785381B2 (en) Insufficient refrigerant detector for cooling equipment
JPH0399931A (en) Refrigerant deficiency detecting device for cooling device
CN111023404A (en) Pipeline temperature sensor failure detection method, readable storage medium and air conditioner
JPH0350471A (en) Insufficient refrigerant detector device for cooling apparatus
JPH09159293A (en) Compressor protection controller for air conditioner
CN111928490A (en) Forced-blowing gas water heater and water heater control method
JPS6017672A (en) Alarm device for shortage of refrigerant
JP2008202868A (en) Air conditioner
JPS5875649A (en) Abnormality detecting device of air conditioner
JPH01107071A (en) Air conditioner
JPS5833062A (en) Method and device for controlling air conditioner for automobile
JPH06307722A (en) Air-conditioning equipment for vehicle
JPS637531Y2 (en)
CN112944601A (en) Power determination device and method for air conditioner internal unit and air conditioner
CN114135990A (en) Temperature control method, device and system and related equipment
CN117213032A (en) Air conditioning system return air short circuit detection method and detection device and air conditioning system
JPH1120466A (en) Air conditioning system for vehicle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term